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4 Deterministic Büchi Automata

Theorem 1 The language (a + b)∗bω is not recognizable by a deterministic Büchi au-

tomaton.

Proof:

• Assume that L is recognized by the deterministic Büchi automaton A.

• Since bω ∈ L, there is a run
r0 = s0,0s0,1s0,2, . . .

with s0,n0
∈ F for some n0 ∈ ω.

• Similarly, bn0abω ∈ L and there must be a run
r1 = s0,0s0,1s0,2 . . . s0,n0

s1s1,0s1,1s1,2 . . .

with s1,n1
∈ F

• Repeating this argument, there is a word bn0abn1abn2a . . . accepted by A.

• This contradicts L = L(A).

Definition 1 (Substrings) Let α ∈ Σω. For n,m ∈ ω, n ≤ m we define

α(n,m) = α(n)α(n+ 1) . . . α(m) .

Definition 2 (Limit) For W ⊆ Σ∗:

−→
W = {α ∈ Σω | there exist infinitely many n ∈ ω s.t. α(0, n) ∈ W} .

Theorem 2 An ω-language L ⊆ Σω is recognizable by a deterministic Büchi automaton

iff there is a regular language W ⊆ Σ∗ s.t. L =
−→
W .

Proof:

Let L be the language of a deterministic Büchi automaton A; let W be the regular
language of A as a deterministic finite-word automaton. We show that L =

−→
W .

α ∈ L

iff for the unique run r of A on α, In(r) ∩ F 6= ∅

iff α(0, n) ∈ W for infinitely many n ∈ ω

iff α ∈
−→
W .



Theorem 3 For any deterministic Büchi automaton A, there exists a Büchi automaton

A′ such that L(A′) = Σω
r L(A).

Proof:

We construct A′ as follows:

• S ′ = (S × {0}) ∪ ((S r F )× {1}).

• I ′ = I × {0}.

• T ′ = {((s, 0), σ, (s′, 0)) | (s, σ, s′) ∈ T}
∪ {((s, 0), σ, (s′, 1)) | (s, σ, s′) ∈ T, s′ ∈ S − F}
∪ {((s, 1), σ, (s, 1)) | (s, σ, s′) ∈ T, s′ ∈ S − F}.

• F ′ = (S − F )× {1}.

L(A′) ⊆ Σω − L(A):

• For α ∈ L(A′) we have an accepting run

r′ : (s0, 0)(s1, 0) . . . (sj, 0)(s
′
0, 1)(s

′
1, 1) . . .

on A′.

• Hence,
r : s0s1s2 . . . sjs

′
0s

′
1 . . .

is the unique run on α in A.

• Since s′0, s
′
1, . . . ∈ S r F , In(r) ⊆ S r F . Hence, r is not accepting and

α ∈ Σω − L(A)

L(A′) ⊇ Σω − L(A):

• We assume α 6∈ L(A). Since A is deterministic and complete there exists a
run

r : s0s1s2 . . .

for α on A, but In(r) ∩ F = ∅.

• Thus there exists a k ∈ ω such that sj 6∈ F for j > k.

• This gives us the run

r′ : (s0, 0)(s1, 0) . . . (sk, 0)(sk+1, 1)(sk+2, 1) . . .

for α on A′ with the property In(r′) ⊆ ((S − F )× {1}) = F ′.

• Hence, r′ is accepting and α ∈ L(A′).
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5 Complementation of Nondeterministic Büchi Au-

tomata

Reference: The following construction for the complementation of nondeterministic
Büchi automata is taken from: Orna Kupferman and Moshe Y. Vardi, Weak alternating
automata are not that weak. ACM Trans. Comput. Logic 2, 3 (Jul. 2001), 408-429.

Definition 3 Let A = (S, I, T, F ) be a nondeterministic Büchi automaton. The run
DAG of A on a word α ∈ Σω is the directed acyclic graph G = (V,E) where

• V =
⋃

l≥0(Sl × {l}) where S0 = I and Sl+1 =
⋃

s∈Sl,(s,α(l),s′)∈T
{s′}

• E = {(〈s, l〉, 〈s′, l + 1〉) | l ≥ 0, (s, α(l), s′) ∈ T}

A path in a run DAG is accepting iff it visits F × N infinitely often. The automaton
accepts α if some path is accepting.
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Definition 4 A ranking for G is a function f : V → {0, . . . , 2 · |S|} such that

• for all 〈s, l〉 ∈ V , if f(〈s, l〉) is odd then s 6∈ F ;

• for all (〈s, l〉, 〈s′, l′〉) ∈ E, f(〈s′, l′〉) ≤ f(〈s, l〉).

A ranking is odd iff for all paths 〈s0, l0〉, 〈s1, l1〉, 〈s2, l2〉, . . . in G, there is a i ≥ 0 such
that f(〈si, li〉) is odd and, for all j ≥ 0, f(〈si+j, li+j〉) = f(〈si, li〉).
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Lemma 1 If there exists an odd ranking for G, then A does not accept α.

Proof:

• In an odd ranking, every path eventually gets trapped in a some odd rank.

• If f(〈s, l〉) is odd, then s 6∈ F .

• Hence, every path visits F only finitely often.

Let G′ be a subgraph of G. We call a vertex 〈s, l〉

• safe in G′ if for all vertices 〈s′, l′〉 reachable from 〈s, l〉, s′ 6∈ F , and

• endangered in G′ if only finitely many vertices are reachable.

We define an infinite sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of DAGs inductively as follows:

• G0 = G

• G2i+1 = G2i r {〈s, l〉 | 〈s, l〉 is endangered in G2i}

• G2i+2 = G2i+1 r {〈s, l〉 | 〈s, l〉 is safe in G2i+1}.

Lemma 2 If A does not accept α, then the following holds: For every i ≥ 0 there exists

an li such that for all j ≥ li at most |S| − i vertices of the form 〈 , j〉 are in G2i.

Proof:

Proof by induction on i:

• i = 0: In G, for every l, there are at most |S| vertices of the form 〈 , l〉.

• i → i+ 1:

– Case G2i is finite: then G2(i+1) is empty.

– Case G2i is infinite:

∗ There must exist a safe vertex 〈s, l〉 in G2i+1. (Otherwise, we can
construct a path in G with infinitely many visits to F ).

∗ We choose li+1 = l.

∗ We prove that for all j ≥ l, there are at most |S| − (i+ 1) vertices of
the form 〈 , j〉 in G2i+2.

· Since 〈s, l〉 ∈ G2i+1, it is not endangered in G2i.

· Hence, there are infinitely many vertices reachable from 〈s, l〉 in G2i.

· By König’s Lemma, there exists an infinite path p = 〈s, l〉, 〈s1, l +
1〉, 〈s, l + 2〉, . . . in G2i.

· No vertex on p is endangered (there is an infinite path). Therefore,
p is in G2i+1.

· All vertices on p are safe (〈s, l〉 is safe) in G2i+1. Therefore, none of
the vertices on p are in G2i+2.

· Hence, for all j ≥ l, the number of vertices of the form 〈 , l〉 in G2i+2

is strictly smaller than their number in G2i.


