Automata, Games and Verification: Lecture 2

3 ω -regular Languages

Definition 1 The ω -regular expressions are defined as follows.

- If R is an regular expression where $\epsilon \notin \mathcal{L}(R)$, then R^{ω} is an ω -regular expression. $\mathcal{L}(R^{\omega}) = \mathcal{L}(R)^{\omega}$ where $L^{\omega} = \{u_0 u_1 \dots | u_i \in L, |u_i| > 0 \text{ for all } i \in \omega\}$ for $L \subseteq \Sigma^*$.
- If R is a regular expression and U is an ω-regular expression, then R · U is an ω-regular expression.
 L(R · U) = L(R) · L(U) where L₁ · L₂ = {r · u | r ∈ L₁, u ∈ L₂} for L₁ ⊆ Σ*, L₂ ⊆ Σ^ω.
- If U_1 and U_2 are ω -regular expressions, then $U_1 + U_2$ is an ω -regular expression. $\mathcal{L}(U_1 + U_2) = \mathcal{L}(U_1) \cup \mathcal{L}(U_2).$

Definition 2 An ω -regular language is a finite union of ω -languages of the form $U \cdot V^{\omega}$ where $U, V \subseteq \Sigma^*$ are regular languages.

Theorem 1 If L_1 and L_2 are Büchi recognizable, then so is $L_1 \cup L_2$.

Proof:

Let \mathcal{A}_1 and \mathcal{A}_2 be Büchi automata that recognize L_1 and L_2 , respectively. We construct an automaton \mathcal{A}' for $L_1 \cup L_2$:

- $S' = S_1 \cup S_2$ (w.l.o.g. we assume $S_1 \cap S_2 = \emptyset$);
- $I' = I_1 \cup I_2;$
- $T' = T_1 \cup T_2;$
- $F' = F_1 \cup F_2$.

 $\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$: For $\alpha \in \mathcal{L}(\mathcal{A}')$, we have an accepting run $r = s_0 s_1 s_2 \dots$ of α in \mathcal{A}' . If $s_0 \in S_1$, then r is an accepting run on \mathcal{A}_1 , otherwise $s_0 \in S_2$ and r is an accepting run on \mathcal{A}_2 .

 $\mathcal{L}(\mathcal{A}') \supseteq \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$: For $i \in \{1, 2\}$ and $\alpha \in \mathcal{L}(\mathcal{A}_i)$, there is an accepting run $r = s_0 s_1 s_2 \dots$ on \mathcal{A}_i . The run r is accepting for α in \mathcal{A}' .

Theorem 2 If L_1 and L_2 are Büchi recognizable, then so is $L_1 \cap L_2$.

Proof:

We construct an automaton \mathcal{A}' from \mathcal{A}_1 and \mathcal{A}_2 :

- $S' = S_1 \times S_2 \times \{1, 2\}$
- $I' = I_1 \times I_2 \times \{1\}$
- $T' = \{((s_1, s_2, 1), \sigma, (s'_1, s'_2, 1)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2, s_1 \notin F_1\}$ $\cup \{((s_1, s_2, 1), \sigma, (s'_1, s'_2, 2)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2, s_1 \in F_1\}$ $\cup \{((s_1, s_2, 2), \sigma, (s'_1, s'_2, 2)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2, s_2 \notin F_2\}$ $\cup \{((s_1, s_2, 2), \sigma, (s'_1, s'_2, 1)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2, s_2 \in F_2\}$

•
$$F' = \{(s_1, s_2, 2) \mid s_1 \in S_1, s_2 \in F_2\}$$

 $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$:

- $r' = (s_1^0, s_2^0, t^0)(s_1^1, s_2^1, t^1) \dots$ is a run of \mathcal{A}' on input word σ iff $r_1 = s_1^0 s_1^1 \dots$ is a run of \mathcal{A}_1 on σ and $r_2 = s_2^0 s_2^1 \dots$ is a run of \mathcal{A}_2 on σ .
- r' is accepting iff r_1 is accepting and r_2 is accepting.

Theorem 3 If L_1 is a regular language and L_2 is Büchi recognizable, then $L_1 \cdot L_2$ is Büchi-recognizable.

Proof:

Let \mathcal{A}_1 be a finite-word automaton that recognizes L_1 and \mathcal{A}_2 be a Büchi automaton that recognizes L_2 . We construct:

• $S' = S_1 \cup S_2$ (w.l.o.g. we assume $S_1 \cap S_2 = \emptyset$);

•
$$I' = \begin{cases} I_1 & \text{if } I_1 \cap F_1 = \emptyset \\ I_1 \cup I_2 & \text{otherwise;} \end{cases}$$

- $T' = T_1 \cup T_2 \cup \{(s, \sigma, s') \mid (s, \sigma, f) \in T_1, f \in F_1, s' \in I_2\};$
- $F' = F_2$.

Theorem 4 If L is a regular language then L^{ω} is Büchi recognizable.

Proof:

Let \mathcal{A} be a finite word automaton; let w.l.o.g. $\epsilon \notin \mathcal{L}(\mathcal{A})$.

