Automata, Games, and Verification

1. Concurrent processes & verification (tutorial A: group G01, tutorial B: group G02)

Consider the following set of concurrent processes, communicating using the shared variables t_0 and t_1 :

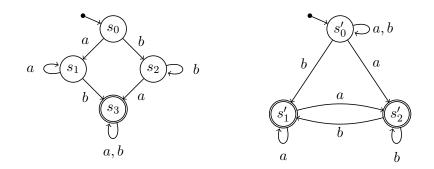
local t_0, t_1 : boolean where initially $t_0 = 0, t_1 = 0$

	loop forever do	-]	[loop fo	orever d	0	1
	001 : stuff;			[001 :	stuff;	
	$010: t_0 := 1;$				010:	$t_1 := 1;$	
$P_0::$	011 : await $t_0 = 1 \land t_1 = 1;$		$ P_1 ::$			await $t_0 = 1 \land t_1 = 1;$	
	100 : synchronized stuff;				100:	synchronized stuff;	
	$101: t_0 := 0;$					$t_1 := 0;$	
	$\begin{bmatrix} 110: \text{ await } t_0 = 0 \land t_1 = 0; \end{bmatrix}$	_		L [110 :	await $t_0 = 0 \land t_1 = 0;$	

- a) How many state bits do you need to represent the states of this system?
- b) Reason informally why whenever process P_0 is in location 100, process P_1 can only be in one of the locations 011,100, 101 or 110.

2. Büchi automata (tutorial A: group G03, tutorial B: group G04)

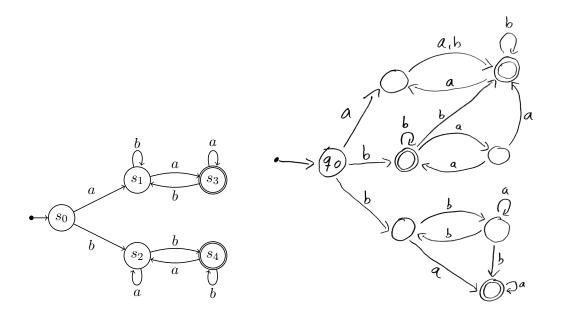
Consider the following nondeterministic Büchi automata over $\Sigma = \{a, b\}$:



- a) Which of the automata are deterministic? Which are complete?
- b) For each of the automata, check if the following words are accepted. If yes, write down an accepting run.
 - i. aab^{ω}
 - ii. a^{ω}
 - iii. $(ab)^{\omega}$
- c) Do the two automata have the same language? Justify your answer informally.

3. Büchi automata and non-accepting words (tutorial A: group G05, tutorial B: group G06)

For each of the following automata, find out whether there exist words that are not accepted by them.



In case of a positive answer (there is a non-accepted word), state the word and reason informally why it is not accepted. In case of a negative answer, reason informally why there is no word that is not accepted.

4. Büchi automata (tutorial A: group G07, tutorial B: group G08)

Build complete Büchi automata for each of the following ω -languages with alphabet $\Sigma = \{a, b\}$:

- a) $L_1 = \{ \alpha \in \Sigma^{\omega} \mid \text{each occurrence of } a \text{ in } \alpha \text{ is followed immediately by a } b \}$
- b) $L_2 = \{ \alpha \in \Sigma^{\omega} \mid \text{the letter } a \text{ occurs infinitely often in } \alpha \}$
- c) $L_3 = \{ \alpha \in \Sigma^{\omega} \mid \text{the letter } b \text{ occurs finitely often in } \alpha \}$

d)
$$L_4 = L_1 \cap L_2$$

e)
$$L_5 = L_2 \cup L_3$$

f) $L_6 = L_1 \cap L_2 \cap L_3$

5. Selection on Büchi automata (Challenge)

Given a Büchi recognizable language L_{pick} over alphabet $\{1, 2\}$ and two Büchi recognizable languages L_1, L_2 over alphabet Σ , show that the following language L_{choose} (over the alphabet Σ) is also Büchi recognizable:

$$L_{choose} = \{\delta_0 \delta_1 \delta_2 \dots \in \Sigma^{\omega} |$$

there exists $\sigma_0^1 \sigma_1^1 \sigma_2^1 \dots \in L_1, \sigma_0^2 \sigma_1^2 \sigma_2^2 \dots \in L_2, \gamma_0 \gamma_1 \gamma_2 \dots \in L_{pick} \text{ such that}$
for all $i \in \mathbb{N}_0, \delta_i = \sigma_i^{\gamma_i} \}$