Automata, Games and Verification: Lecture 6

7 McNaughton's Theorem (Cont'd)

Lemma 1 For every semi-deterministic Büchi automaton \mathcal{A} there exists a deterministic Muller automaton \mathcal{A}' with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Proof:

Let $\mathcal{A} = (N \uplus D, I, T, F)$, d = |D|, and let D be ordered by <. We construct the DMA $(S', \{s'_0\}, T', \mathcal{F})$:

- $S' = 2^N \times \{0, \dots, 2d\} \to D \cup \{\bot\}$
- $s'_0 = (\{N \cap I\}, (d_1, d_2, \dots, d_n, \square, \dots, \square)),$ where $d_i < d_{i+1}, \{d_1, \dots, d_n\} = D \cap I\}.$
- $T' = \{((N_1, f_1), \sigma, (N_2, f_2)) \mid N_2 = pr_3(T \cap N_1 \times \{\sigma\} \times N)$ $D' = pr_3(T \cap N_1 \times \{\sigma\} \times D)$ $g_1 : n \mapsto d_2 \in D \Leftrightarrow f_1 : n \mapsto d_1 \in D \wedge d_1 \to^{\sigma} d_2$ g_2 : insort the elements of D' in the empty slots of g_1 (using <)
- f_2 : delete every recurrence (leaving an *empty* slot)
- $\mathcal{F} = \{ F' \subseteq S' \mid \exists i \in 1, \dots, 2d \text{ s.t.}$ $f(i) \neq \bot \text{ for all } (N', f) \in F' \text{ and }$ $f(i) \in F \text{ for some } (N', f) \in F' \}.$

$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$:

If $\alpha \in \mathcal{L}(\mathcal{A})$, \mathcal{A} has an accepting run $r = n_0 \dots n_{j-1} d_j d_{j+1} d_{j+2} \dots$ where $n_k \in N$ for k < j and $d_k \in D$ for $k \ge j$. Consider the run $r' = (N_0, f_0), (N_1, f_1), \dots$ of \mathcal{A}' on α .

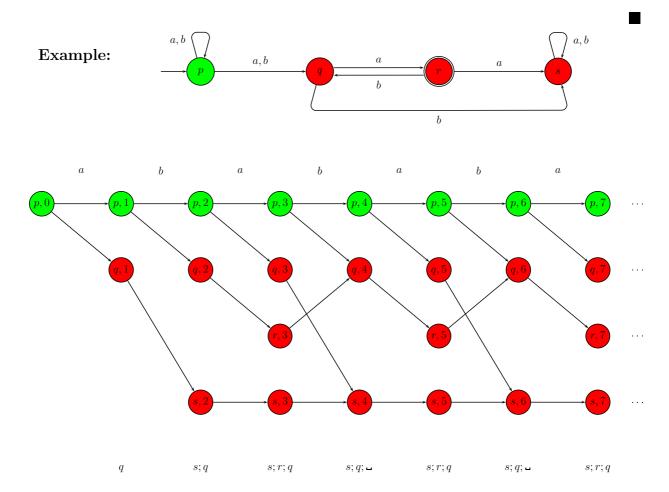
- $n_k \in N_k$ for all k < j,
- for all $k \geq j$, $d_k = f_k(i)$ for some $i \leq 2d$,
- these *i*'s are non-increasing, and hence stabilize eventually.
- for this stable i, $f(i) \neq \square$ for all $(N', f) \in In(r')$ and $f(i) \in F$ for some $(N', f) \in In(r')$.
- $In(r') \in \mathcal{F}$.

$\mathcal{L}(\mathcal{A}')\subseteq\mathcal{L}(\mathcal{A})\text{:}$

 $\overline{\text{For } \alpha \in \mathcal{L}(\mathcal{A}')}, \, \mathcal{A}' \text{ has an accepting run } r' = (N_0, f_0), (N_1, f_1), \dots$

• We pick an i and an accepting set $F' \in \mathcal{F}$ s.t. $f(i) \neq \square$ for all $(N', f) \in F'$ and $f(i) \in F$ for some $(N', f) \in F'$.

