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23 Alternating Tree Automata

Definition 1 An alternating tree automaton over binary Σ-trees is a tuple A =
(S, s0, δ, ϕ):

• S: finite set of states

• s0 ∈ S

• δ : S × Σ → B
+({0, 1} × S) is the transition function.

• ϕ: acceptance condition (Büchi, parity, . . .)

More general: set of directions D = {0, . . . , k − 1}, T ⊆ D∗, degree d : D∗ → {1, . . . , k}

Definition 2 An alternating tree automaton over Σ-trees is a tuple A = (S, s0, δ, ϕ):

• S: finite set of states

• s0 ∈ S

• δ : S × Σ× {1, . . . k} → B
+({0, 1, . . . k − 1} × S) is the transition function.

• ϕ: acceptance condition (Büchi, parity, . . .)

Definition 3 A run of a tree automaton A on a Σ-tree v is a D∗ × S-tree (T, r), s.t.

1. r(ǫ) = (ǫ, s0)

2. Let y ∈ T with r(y) = (x, q) and δ(q, v(x), d(x)) = θ. Then there is a (possibly
empty) set Q = {(c0, q

′
0), (c1, q

′
1), . . . , (cn, q

′
n)} ⊆ {0, . . . , d(x)−1}×S, such that the

following hold:

• Q |= θ

• for all 0 ≤ i ≤ n, we have y · i ∈ T and r(y · i) = (x · ci, q
′
i).

Definition 4 A run is accepting if every branch is accepting (by ϕ). A Σ-tree is accepted
if there exists an accepting run.



Tree automata on Kripke structures

Example: For a pointed Kripke structure (M, s0):

∅

{p}

{q}

we build a computation tree t

∅

{p} {q}

∅ {q} {p}

. . .

Let k be the max number of successors in M = (S,R, L). Define a mapping: f :
{0, . . . , k − 1}∗ → S:

• f(ǫ) = so

• Assume there is, for each s ∈ S, a fixed order on the successors (s, s′1), (s, s
′
2), . . . ∈ E

f(w · i) = s′i where s
′
i is the ith successor of s = f(w).

Definition 5 For a pointed Kripke structure (M, s0) over AP with M = (S,R, L), the
computation tree of (M, s0) is a 2AP -tree (T, t) with t(v) = L(f(v)) and d(v) = d(f(v))
for all v ∈ T .

Theorem 1 The computation tree of a pointed Kripke structure (M, q0),M =
(SM, R, L) is accepted by an alternating tree automaton A = (SA, s0, δ, ϕ) iff Player
Accept has a winning strategy from (s0, q0) in the following game:

• V0 = SA × SM



• V0 = SA × 2{0,...,k−1}×SA × SM

• E = {((s, q), (s, η, q)) | η |= δ(s, L(q), d(q))}
∪{((s, η, q), (s′, q′)) | (i, q′) ∈ η, s′ is the ith successor of s}

• winning condition: ϕ applied to the first component

CTL

Translation from CTL formula ϕ to alternating Büchi tree automaton Aϕ:

• S =closure(ϕ):= set of all subformulas and their negations

• for p ∈ AP :

– δ(p, σ, k) = true if p ∈ σ

– δ(p, σ, k) = false if p 6∈ σ

– δ(¬p, σ, k) = false if p ∈ σ

– δ(¬p, σ, k) = true if p 6∈ σ

• δ(ϕ ∧ ψ, σ, k) = δ(ϕ, σ, k) ∧ δ(ψ, σ, k)

• δ(ϕ ∨ ψ, σ, k) = δ(ϕ, σ, k) ∨ δ(ψ, σ, k)

• δ(AXϕ, σ, k) =
∧k−1

c=0
(c, ϕ)

• δ(EXϕ, σ, k) =
∨k−1

c=0
(c, ϕ)

• δ(Aϕ U ψ, σ, k) = δ(ψ, σ, k) ∨ (δ(ϕ, σ, k) ∧
∧k−1

c=0
(c,Aϕ U ψ)

• δ(Eϕ U ψ, σ, k) = δ(ψ, σ, k) ∨ (δ(ϕ, σ, k) ∧
∨k−1

c=0
(c,Eϕ U ψ)

• δ(¬ϕ, σ, k) = δ(ϕ, σ, k)

Theorem 2 For every CTL formula ϕ and a set of directions D there is an alternating
Büchi tree automaton Aϕ such that L(AD,ϕ) is exactly the set of D-branching trees that
satisfy ϕ.

