Automata, Games, and Verification

1. Concurrent processes \& verification (tutorial A: group G01, tutorial B: group G02)

Consider the following set of concurrent processes, communicating using the shared variables t_{0} and t_{1} :
local t_{0}, t_{1} : boolean where initially $t_{0}=0, t_{1}=0$
$P_{0}::\left[\begin{array}{l}\text { loop forever do } \\ {\left[\begin{array}{ll}001: & \text { stuff; } \\ 010: & t_{0}:=1 ; \\ 011: & \text { await } t_{0}=1 \wedge t_{1}=1 ; \\ 100: & \text { synchronized stuff; } \\ 101: & t_{0}:=0 ; \\ 110: & \text { await } t_{0}=0 \wedge t_{1}=0 ;\end{array}\right]}\end{array}\right] \| P_{1}::\left[\begin{array}{l}\text { loop forever do } \\ {\left[\begin{array}{ll}001: & \text { stuff; } \\ 010: & t_{1}:=1 ; \\ 011: & \text { await } t_{0}=1 \wedge t_{1}=1 ; \\ 100: & \text { synchronized stuff; } \\ 101: & t_{1}:=0 ; \\ 110: & \text { await } t_{0}=0 \wedge t_{1}=0 ;\end{array}\right]}\end{array}\right]$
a) How many state bits do you need to represent the states of this system?
b) Reason informally why whenever process P_{0} is in location 100 , process P_{1} can only be in one of the locations $011,100,101$ or 110 .
2. Büchi automata (tutorial A: group G03, tutorial B: group G04)

Consider the following nondeterministic Büchi automata over $\Sigma=\{a, b\}$:

a, b

a) Which of the automata are deterministic? Which are complete?
b) For each of the automata, check if the following words are accepted. If yes, write down an accepting run.
i. $a a b^{\omega}$
ii. a^{ω}
iii. $(a b)^{\omega}$
c) Do the two automata have the same language? Justify your answer informally.
3. Büchi automata and non-accepting words (tutorial A: group G05, tutorial B: group G06)

For each of the following automata, find out whether there exist words that are not accepted by them.

In case of a positive answer (there is a non-accepted word), state the word and reason informally why it is not accepted. In case of a negative answer, reason informally why there is no word that is not accepted.
4. Büchi automata (tutorial A: group G07, tutorial B: group G08)

Build complete Büchi automata for each of the following ω-languages with alphabet $\Sigma=\{a, b\}$:
a) $L_{1}=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ each occurence of a in α is followed immediately by a $\left.b\right\}$
b) $L_{2}=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ the letter a occurs infinitely often in $\left.\alpha\right\}$
c) $L_{3}=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ the letter b occurs finitely often in $\left.\alpha\right\}$
d) $L_{4}=L_{1} \cap L_{2}$
e) $L_{5}=L_{2} \cup L_{3}$
f) $L_{6}=L_{1} \cap L_{2} \cap L_{3}$

5. Selection on Büchi automata (Challenge)

Given a Büchi recognizable language $L_{\text {pick }}$ over alphabet $\{1,2\}$ and two Büchi recognizable languages L_{1}, L_{2} over alphabet Σ, show that the following language $L_{\text {choose }}$ (over the alphabet Σ) is also Büchi recognizable:

$$
\begin{aligned}
L_{\text {choose }}= & \left\{\delta_{0} \delta_{1} \delta_{2} \ldots \in \Sigma^{\omega} \mid\right. \\
& \text { there exists } \sigma_{0}^{1} \sigma_{1}^{1} \sigma_{2}^{1} \ldots \in L_{1}, \sigma_{0}^{2} \sigma_{1}^{2} \sigma_{2}^{2} \ldots \in L_{2}, \gamma_{0} \gamma_{1} \gamma_{2} \ldots \in L_{\text {pick }} \text { such that } \\
& \text { for all } \left.i \in \mathbb{N}_{0}, \delta_{i}=\sigma_{i}^{\gamma_{i}}\right\}
\end{aligned}
$$

