Automata, Games, and Verification

1. Language Emptiness (tutorial A: group G01, tutorial B: group G12)

An automaton is called *empty* if its language is empty.

Describe a method to test language emptiness for

- nondeterministic Büchi automata $\mathcal{B} = (S, I, T, F)$,
- nondeterministic Rabin automata $\mathcal{R} = (S, I, T, \{(N_i, R_i) \mid j \in J\})$, and
- nondeterministic Muller automata $\mathcal{M} = (S, I, T, \mathcal{F}).$

2. Universal Automata (tutorial A: group G07, tutorial B: group G04)

A universal Büchi automaton $\mathcal{A} = (S, I, T, F)$ is defined as a nondeterministic Büchi automaton, with the exception that a universal automaton accepts a word $\alpha \in \Sigma^{\omega}$ iff all runs r of \mathcal{A} on α are accepting.

Compare the expressive power of deterministic, nondeterministic, and universal Büchi automata.

- 3. LTL & Determininistic Automata (tutorial A: group G05, tutorial B: group G16)
 - Compare the expressive power of linear-time temporal logic and deterministic Büchi automata.
 - Compare the expressive power of linear-time temporal logic and deterministic co-Büchi automata.
- 4. **Temporal Operators** (tutorial A: group G13, tutorial B: group G02)

Show that $\{\neg, \land, X, W\}$ is an operator basis for LTL, i.e., that you can express every LTL formula ψ as an equivalent LTL formula ψ' , in which apart from atomic propositions, only the operators \neg , \land , X and W are used.

5. Temporal Operators (challenge problem)

Show that $\{\neg, \land, X, F, G\}$ is *not* an operator basis for LTL.

Suggestion: Find two families of label sequences u_n, v_n , and an LTL formula φ , such that

- for every $n, u_n \vDash \varphi$ and $v_n \nvDash \varphi$,
- but for every LTL formula ψ without Until, there is an n, such that either $u_n \vDash \psi$ and $v_n \vDash \psi$, or $u_n \nvDash \psi$ and $v_n \nvDash \psi$.