Alternation-free µ-calculus

Guarded formulas: A µ-calculus formula is guarded if it is in normal form and for every
quantified atomic proposition p, all occurrences are in the scope of a modality that is in
the scope of the quantifier.

Example: µy.(p ∨ 3y) is guarded, 3µy.(p ∨ y) is not guarded.

Theorem 3 For every µ calculus formula in normal form there is an equivalent guarded
formula.



Proof:

• Function new : µ-calculus formulas ×{µ, ν} × AP → µ-calculus formulas:

– new(p, µ, p) = false

– new(p, ν, p) = true

– new(ϕ ∧ ψ, λ, p) = new(ϕ, λ, p) ∧ new(ψ, λ, p)

– new(ϕ ∨ ψ, λ, p) = new(ϕ, λ, p) ∨ new(ψ, λ, p)

– For all other formulas ϕ: new(ϕ, λ, p) = ϕ

• Note that the definition of the new function ensures that λy.ϕ(y) is semanti-
cally equivalent to λy.new(ϕ, µ, y)(y) for all µ-calculus formulas ϕ(y).

• Translation: Starting from the innermost quantified subformulas,
replace λy.ϕ(y) by new(ϕ, λ, y)(λy.new(ϕ, λ, y)(y)) (1)

• Note that in new(ϕ, µ, y)(y), all occurrences of y are in the scope of a modality,
hence in (1), all occurrences of variables (e.g. z) that are in the scope of a
fixpoint operator are also in the scope of a modality.

Closure cl(ϕ) of a µ-calculus formula ϕ:

• ϕ ∈ cl(ϕ)

• if ψ ∨ η ∈ cl(ϕ) then ψ, η ∈ cl(ϕ)

• if ψ ∧ η ∈ cl(ϕ) then ψ, η ∈ cl(ϕ)

• if 3ψ ∈ cl(ϕ) then ψ ∈ cl(ϕ)

• if 2ψ ∈ cl(ϕ) then ψ ∈ cl(ϕ)

• if µy.ψ(y) ∈ cl(ϕ) then ψ(µy.ψ(y)) ∈ cl(ϕ)

• if νy.ψ(y) ∈ cl(ϕ) then ψ(νy.ψ(y)) ∈ cl(ϕ)

Alternation-free µ-calculus: no ν between µy. and y; no µ between νy. and y.
Translation from a guarded alternation-free µ-calculus formula ϕ to an alternating Büchi
tree automaton Aϕ:

• δ(p, σ, k) = true if p ∈ σ

• δ(p, σ, k) = false if p 6∈ σ

• δ(¬p, σ, k) = false if p ∈ σ

• δ(¬p, σ, k) = true if p 6∈ σ

• δ(ϕ ∧ ψ, σ, k) = δ(ϕ, σ, k) ∧ δ(ψ, σ, k)

• δ(ϕ ∨ ψ, σ, k) = δ(ϕ, σ, k) ∨ δ(ψ, σ, k)



• δ(2ϕ, σ, k) =
∧k−1

c=0
(c, ϕ)

• δ(3ϕ, σ, k) =
∨k−1

c=0
(c, ϕ)

• δ(µy.ψ(y), σ, k) = δ(ψ(µy.ψ(y)), σ, k)

• δ(νy.ψ(y), σ, k) = δ(ψ(νy.ψ(y)), σ, k)

Note that since ϕ is guarded, the definition is not circular.
Let ≈ be an equivalence relation on µ-calculus formulas such that ϕ ≈ ψ if ϕ ∈ cl(ψ)

and ψ ∈ cl(ϕ).
F = {set of formulas that are equivalent to some formula νy.ψ(y) ∈ cl(ϕ)}

Theorem 4 For every alternation-free µ-calculus formula ϕ and a set of directions D
there is an alternating Büchi tree automaton Aϕ such that L(AD,ϕ) is exactly the set of
D-branching trees satisfying ϕ.


