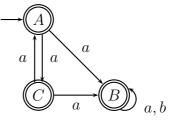
Automata, Games and Verification: Lecture 8

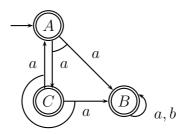
12 Alternating Automata

Example:

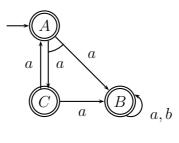
• Nondeterministic automaton, $L = a(a + b)^{\omega}$, disjunctive branching mode:



• universal automaton, $L = a^{\omega}$, conjunctive branching mode:



• Alternating automaton, both branching modes (arc between edges indicates universal branching mode), $L = aa(a + b)^{\omega}$



Definition 1 The positive Boolean formulas over a set X, denoted $\mathbb{B}^+(X)$, are the formulas built from elements of X, conjunction \wedge , disjunction \vee , true and false.

Definition 2 A set $Y \subseteq X$ satisfies a formula $\varphi \in B^+(X)$, denoted $Y \models \varphi$, iff the truth assignment that assigns true to the members of Y and false to the members of $X \setminus Y$ satisfies φ .

Definition 3 An alternating Büchi automaton is a tuple $\mathcal{A} = (S, s_0, \delta, F)$, where:

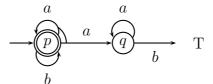
- S is a finite set of states,
- $s_0 \in S$ is the initial state,
- $F \subseteq S$ is the set of accepting states, and
- $\delta: S \times \Sigma \to \mathbb{B}^+(S)$ is the transition function.

A tree T over a set of *directions* D is a prefix-closed subset of D^* . The empty sequence ϵ is called the *root*. The children of a node $n \in T$ are the nodes children $(n) = \{n \cdot d \in T \mid d \in D\}$. A Σ -labeled tree is a pair (T, l), where $l : T \to \Sigma$ is the labeling function.

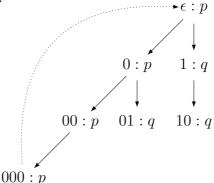
Definition 4 A run of an alternating automaton on a word $\alpha \in \Sigma^{\omega}$ is an S-labeled tree $\langle T, r \rangle$ with the following properties:

- $r(\epsilon) = s_0$ and
- for all $n \in T$, if r(n) = s, then $\{r(n') \mid n' \in children(n)\}$ satisfies $\delta(s, \alpha(|n|))$.

Example: $L = (\{a, b\}^* b)^{\omega}$



$$\begin{split} S &= \{p,q\} \\ F &= \{p\} \\ \delta(p,a) &= p \wedge q \\ \delta(p,b) &= p \\ \delta(q,a) &= q \\ \delta(q,b) &= \mathrm{T} \\ \mathrm{example \ word} \ w &= (aab)^{\omega} \ \mathrm{produces \ this \ run:} \end{split}$$



(The dotted line means that the same tree would repeat there. Note that, in general, an alternating automaton may also have more than one run on a particular word—or no run at all.)

Definition 5 A branch of a tree T is a maximal sequence of words $n_0n_1n_2...$ such that $n_0 = \epsilon$ and n_{i+1} is a child of n_i for $i \ge 0$.

Definition 6 A run (T, r) is accepting iff, for every infinite branch $n_0n_1n_2...,$

 $In(r(n_0)r(n_1)r(n_2)\ldots) \cap F \neq \emptyset.$

Theorem 1 For every LTL formula φ , there is an alternating Büchi automaton \mathcal{A}_{φ} with $\mathcal{L}(\mathcal{A}) = models(\varphi)$

Proof:

- $S = \text{closure}(\varphi) := \{\psi, \neg \psi \mid \psi \text{ is subformula of } \varphi\};$
- $s_0 = \varphi;$
- $\delta(p, a) = true \text{ if } p \in a, false \text{ if } p \notin a;$ $\delta(\neg p, a) = false \text{ if } p \in a, true \text{ if } p \notin a;$ $\delta(true, a) = true;$ $\delta(false, a) = false;$
- $\delta(\psi_1 \wedge \psi_2, a) = \delta(\psi_1, a) \wedge \delta(\psi_2, a);$
- $\delta(\psi_1 \lor \psi_2, a) = \delta(\psi_1, a) \lor \delta(\psi_2, a);$
- $\delta(\bigcirc \psi, a) = \psi;$
- $\delta(\psi_1 \ \mathcal{U} \ \psi_2, a) = \delta(\psi_2, a) \lor (\delta(\psi_1, a) \land \psi_1 \ \mathcal{U} \ \psi_2);$
- $\delta(\neg\psi, a) = \overline{\delta(\psi, a)};$
- $\overline{\psi} = \neg \psi$ for $\psi \in S$;
- $\overline{\neg \psi} = \psi$ for $\psi \in S$;
- $\overline{\alpha \wedge \beta} = \overline{\alpha} \vee \overline{\beta};$
- $\overline{\alpha \lor \beta} = \overline{\alpha} \land \overline{\beta};$
- $\overline{true} = false;$
- $\overline{false} = true;$
- $F = \{ \neg(\psi_1 \ \mathcal{U} \ \psi_2) \in \text{closure}(\varphi) \}$

For a subformula ψ of φ let $\mathcal{A}_{\varphi}^{\psi}$ be the automaton A_{φ} with initial state ψ . Claim: $\mathcal{L}(\mathcal{A}_{\varphi}^{\psi}) = models(\psi)$. Proof by structural induction.