Automata, Games and Verification: Lecture 4

5 Complementation of Nondeterministic Büchi Automata (Cont'd)

Lemma 1 If \mathcal{A} does not accept α , then there exists an odd ranking for G.

Proof:

- We define $f(\langle s, l \rangle) = 2i$ if $\langle s, l \rangle$ is endangered in G_{2i} and
- $f(\langle s, l \rangle) = 2i + 1$ if $\langle s, l \rangle$ is safe in G_{2i+1} .
- f is a ranking:
 - by Lemma 2 from Lecture 3, G_j is empty for $j > 2 \cdot |S|$. Hence, $f: V \to \{0, \ldots, 2 \cdot |S|\}$.
 - if $\langle s', l' \rangle$ is a successor of $\langle s, l \rangle$, then $f(\langle s', l' \rangle) \leq f(\langle s, l \rangle)$
 - * Let $j := f(\langle s, l \rangle)$.
 - * Case j is even: vertex $\langle s, l \rangle$ is endangered in G_j ; hence either $\langle s', l' \rangle$ is not in G_j , and therefore $f(\langle s, l \rangle) < j$; or $\langle s', l' \rangle$ is in G_j and endangered; hence, $f(\langle s, l \rangle) = j$.
 - * Case j is odd: vertex $\langle s, l \rangle$ is safe in G_j ; hence either $\langle s', l' \rangle$ is not in G_j , and therefore $f(\langle s, l \rangle) < j$; or $\langle s', l' \rangle$ is in G_j and safe; hence, $f(\langle s, l \rangle) = j$.
 - -f is an odd ranking:
 - * For every path $\langle s_0, l_0 \rangle, \langle s_1, l_1 \rangle, \langle s_2, l_2 \rangle, \ldots$ in *G* there exists an $i \ge 0$ such that for all $j \ge 0$, $f(\langle s_{i+j}, l_{i+j} \rangle) = f(\langle s_i, l_i \rangle)$.
 - * Suppose that $k := f(\langle s_i, l_i \rangle)$ is even. Thus, $\langle s_i, l_i \rangle$ is endangered in G_k .
 - * Since $f(\langle s_{i+j}, l_{i+j} \rangle) = k$ for all $j \ge 0$, all $\langle s_{i+j}, l_{i+j} \rangle$ are in G_k .
 - * This contradicts that $\langle s_i, l_i \rangle$ is endangered in G_k .

Theorem 1 For each Büchi automaton \mathcal{A} there exists a Büchi automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}') = \Sigma^{\omega} \smallsetminus \mathcal{L}(\mathcal{A}).$

Helpful definitions:

• A level ranking is a function $g: S \to \{0, \ldots, 2 \cdot |S|\} \cup \{\bot\}$ such that if g(s) is odd, then $s \notin F$.

- Let \mathcal{R} be the set of all level rankings.
- A level ranking g' covers a level ranking g if, for all $s, s' \in S$, if $g(s) \ge 0$ and $(s, \sigma, s') \in T$, then $0 \le g'(s') \le g(s)$.

Proof:

We define $\mathcal{A}' = (S', I', T', F')$ with

- $S' = \mathcal{R} \times 2^S;$
- $I' = \{ \langle g_0, \emptyset \rangle \mid g_0 \in \mathcal{R}, g_0(s) = \bot \text{ iff } s \notin I \};$
- $T = \{(\langle g, \emptyset \rangle, \sigma, \langle g', P' \rangle) \mid g' \text{ covers } g, \text{ and } P' = \{s' \in S \mid g'(s') \text{ is even }\}\}$ $\cup \{(\langle g, P \rangle, \sigma, \langle g', P' \rangle) \mid P \neq \emptyset, g' \text{ covers } g, \text{ and}$ $P' = \{s' \in S \mid (s, \sigma, s') \in T, s \in P, g'(s') \text{ is even }\}\};$
- $F = \mathcal{R} \times \{\emptyset\}.$

(Intuition: \mathcal{A}' guesses the level rankings for the run DAG. The *P* component tracks the states whose corresponding vertices in the run DAG have even ranks. Paths that traverse such vertices should eventually reach a vertex with odd rank. The acceptance condition ensures that all paths visit a vertex with odd rank infinitely often.)

$$\mathcal{L}(\mathcal{A}') \subseteq \Sigma^{\omega} \smallsetminus \mathcal{L}(\mathcal{A}):$$

