Automata, Games, and Verification

1. co-Büchi Automata (tutorial A: group G07, tutorial B: group G12)

Prove or provide a counter example to the statement: the co-Büchi recognizable languages and the Büchi recognizable languages are the same.
2. Deterministic Muller Automata (tutorial A: group G09, tutorial B: group G14)
a) Give an ω-regular expression for which the smallest deterministic Muller automaton recognizing it is larger than the smallest nondeterministic Muller automaton recognizing it, and prove this fact.
b) For all $i \in \mathbb{N}$, let Z_{i} describe the set of languages representable by deterministic Muller automata with at most i tables (i.e., for every language in Z_{i}, there exists a corresponding deterministic Muller automaton $\mathcal{A}=(S, I, T, \mathcal{F})$ with $|\mathcal{F}| \leq i)$. Obviously, $Z_{1} \subseteq Z_{2} \subseteq$ $Z_{3} \subseteq \ldots$ holds. Prove that this sequence of inequalities is strict, i.e., $Z_{1} \subset Z_{2} \subset Z_{3} \subset \ldots$ holds as well.
3. Limit languages (tutorial A: group G13, tutorial B: group G02)

Show that a language is recognizable by a deterministic Muller automaton if and only if it is a Boolean combination of limit languages $\left\{\vec{W}_{i}\right\}_{i \in I}$, where $\left\{W_{i} \subseteq \Sigma^{*}\right\}_{i \in I}$ are regular.
4. co-Büchi Automata (challenge question)

Prove or disprove the statement: an ω-language is co-Büchi recognizable if and only if it is recognizable by a deterministic co-Büchi automaton.

