Automata, Games and Verification: Lecture 8

12 Alternating Automata

Example:

- Nondeterministic automaton, $L=a(a+b)^{\omega}$, disjunctive branching mode:

- universal automaton, $L=a^{\omega}$, conjunctive branching mode:

- Alternating automaton, both branching modes (arc between edges indicates universal branching mode), $L=a a(a+b)^{\omega}$

Definition 1 The positive Boolean formulas over a set X, denoted $\mathbb{B}^{+}(X)$, are the formulas built from elements of X, conjunction \wedge, disjunction \vee, true and false.

Definition $2 A$ set $Y \subseteq X$ satisfies a formula $\varphi \in B^{+}(X)$, denoted $Y \models \varphi$, iff the truth assignment that assigns true to the members of Y and false to the members of $X \backslash Y$ satisfies φ.

Definition $3 A n$ alternating Büchi automaton is a tuple $\mathcal{A}=\left(S, s_{0}, \delta, F\right)$, where:

- S is a finite set of states,
- $s_{0} \in S$ is the initial state,
- $F \subseteq S$ is the set of accepting states, and
- $\delta: S \times \Sigma \rightarrow \mathbb{B}^{+}(S)$ is the transition function.

A tree T over a set of directions D is a prefix-closed subset of D^{*}. The empty sequence ϵ is called the root. The children of a node $n \in T$ are the nodes children $(n)=\{n \cdot d \in$ $T \mid d \in D\}$. A Σ-labeled tree is a pair (T, l), where $l: T \rightarrow \Sigma$ is the labeling function.

Definition $4 A$ run of an alternating automaton on a word $\alpha \in \Sigma^{\omega}$ is an S-labeled tree $\langle T, r\rangle$ with the following properties:

- $r(\epsilon)=s_{0}$ and
- for all $n \in T$, if $r(n)=s$, then $\left\{r\left(n^{\prime}\right) \mid n^{\prime} \in \operatorname{children}(n)\right\}$ satisfies $\delta(s, \alpha(|n|))$.

Example: $L=\left(\{a, b\}^{*} b\right)^{\omega}$

$S=\{p, q\}$
$F=\{p\}$
$\delta(p, a)=p \wedge q$
$\delta(p, b)=p$
$\delta(q, a)=q$
$\delta(q, b)=\mathrm{T}$
example word $w=(a a b)^{\omega}$ produces this run:

(The dotted line means that the same tree would repeat there. Note that, in general, an alternating automaton may also have more than one run on a particular word - or no run at all.)

Definition $5 A$ branch of a tree T is a maximal sequence of words $n_{0} n_{1} n_{2} \ldots$ such that $n_{0}=\epsilon$ and n_{i+1} is a child of n_{i} for $i \geq 0$.

Definition 6 A run (T, r) is accepting iff, for every infinite branch $n_{0} n_{1} n_{2} \ldots$,

$$
\operatorname{In}\left(r\left(n_{0}\right) r\left(n_{1}\right) r\left(n_{2}\right) \ldots\right) \cap F \neq \emptyset .
$$

Theorem 1 For every LTL formula φ, there is an alternating Büchi automaton \mathcal{A}_{φ} with $\mathcal{L}(\mathcal{A})=\operatorname{models}(\varphi)$

Proof:

- $S=\operatorname{closure}(\varphi):=\{\psi, \neg \psi \mid \psi$ is subformula of $\varphi\}$;
- $s_{0}=\varphi$;
- $\delta(p, a)=$ true if $p \in a$, false if $p \notin a$; $\delta(\neg p, a)=$ false if $p \in a$, true if $p \notin a$;
$\delta($ true,$a)=$ true;
$\delta($ false,$a)=$ false $;$
- $\delta\left(\psi_{1} \wedge \psi_{2}, a\right)=\delta\left(\psi_{1}, a\right) \wedge \delta\left(\psi_{2}, a\right) ;$
- $\delta\left(\psi_{1} \vee \psi_{2}, a\right)=\delta\left(\psi_{1}, a\right) \vee \delta\left(\psi_{2}, a\right)$;
- $\delta(\bigcirc \psi, a)=\psi ;$
- $\delta\left(\psi_{1} \mathcal{U} \psi_{2}, a\right)=\delta\left(\psi_{2}, a\right) \vee\left(\delta\left(\psi_{1}, a\right) \wedge \psi_{1} \mathcal{U} \psi_{2}\right) ;$
- $\delta(\neg \psi, a)=\overline{\delta(\psi, a)} ;$
- $\bar{\psi}=\neg \psi$ for $\psi \in S$;
- $\overline{\neg \psi}=\psi$ for $\psi \in S$;
- $\overline{\alpha \wedge \beta}=\bar{\alpha} \vee \bar{\beta}$;
- $\overline{\alpha \vee \beta}=\bar{\alpha} \wedge \bar{\beta}$;
- $\overline{\text { true }}=$ false;
- $\overline{\text { false }}=$ true;
- $F=\left\{\neg\left(\psi_{1} \mathcal{U} \psi_{2}\right) \in \operatorname{closure}(\varphi)\right\}$

For a subformula ψ of φ let $\mathcal{A}_{\varphi}^{\psi}$ be the automaton A_{φ} with initial state ψ. Claim: $\mathcal{L}\left(\mathcal{A}_{\varphi}^{\psi}\right)=\operatorname{models}(\psi)$. Proof by structural induction.

