Bernd Finkbeiner Rüdiger Ehlers Andrey Kupriyanov

Automata, Games, and Verification

Note: Due to the public holiday on the 2^{nd} of June, there will be no tutorial next week. The solution of problem 1 will be presented in the lecture on the 31^{st} of May. The second problem will be discussed in the tutorial on the 9^{th} of June.

1. S1S and LTL

Decide for each of the languages over $2^{\{p,q\}}$ described below if they can be defined in S1S and/or LTL. Justify your answer in each case by either providing a formula or an argument why the language is not definable.

- a) $L_1 = \{ \alpha \mid p \in \alpha(0), p \notin \alpha(i) \text{ for all } i \ge 1 \};$
- b) $L_2 = \{ \alpha \mid p \in \alpha(i) \text{ for exactly two different } i \in \omega \};$
- c) $L_3 = \{ \alpha \mid |\{i \in \omega \mid p \in \alpha(i)\} | \text{ is finite and even} \};$
- d) $L_4 = \{ \alpha \mid |\{i \in \omega \mid p \in \alpha(i)\} | \text{ and } |\{i \in \omega \mid q \in \alpha(i)\} | \text{ are finite and equal} \}.$

2. S1S and LTL (tutorial A: group G03, tutorial B: group G06)

Let $L \subseteq (2^{AP})^{\omega}$ be an LTL-definable language and let $AP' \subsetneq AP$ be a strict subset of AP. Prove or give a counter example to the following statements:

- a) The (weak) projection $L_w = \{\sigma' \in (2^{AP'})^{\omega} \mid \exists \sigma \in L \, \forall i \in \omega. \, \sigma'(i) = \sigma(i) \cap AP'\}$ of L is LTL-definable.
- b) The (weak) projection L_w of L is S1S-definable.
- c) The strong projection $L_s = \{\sigma' \in (2^{AP'})^{\omega} \mid \forall \sigma \in (2^{AP})^{\omega}. (\forall i \in \omega. \sigma'(i) = \sigma(i) \cap AP') \rightarrow \sigma \in L\}$ of L is LTL-definable.
- d) The strong projection L_s of L is S1S-definable.