- Let $\alpha \in \mathcal{L}(\mathcal{A}')$ and let $r' = (g_0, P_0), (g_1, P_1), \ldots$ be an accepting run of \mathcal{A}' on α .
- Let G = (V, E) be the run DAG of \mathcal{A} on α .
- The function $f: \langle s, l \rangle \mapsto g_l(s), s \in S_l, l \in \omega$ is a ranking for G:
 - if $g_i(s)$ is odd then $s \notin F$;
 - for all $(\langle s, l \rangle, \langle s', l+1 \rangle) \in E, g_{l+1}(s') \le g_l(s).$
- f is an odd ranking:
 - Assume otherwise. Then there exists a path $\langle s_0, l_0 \rangle, \langle s_1, l_1 \rangle, \langle s_2, l_2 \rangle, \ldots$ in *G* such that for infinitely many $i \in \omega$, $f(\langle s_i, l_i \rangle)$ is even.
 - Hence, there exists an index $j \in \omega$, such that $f(\langle s_j, l_j \rangle)$ is even and, for all $k \ge 0$, $f(\langle s_{j+k}, l_{j+k} \rangle) = f(\langle s_j, l_j \rangle)$.
 - Since r' is accepting, $P_{j'} = \emptyset$ for infinitely many j'. Let j' be the smallest such index $\geq j$.
 - $-P_{j'+1+k} \neq \emptyset$ for all $k \ge 0$.
 - Contradiction.
- Since there exists an odd ranking, $\alpha \notin \mathcal{L}(\mathcal{A})$.

 $\Sigma^{\omega} \smallsetminus \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$:

• Let $\alpha \in \Sigma^{\omega} \smallsetminus \mathcal{L}(\mathcal{A})$ and let G = (V, E) be the run DAG of \mathcal{A} on α .

• There exists an odd ranking f on G.

• There is a run
$$r' = (g_0, P_0), (g_1, P_1), \dots$$
 of \mathcal{A}' on α , where
 $g_l(s) = \begin{cases} f(\langle s, l \rangle) & \text{if } s \in S_l; \\ \bot & \text{otherwise}; \end{cases}$
 $P_0 = \emptyset,$
 $P_{l+1} = \begin{cases} \{s \in S \mid g_{l+1}(s) \text{ is even } \} & \text{if } P_l = \emptyset, \\ \{s' \in S \mid \exists s \in S_l \cap P_l \ . \ (\langle s, l \rangle, \langle s', l+1 \rangle) \in E, g_{l+1}(s') \text{ is even} \} & \text{otherwise.} \end{cases}$

- r' is accepting. (Assume there is an index *i* such that $P_j \neq \emptyset$ for all $j \ge i$. Then there exists a path in *G* that visits an even rank infinitely often.)
- Hence, $\alpha \in \mathcal{L}(\mathcal{A}')$.

6 Muller Automata

Definition 1 A (nondeterministic) Muller automaton \mathcal{A} over alphabet Σ is a tuple (S, I, T, \mathcal{F}) :

- S, I, T: defined as before
- $\mathcal{F} \subseteq 2^S$: set of accepting subsets, called the table.

Definition 2 A run r of a Muller automaton is accepting iff $In(r) \in F$

Example:

- for $\mathcal{F} = \{\{q\}\}$: $\mathcal{L}(\mathcal{A}) = (a \cup b)^* b^{\omega}$
- for $\mathcal{F} = \{\{q\}, \{p,q\}\}$: $\mathcal{L}(\mathcal{A}) = (a^*b)^{\omega}$

Theorem 2 For every (deterministic) Büchi automaton \mathcal{A} , there is (deterministic) Muller automaton \mathcal{A}' , such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Proof:

S' = S, I' = I, T' = T $\mathcal{F}' = \{Q \subseteq S \mid Q \cap F \neq \emptyset\}$

Theorem 3 For every nondeterministic Muller automaton \mathcal{A} there is a nondeterministic Büchi automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Proof:

- $\mathcal{F}' = \{F_1, \ldots, F_n\}$
- $S' = S \cup \bigcup_{i=1}^{n} \{i\} \times F_i \times 2^{F_i}$
- I' = I
- T' = T $\cup \{(s, \sigma, (i, s', \emptyset)) | 1 \le i \le n, (s, \sigma, s') \in T, s' \in F_i\}$ $\cup \{((i, s, R), \sigma, (i', s', R')) \mid 1 \le i \le n, s, s' \in F_i, R, R' \subseteq F_i, (s, \sigma, s') \in T, R' = R \cup \{s\} \text{ if } R \ne F_i \text{ and } R' = \emptyset \text{ if } R = F_i\}$

•
$$F' = \bigcup_{i=1}^{n} \{i\} \times F_i \times \{F_i\}$$