• Step 1: Ensure that all initial states have no incoming transitions. We modify \mathcal{A} as follows:

$$-S' = S \cup \{s_{\text{new}}\};$$

$$-I' = \{s_{\text{new}}\};$$

$$-T' = T \cup \{(s_{\text{new}}, \sigma, s') \mid (s, \sigma, s') \in T \text{ for some } s \in I\};$$

$$-F' = F.$$

This modification does not affect the language of \mathcal{A} .

- Step 2: Add loop:
 - -S'' = S'; I'' = I'; $-T'' = T' \cup \{(s, \sigma, s_{new} \mid (s, \sigma, s') \in T' \text{ and } s' \in F'\};$ -F'' = I'.

 $\mathcal{L}(\mathcal{A}'') \subseteq \mathcal{L}(\mathcal{A}')^{\omega}$:

- Assume $\alpha \in \mathcal{L}(\mathcal{A}'')$ and $s_0 s_1 s_2 \dots$ is an accepting run for α in \mathcal{A}'' .
- Hence, $s_i = s_{new} \in F'' = I'$ for infinitely many indices $i: i_0, i_1, i_2, \ldots$
- This provides a series of runs in \mathcal{A}' :
 - run $s_0 s_1 \dots s_{i_1-1} s$ on $w_1 = \alpha(0)\alpha(1) \dots \alpha(i_1-1)$ for some $s \in F'$;
 - run $s_{i_1}s_{i_1+1}\ldots s_{i_2-1}s$ on $w_2 = \alpha(i_1)\alpha(i_1+1)\ldots\alpha(i_2-1)$ for some $s \in F'$; - ...
- This yields $w_k \in \mathcal{L}(\mathcal{A}')$ for every $k \geq 1$.
- Hence, $\alpha \in \mathcal{L}(\mathcal{A}')^{\omega}$.

 $\mathcal{L}(\mathcal{A}'') \supseteq \mathcal{L}(\mathcal{A}')^{\omega}$:

- Let $\alpha = w_1 w_2 w_3 \in \Sigma^{\omega}$ such that $w_k \in \mathcal{L}(\mathcal{A}')$ for all $k \ge 1$.
- For each k, we choose an accepting run $s_0^k s_1^k s_2^k \dots s_{n_k}^k$ of \mathcal{A}' on w_k .
- Hence, $s_0^k \in I'$ and $s_{n_k}^k \in F'$ for all $k \ge 1$.
- Thus,

$$s_0^1 \dots s_{n_1-1}^1 s_0^2 \dots s_{n_2-1}^2 s_0^3 \dots s_{n_3-1}^3 \dots$$

is an accepting run on α in \mathcal{A}'' .

• Hence, $\alpha \in \mathcal{L}(\mathcal{A}'')$.

Theorem 5 (Büchi's Characterization Theorem (1962)) An ω -language is Büchi recognizable iff it is ω -regular.

Proof:

" \Leftarrow " follows from previous constructions.

" \Rightarrow ": Given a Büchi automaton \mathcal{A} , we consider for each pair $s, s' \in S$ the regular language

 $W_{s,s'} = \{ u \in \Sigma^* \mid \text{finite-word automaton } (S, \{s\}, T, \{s'\}) \text{ accepts } u \}$.

Claim: $\mathcal{L}(\mathcal{A}) = \bigcup_{s \in I, s' \in F} W_{s,s'} \cdot W_{s',s'}^{\omega}$. $\mathcal{L}(\mathcal{A}) \subseteq \bigcup_{s \in I, s' \in F} W_{s,s'} \cdot W_{s',s'}^{\omega}$:

- Let $\alpha \in \mathcal{L}(\mathcal{A})$.
- Then there is an accepting run r for α on \mathcal{A} , which begins at some $s \in I$ and visits some $s' \in F$ infinitely often:

$$r: s \xrightarrow{\alpha_0} s' \xrightarrow{\alpha_1} s' \xrightarrow{\alpha_2} s' \xrightarrow{\alpha_3} s' \xrightarrow{\alpha_4} s' \rightarrow \ldots,$$

where $\alpha = \alpha_0 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \dots$ (Notation:

- $s_0 \xrightarrow{\sigma_0 \sigma_1, \dots, \sigma_k} s_{k+1}$: there exist s_1, \dots, s_k s.t. $(s_i, \sigma_i, s_{i+1}) \in \text{for all } 0 \le i \le k$.)
- Hence, $\alpha_0 \in W_{s,s'}$ and $\alpha_k \in W_{s',s'}$ for k > 0 and thus $\alpha \in W_{s,s'} \cdot W_{s',s'}^{\omega}$ for some $s \in I, s' \in F$.

 $\mathcal{L}(\mathcal{A}) \supseteq \bigcup_{s \in I, s' \in F} W_{s,s'} \cdot W_{s',s'}^{\omega}$:

- Let $\alpha = \alpha_0 \cdot \alpha_1 \cdot \alpha_2 \cdot \ldots$ with $\alpha_0 \in W_{s,s'}$ and $\alpha_k \in W_{s',s'}$ for some $s \in I, s' \in F$.
- Then the run

$$r: s \xrightarrow{\alpha_0} s' \xrightarrow{\alpha_1} s' \xrightarrow{\alpha_2} s' \xrightarrow{\alpha_3} s' \xrightarrow{\alpha_4} s' \rightarrow$$

exists and is accepting since $s' \in F$.

• It follows that $\alpha \in \mathcal{L}(\mathcal{A})$.