Automata, Games and Verification: Lecture 5

6 Muller Automata (Cont'd)

Theorem 1 The languages recognizable by deterministic Muller automata are closed under Boolean operations (complementation, union, intersection).

Proof:

- $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A}):$
$-S^{\prime}=S, I^{\prime}=I, T^{\prime}=T, \mathcal{F}^{\prime}=2^{S} \backslash \mathcal{F}$
- $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right):$
$-S^{\prime}=S_{1} \times S_{2}, I^{\prime}=I_{1} \times I_{2}$,
- $T^{\prime}=\left\{\left(\left(s_{1}, s_{2}\right), \sigma,\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right) \mid\left(s_{1}, \sigma, s_{1}^{\prime}\right) \in T_{1},\left(s_{2}, \sigma, s_{2}^{\prime}\right) \in T_{2}\right\}$
$-\mathcal{F}^{\prime}=\left\{\left\{\left(p_{1}, q_{1}\right), \ldots,\left(p_{n}, q_{n}\right)\right\} \mid\left\{p_{1}, \ldots, p_{n}\right\} \in \mathcal{F}_{1},\left\{q_{1}, \ldots, q_{n}\right\} \in \mathcal{F}_{2}\right\}$
- $\mathcal{L}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}\left(\mathcal{A}_{2}\right)=\Sigma^{\omega} \backslash\left(\left(\Sigma^{\omega} \backslash \mathcal{L}\left(\mathcal{A}_{1}\right)\right) \cap\left(\Sigma^{\omega} \backslash \mathcal{L}\left(\mathcal{A}_{2}\right)\right)\right)$.

Theorem 2 A language \mathcal{L} is recognizable by a deterministic Muller automaton iff \mathcal{L} is a boolean combination of languages \vec{W} where $W \subseteq \Sigma^{*}$ is regular.

Proof:

(see Problem Set 4, Question 3)

7 McNaughton's Theorem

Theorem 3 (McNaughton's Theorem (1966)) Every Büchi recognizable language is recognizable by a deterministic Muller automaton.

Definition 1 A Büchi automaton (S, I, T, F) is called semi-deterministic if $S=N \uplus D$ is a partition of $S, F \subseteq D, \operatorname{pr}_{3}(T \cap(D \times \Sigma \times S)) \subseteq D$, and $(D,\{d\}, T \cap(D \times \Sigma \times D), F)$ is deterministic for every $d \in D$.

Lemma 1 For every Büchi automaton \mathcal{A} there exists a semi-deterministic Büchi automaton \mathcal{A}^{\prime} with $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

Proof:

Given $\mathcal{A}=(S, I, T, F)$, we construct $\mathcal{A}^{\prime}=\left(S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right)$:

- $S^{\prime}=2^{S} \uplus 2^{S} \times 2^{S}$;
- $I^{\prime}=\{I\}$;
- $T^{\prime}=\left\{\left(L, \sigma, L^{\prime}\right) \mid L^{\prime}=p r_{3}(T \cap L \times\{\sigma\} \times S)\right\}$; $\cup\left\{\left(L, \sigma,\left(\left\{s^{\prime}\right\}, \emptyset\right)\right) \mid \exists s \in L .\left(s, \sigma, s^{\prime}\right) \in T\right\}$ $\cup\left\{\left(\left(L_{1}, L_{2}\right), \sigma,\left(L_{1}^{\prime}, L_{2}^{\prime}\right)\right) \mid L_{1} \neq L_{2}\right.$ $L_{1}^{\prime}=p r_{3}\left(T \cap L_{1} \times\{\sigma\} \times S\right)$, $\left.L_{2}^{\prime}=p r_{3}\left(T \cap L_{1} \times\{\sigma\} \times F\right) \cup \operatorname{pr}_{3}\left(T \cap L_{2} \times\{\sigma\} \times S\right)\right\}$ $\cup\left\{\left((L, L), \sigma,\left(L_{1}^{\prime}, L_{2}^{\prime}\right)\right) \mid L_{1}^{\prime}=p r_{3}\left(T \cap L_{1} \times\{\sigma\} \times S\right)\right.$, $\left.L_{2}^{\prime}=\operatorname{pr}_{3}\left(T \cap L_{1} \times\{\sigma\} \times F\right)\right\}$
- $\left.F^{\prime}=\{(L, L) \mid L \neq \emptyset)\right\}$

$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \subseteq \mathcal{L}(\mathcal{A}):$

