Problem Set 12 Summer term 2011 Due: July 14, 2011

Automata, Games, and Verification

1. **CTL**⁺ (tutorial A: group G09, tutorial B: group G04)

Consider the following fragment, called CTL^+ , of CTL^* , which extends CTL by allowing Boolean operators in path formulas:

• State formulas f:

$$f ::= AP \mid \neg f \mid f \lor g \mid A\varphi \mid E\varphi$$

• Path formulas φ :

 $\varphi ::= \neg \varphi \mid \varphi \lor \psi \mid Gf \mid Ff \mid f Ug \mid Xf$

(Note: CTL^{*} extends CTL⁺ by allowing to use state formulas f as one more alternative in the definition of path formulas φ .)

- a) Provide, if they exist, equivalent CTL and LTL formulas for the CTL⁺ formulas $A(F a \land G b)$ and $A(X a \land \neg(a U (G b)))$.
- b) Compare the expressive power of CTL⁺ with the expressive power of CTL and LTL.
- 2. Modal *µ*-calculus (tutorial A: group G11, tutorial B: group G10)

Let $\mathcal{M} = (S, R, L)$ be a Kripke structure, and $s \in S$ - some state in it.

- a) Give a μ-calculus formula φ such that the following holds: s ∈ ||φ||_M iff all paths in M starting in s are finite.
- b) Let ψ be an arbitrary μ -calculus formula. Give a μ -calculus formula φ with the following property: $s \in ||\varphi||_{\mathcal{M}}$ iff there exists a path π starting in s such that on this path the formula ψ holds true infinitely often, that is, the set $\{i \in \omega \mid \pi(i) \in ||\psi||_{\mathcal{M}}\}$ is infinite.
- 3. CTL and S2S (tutorial A: group G13, tutorial B: group G12)

Describe a (recursive) procedure that translates a CTL formula ψ over some set of atomic propositions AP into an S2S formula ϕ using AP as the set of unbounded second-order quantifiers such that ϕ and ψ hold on the same set of 2^{AP}-labelled trees.