- We pick a $j \in \omega$ such that $f_n(i) \neq \square$ for all n > j.
- There is a run $r = s_0 s_1 \dots s_j f_{j+1}(i) f_{j+2}(i) f_{j+3}(i) \dots$ of \mathcal{A} for α .
- \bullet r is accepting.



8 Linear-Time Temporal Logic (LTL)

1977: Amir Pnueli, The temporal logic of programs (Turing award 1996)

Syntax:

- Given a set of atomic propositions AP.
- Any atomic proposition $p \in AP$ is an LTL formula

- If φ, ψ are LTL formulars then so are
 - $-\neg\varphi,\ \varphi\wedge\phi,$
 - $-\bigcirc\varphi,\ \varphi\mathcal{U}\psi$

Abbreviations:

 $\Diamond \varphi \equiv true \ \mathcal{U} \ \varphi;$

 $\Box \varphi \equiv \neg (\Diamond \neg \varphi);$

 $\varphi \mathcal{W} \psi \equiv (\varphi \mathcal{U} \psi) \vee \Box \varphi;$

The temporal operators:

- \bigcirc X Next
- □ G Always
- ♦ F Eventually

 \mathcal{U} Until

Weak Until

Semantics: LTL formulas are interpreted over ω -words over 2^{AP} . Notation: $\alpha, i \models \varphi$, where $\alpha \in (2^{AP})^{\omega}, i \in \omega$.

- $\alpha, i \vDash p \text{ if } p \in \alpha(i);$
- $\alpha, i \vDash \neg \varphi \text{ if } \alpha, i \not\vDash \varphi$;
- $\bullet \ \alpha, i \vDash \varphi \wedge \psi \text{ if } \alpha, i \vDash \varphi \text{ and } \alpha, i \vDash \psi;$
- $\alpha, i \vDash \bigcirc \varphi$ if $\alpha, i + 1 \vDash \varphi$ $\alpha, i \vDash \varphi \mathcal{U} \psi$ if there is some $j \ge i$ s.t. $\alpha, j \vDash \psi$ and for all $i \le k < j$: $\alpha, k \vDash \varphi$

Abbreviation: $\alpha \vDash \varphi \equiv \alpha, 0 \vDash \varphi$

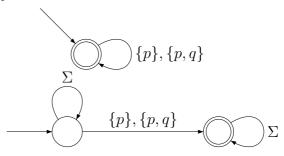
Definition 1

- $\bullet \ \mathit{models}(\varphi) \!=\! \{\alpha \in (2^\mathit{AP})^w \mid \alpha \vDash \varphi\}$
- an LTL formula φ is satisfiable if $models(\varphi) \neq \emptyset$
- an LTL formula φ is valid if $models(\varphi) = (2^{AP})^{\omega}$

Example: LTL formulas with $AP = \{p, q\}$:

• Safety: $\Box p$

• Guarantee: $\Diamond p$



There are Büchi recognizable languages that are not LTL-definable. Example: $(\emptyset\emptyset)^*\{p\}^\omega$

Definition 2 A language $L \subseteq \Sigma^{\omega}$ is non-counting iff $\exists n_0 \in \omega : \forall n \geq n_0 : \forall u, v \in \Sigma^*, \gamma \in \Sigma^{\omega} : uv^n \gamma \in L \Leftrightarrow uv^{n+1} \gamma \in L$

Example: $L = (\emptyset \emptyset)^* \{p\}^{\omega}$ is counting. For every $\emptyset^n \{p\}^{\omega} \in L$, $\emptyset^{n+1} \{p\}^{\omega} \notin L$.

Theorem 1 For every LTL-formula φ , models(φ) is non-counting.

Proof:

Structural induction on φ :

- $\varphi = p$: choose $n_0 = 1$.
- $\varphi = \varphi_1 \wedge \varphi_2$: By IH, φ_1 defines non-counting language with threshold $n'_0 \in \omega$, φ_2 with n''_0 ; choose $n_0 = \max(n'_0, n''_0)$;
- $\varphi = \neg \varphi_1$: choose $n_0 = n'_0$.
- $\varphi = \bigcirc \varphi_1$: choose $n_0 = n'_0 + 1$.
 - We show for $n \ge n_0$: $uv^n \gamma \models \bigcirc \varphi \iff uv^{n+1} \gamma \models \bigcirc \varphi$.
 - Case $u \neq \epsilon$, i.e., u = au' for some $a \in \Sigma, u' \in \Sigma^*$:

$$au'v^n\gamma \models \bigcirc \varphi$$

iff
$$u'v^n\gamma \models \varphi$$

iff
$$u'v^{n+1}\gamma \models \varphi$$
 (IH)

iff
$$au'v^{n+1}\gamma \models \bigcirc \varphi$$
.

– Case $u = \epsilon, v = av'$ for some $a \in \Sigma, v' \in \Sigma^*$:

$$(av')^n\gamma\models\bigcirc\varphi$$

iff
$$(av')(av')^{n-1}\gamma \models \bigcirc \varphi$$

iff
$$v'(av')^{n-1}\gamma \models \varphi$$

iff
$$v'(av')^n \gamma \models \varphi$$
 (IH)

iff
$$(av')^{n+1}\gamma \models \bigcirc \varphi$$
.

```
• \varphi = \varphi_1 \ \mathcal{U} \ \varphi_2: choose n_0 = \max(n'_0, n''_0) + 1.
Claim: for n \geq n_0: uv^n \gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2 \Rightarrow uv^{n+1} \gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2.
    -uv^n\gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2 \ \Rightarrow \ \exists j \ . \ uv^n\gamma, j \models \varphi_2 \ \text{and} \ \forall i < j \ . \ uv^n\gamma, i \models \varphi_1.
    - Let j be the least such index.
    - Case j < |u|:
        by IH, uv^{n+1}\gamma, j \models \varphi_2 and for all i < j. uv^{n+1}\gamma, i \models \varphi_1;
    - Case j > |u|:
        uv^{n+1}\gamma, j+|v| \models \varphi_2 (because uv^{n+1}\gamma has the same suffix from position
        j + |v| as uv^{n+1} from position j);
        for all |u| + |v| \le i < j + |v|. uv^{n+1}\gamma, i \models \varphi_1 (again, because the suffix is
        the same):
        By (IH), for all i < |u| + |v|, i < j. uvv^n \gamma, i \models \varphi_1, because uvv^{n-1}\gamma, i \models \varphi_1.
 Claim: for n \ge n_0: uv^{n+1}\gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2 \ \Rightarrow \ uv^n\gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2
    -uv^{n+1}\gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2 \ \Rightarrow \ \exists j \ . \ uv^{n+1}\gamma, j \models \varphi_2 \ \text{and} \ \forall i < j \ . \ uv^{n+1}\gamma, i \models \varphi_1.
    - Case j \leq |u| + |v|:
        by IH, uvv^{n-1}, j \models \varphi_2 and for all i < j. uvv^{n-1}, i \models \varphi_1;
    - Case i > |u| + |v|:
```

9 Quantified Propositional Temporal Logic (QPTL)

By (IH), for all i < |u| + |v|. $uvv^{n-1}\gamma$, $i \models \varphi_1$, because $uvv^n\gamma$, $i \models \varphi_1$.

Syntax: LTL formula $| \varphi \wedge \varphi | \neg \varphi | \exists p. \varphi$

 $uv^n\gamma, j-|v|\models\varphi_2;$

for all $|u| + |v| \le i < j$. $uv^n \gamma, i \models \varphi_1$;

Semantics:

```
\alpha, i \models \exists q. \varphi iff there is an \alpha' with \alpha'(j) \cap (AP \setminus \{q\}) = \alpha(j) \cap (AP \setminus \{q\}) for all j \in \omega, s.t. \alpha', i \models \varphi.
```