- Let $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$.
- Let $r^{\prime}=P_{0} P_{1} \ldots P_{n}\left(L_{0}, L_{0}^{\prime}\right)\left(L_{1}, L_{1}^{\prime}\right) \ldots$ be an accepting run of \mathcal{A}^{\prime} on α.
- For $L_{0}=\left\{s^{\prime}\right\}$ there is a run prefix of \mathcal{A} on $\alpha(0, n), p_{0} p_{1} \ldots p_{n} s^{\prime}$ such that $p_{j} \in P_{j}$ and
- Let i_{0}, i_{1}, \ldots be an infinite sequence of indices such that $i_{0}=0, L_{i_{j}}=L_{i_{j}}^{\prime}, L_{i_{j}} \neq$ \emptyset for all $j \in \omega$.
- For every $j>1$, and every $s^{\prime} \in L_{i_{j}}$ there exists a state $s \in L_{i_{j-1}}$ and a sequence $s=s_{i_{j-1}}, s_{i_{j-1}+1}, \ldots, s_{i_{j}}=s^{\prime}$ such that $\left(s_{k}, \alpha(k), s_{k+1}\right) \in T$ for all $k \in\left\{i_{j-1}, \ldots, i_{i_{j}-1}\right\}$ and $s_{k} \in F$ for some $k \in\left\{i_{j-1}+1, \ldots, i_{i_{j}}\right\}$.
Let predecessor $\left(s^{\prime}, i_{j}\right):=s$,
$\operatorname{run}\left(s^{\prime}, i_{0}\right)=p_{0} p_{1} \ldots p_{n} s^{\prime}$ for $L_{0}=\left\{s^{\prime}\right\}$, and
$\operatorname{run}\left(s^{\prime}, i_{j}\right)=s_{i_{j-1}+1} s_{i_{j-1}+2} \ldots s_{i_{j}}$, for $j>0$.
- Consider the following $\left(\bigcup_{j \in \omega} L_{i_{j}} \times\{j\}\right)$-labeled tree:
- the root is labeled with ($s, 0$), where $L_{0}=\{s\}$, and
- the parent of each node labeled with $\left(s^{\prime}, j\right)$ is labeled with (predecessor $\left.\left(s^{\prime}, i_{j}\right), j-1\right)$.
- The tree is infinite and finite-branching, and, hence, by König's Lemma, has an infinite branch $\left(s_{i_{0}}, i_{0}\right),\left(s_{i_{1}}, i_{1}\right), \ldots$, corresponding to an accepting run of \mathcal{A} :

$$
\operatorname{run}\left(s_{i_{0}}, i_{0}\right) \cdot \operatorname{run}\left(s_{i_{1}}, i_{1}\right) \cdot \operatorname{run}\left(s_{i_{2}}, i_{2}\right) \cdot \ldots
$$

$\underline{\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right):}$

- Let $\alpha \in \mathcal{L}(\mathcal{A})$.
- Let $r=s_{0}, s_{1}, \ldots$ be an accepting run of \mathcal{A} on α.
- Let i be an index s.t. $s_{i} \in F$ and for all $j \geq i$ there exists a $k>j$, such that

$$
\left\{s \in S \mid s_{i} \rightarrow^{\alpha(i, k)} s\right\}=\left\{s \in S \mid s_{j} \rightarrow^{\alpha(j, k)} s\right\} .
$$

This index exists:

- " \supseteq " holds for all i, because there is a path through s_{j}.
- Assume that for all i, there is a $j \geq i$ s.t for all $k>j$ " \supsetneq " holds. Then there exists an i^{\prime} s.t. $\left\{s \in S \mid s_{i^{\prime}} \rightarrow^{\alpha\left(i^{\prime}, k\right)} s\right\}=\emptyset$ for all $k>i^{\prime}$. Contradiction.
- We define a run r^{\prime} of \mathcal{A}^{\prime} :

$$
r^{\prime}=P_{0} \ldots P_{i-1}\left(\left\{s_{i}\right\}, \emptyset\right)\left(L_{1}, L_{1}^{\prime}\right)\left(L_{2}, L_{2}^{\prime}\right) \ldots
$$

where $P_{j}=\left\{s \in S \mid p_{0} \in I, p_{0} \rightarrow^{\alpha(0, j)} s\right\}$, and L_{j}, L_{j}^{\prime} are determined by the definition of \mathcal{A}^{\prime}.

- We show that r^{\prime} is accepting. Assume otherwise, and let m be an index such that $L_{n} \neq L_{n}^{\prime}$ for all $n \geq m$.
- Then let $j>m$ be some index with $s_{j} \in F$; hence $s_{j} \in L_{j}^{\prime}$. There exists a $k>j$ such that $L_{k+1}^{\prime}=\left\{s \in S \mid s_{j} \rightarrow^{\alpha(j, k)} s\right\}=\left\{s \in S \mid s_{i} \rightarrow^{\alpha(i, k)} s\right\}=L_{k+1}$.
- Contradiction.

Example:

