Automata, Games and Verification: Lecture 3

4 Deterministic Büchi Automata

Theorem 1 The language $(a + b)^* b^{\omega}$ is not recognizable by a deterministic Büchi automaton.

Proof:

- Assume that L is recognized by the deterministic Büchi automaton \mathcal{A} .
- Since $b^{\omega} \in L$, there is a run $r_0 = s_{0,0}s_{0,1}s_{0,2}, \dots$ with $s_{0,n_0} \in F$ for some $n_0 \in \omega$.
- Similarly, $b^{n_0}ab^{\omega} \in L$ and there must be a run $r_1 = s_{0,0}s_{0,1}s_{0,2}\dots s_{0,n_0}s_1s_{1,0}s_{1,1}s_{1,2}\dots$ with $s_{1,n_1} \in F$
- Repeating this argument, there is a word $b^{n_0}ab^{n_1}ab^{n_2}a\ldots$ accepted by \mathcal{A} .
- This contradicts $L = \mathcal{L}(\mathcal{A})$.

Definition 1 (Substrings) Let $\alpha \in \Sigma^{\omega}$. For $n, m \in \omega, n \leq m$ we define

$$\alpha(n,m) = \alpha(n)\alpha(n+1)\dots\alpha(m) \; .$$

Definition 2 (Limit) For $W \subseteq \Sigma^*$:

 $\overrightarrow{W} = \{ \alpha \in \Sigma^{\omega} \mid \text{there exist infinitely many } n \in \omega \text{ s.t. } \alpha(0, n) \in W \} \text{ .}$

Theorem 2 An ω -language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there is a regular language $W \subseteq \Sigma^*$ s.t. $L = \overrightarrow{W}$.

Proof:

Let L be the language of a deterministic Büchi automaton \mathcal{A} ; let W be the regular language of \mathcal{A} as a deterministic finite-word automaton. We show that $L = \overline{W}$.

 $\alpha \in L$ iff for the unique run r of \mathcal{A} on α , $In(r) \cap F \neq \emptyset$ iff $\alpha(0, n) \in W$ for infinitely many $n \in \omega$ iff $\alpha \in \overrightarrow{W}$. **Theorem 3** For any deterministic Büchi automaton \mathcal{A} , there exists a Büchi automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}') = \Sigma^{\omega} \smallsetminus \mathcal{L}(\mathcal{A})$.

Proof:

We construct \mathcal{A}' as follows:

- $S' = (S \times \{0\}) \cup ((S \setminus F) \times \{1\}).$
- $I' = I \times \{0\}.$
- $T' = \{((s,0), \sigma, (s',0)) \mid (s, \sigma, s') \in T\}$ $\cup \{((s,0), \sigma, (s',1)) \mid (s, \sigma, s') \in T, s' \in S - F\}$ $\cup \{((s,1), \sigma, (s,1)) \mid (s, \sigma, s') \in T, s' \in S - F\}.$
- $F' = (S F) \times \{1\}.$

 $\mathcal{L}(\mathcal{A}') \subseteq \Sigma^{\omega} - \mathcal{L}(\mathcal{A}):$

• For $\alpha \in \mathcal{L}(\mathcal{A}')$ we have an accepting run

$$r': (s_0, 0)(s_1, 0) \dots (s_j, 0)(s'_0, 1)(s'_1, 1) \dots$$

on \mathcal{A}' .

• Hence,

$$r: s_0 s_1 s_2 \dots s_j s_0' s_1' \dots$$

is the unique run on α in \mathcal{A} .

• Since $s'_0, s'_1, \ldots \in S \setminus F$, $In(r) \subseteq S \setminus F$. Hence, r is not accepting and $\alpha \in \Sigma^{\omega} - \mathcal{L}(\mathcal{A})$

 $\mathcal{L}(\mathcal{A}') \supseteq \Sigma^{\omega} - \mathcal{L}(\mathcal{A}):$

• We assume $\alpha \notin \mathcal{L}(\mathcal{A})$. Since \mathcal{A} is deterministic and complete there exists a run

$$r:s_0s_1s_2\ldots$$

for α on \mathcal{A} , but $In(r) \cap F = \emptyset$.

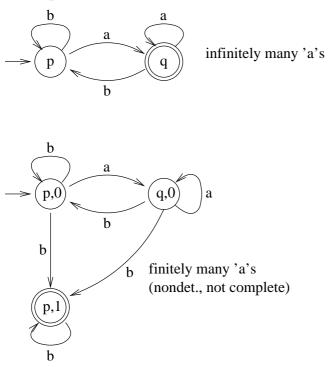
- Thus there exists a $k \in \omega$ such that $s_j \notin F$ for j > k.
- This gives us the run

$$r': (s_0, 0)(s_1, 0) \dots (s_k, 0)(s_{k+1}, 1)(s_{k+2}, 1) \dots$$

for α on \mathcal{A}' with the property $In(r') \subseteq ((S - F) \times \{1\}) = F'$.

• Hence, r' is accepting and $\alpha \in \mathcal{L}(\mathcal{A}')$.

Example:



5 Complementation of Nondeterministic Büchi Automata

Reference: The following construction for the complementation of nondeterministic Büchi automata is taken from: Orna Kupferman and Moshe Y. Vardi, Weak alternating automata are not that weak. *ACM Trans. Comput. Logic* 2, 3 (Jul. 2001), 408-429.

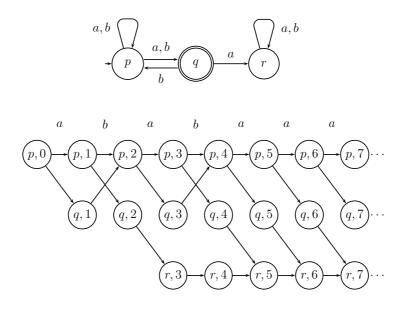
Definition 3 Let $\mathcal{A} = (S, I, T, F)$ be a nondeterministic Büchi automaton. The run DAG of \mathcal{A} on a word $\alpha \in \Sigma^{\omega}$ is the directed acyclic graph G = (V, E) where

- $V = \bigcup_{l>0} (S_l \times \{l\})$ where $S_0 = I$ and $S_{l+1} = \bigcup_{s \in S_l, (s, \alpha(l), s') \in T} \{s'\}$
- $E = \{(\langle s, l \rangle, \langle s', l+1 \rangle) \mid l \ge 0, (s, \alpha(l), s') \in T\}$

A path in a run DAG is accepting iff it visits $F \times \mathbb{N}$ infinitely often. The automaton accepts α if some path is accepting.

•

Example:

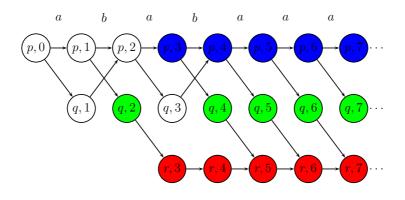


Definition 4 A ranking for G is a function $f: V \to \{0, \ldots, 2 \cdot |S|\}$ such that

- for all $\langle s, l \rangle \in V$, if $f(\langle s, l \rangle)$ is odd then $s \notin F$;
- for all $(\langle s, l \rangle, \langle s', l' \rangle) \in E$, $f(\langle s', l' \rangle) \leq f(\langle s, l \rangle)$.

A ranking is *odd* iff for all paths $\langle s_0, l_0 \rangle, \langle s_1, l_1 \rangle, \langle s_2, l_2 \rangle, \dots$ in G, there is a $i \ge 0$ such that $f(\langle s_i, l_i \rangle)$ is odd and, for all $j \ge 0$, $f(\langle s_{i+j}, l_{i+j} \rangle) = f(\langle s_i, l_i \rangle)$.

Example:



rank 1 — rank 2 — rank 3 — rank 4

Lemma 1 If there exists an odd ranking for G, then \mathcal{A} does not accept α .

Proof:

- In an odd ranking, every path eventually gets trapped in a some odd rank.
- If $f(\langle s, l \rangle)$ is odd, then $s \notin F$.
- Hence, every path visits F only finitely often.

Let G' be a subgraph of G. We call a vertex $\langle s, l \rangle$

- safe in G' if for all vertices $\langle s', l' \rangle$ reachable from $\langle s, l \rangle, s' \notin F$, and
- endangered in G' if only finitely many vertices are reachable.

We define an infinite sequence $G_0 \supseteq G_1 \supseteq G_2 \supseteq \ldots$ of DAGs inductively as follows:

- $G_0 = G$
- $G_{2i+1} = G_{2i} \setminus \{ \langle s, l \rangle \mid \langle s, l \rangle \text{ is endangered in } G_{2i} \}$
- $G_{2i+2} = G_{2i+1} \smallsetminus \{ \langle s, l \rangle \mid \langle s, l \rangle \text{ is safe in } G_{2i+1} \}.$

Lemma 2 If \mathcal{A} does not accept α , then the following holds: For every $i \geq 0$ there exists an l_i such that for all $j \geq l_i$ at most |S| - i vertices of the form $\langle -, j \rangle$ are in G_{2i} .

Proof:

Proof by induction on i:

- i = 0: In G, for every l, there are at most |S| vertices of the form $\langle -, l \rangle$.
- $i \rightarrow i + 1$:
 - Case G_{2i} is finite: then $G_{2(i+1)}$ is empty.
 - Case G_{2i} is infinite:
 - * There must exist a safe vertex $\langle s, l \rangle$ in G_{2i+1} . (Otherwise, we can construct a path in G with infinitely many visits to F).
 - * We choose $l_{i+1} = l$.
 - * We prove that for all $j \ge l$, there are at most |S| (i + 1) vertices of the form $\langle -, j \rangle$ in G_{2i+2} .
 - Since $\langle s, l \rangle \in G_{2i+1}$, it is not endangered in G_{2i} .
 - Hence, there are infinitely many vertices reachable from $\langle s, l \rangle$ in G_{2i} .
 - · By König's Lemma, there exists an infinite path $p = \langle s, l \rangle, \langle s_1, l + 1 \rangle, \langle s, l+2 \rangle, \dots$ in G_{2i} .
 - No vertex on p is endangered (there is an infinite path). Therefore, p is in G_{2i+1} .
 - · All vertices on p are safe ($\langle s, l \rangle$ is safe) in G_{2i+1} . Therefore, none of the vertices on p are in G_{2i+2} .
 - Hence, for all $j \ge l$, the number of vertices of the form $\langle -, l \rangle$ in G_{2i+2} is strictly smaller than their number in G_{2i} .