#### Automata, Games and Verification: Lecture 14

**Reference:** An Automata-Theoretic Approach to Branching-Time Model Checking by Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper

# 23 Alternating Tree Automata

**Definition 1** An alternating tree automaton over binary  $\Sigma$ -trees is a tuple  $\mathcal{A} = (S, s_0, \delta, \varphi)$ :

- S: finite set of states
- $s_0 \in S$
- $\delta: S \times \Sigma \to \mathbb{B}^+(\{0,1\} \times S)$  is the transition function.
- $\varphi$ : acceptance condition (Büchi, parity, ...)

More general: set of directions  $\mathcal{D} = \{0, \dots, k-1\}, T \subseteq \mathcal{D}^*, \text{ degree } d : \mathcal{D}^* \to \{1, \dots, k\}$ 

**Definition 2** An alternating tree automaton over  $\Sigma$ -trees is a tuple  $\mathcal{A} = (S, s_0, \delta, \varphi)$ :

- S: finite set of states
- $s_0 \in S$
- $\delta: S \times \Sigma \times \{1, \dots, k\} \to \mathbb{B}^+(\{0, 1, \dots, k-1\} \times S)$  is the transition function.
- $\varphi$ : acceptance condition (Büchi, parity, ...)

**Definition 3** A run of a tree automaton  $\mathcal{A}$  on a  $\Sigma$ -tree v is a  $\mathcal{D}^* \times S$ -tree (T, r), s.t.

- 1.  $r(\epsilon) = (\epsilon, s_0)$
- 2. Let  $y \in T$  with r(y) = (x, q) and  $\delta(q, v(x), d(x)) = \theta$ . Then there is a (possibly empty) set  $Q = \{(c_0, q'_0), (c_1, q'_1), \dots, (c_n, q'_n)\} \subseteq \{0, \dots, d(x) 1\} \times S$ , such that the following hold:
  - $Q \models \theta$
  - for all  $0 \le i \le n$ , we have  $y \cdot i \in T$  and  $r(y \cdot i) = (x \cdot c_i, q'_i)$ .

**Definition 4** A run is accepting if every branch is accepting (by  $\varphi$ ). A  $\Sigma$ -tree is accepted if there exists an accepting run.

## Tree automata on Kripke structures

**Example:** For a pointed Kripke structure  $(\mathcal{M}, s_0)$ :



we build a computation tree t



Let k be the max number of successors in  $\mathcal{M} = (S, R, L)$ . Define a mapping:  $f : \{0, \ldots, k-1\}^* \to S$ :

- $f(\epsilon) = s_o$
- Assume there is, for each  $s \in S$ , a fixed order on the successors  $(s, s'_1), (s, s'_2), \ldots \in E$  $f(w \cdot i) = s'_i$  where  $s'_i$  is the *i*th successor of s = f(w).

**Definition 5** For a pointed Kripke structure  $(\mathcal{M}, s_0)$  over AP with  $\mathcal{M} = (S, R, L)$ , the computation tree of  $(\mathcal{M}, s_0)$  is a  $2^{AP}$ -tree (T, t) with t(v) = L(f(v)) and d(v) = d(f(v)) for all  $v \in T$ .

**Theorem 1** The computation tree of a pointed Kripke structure  $(\mathcal{M}, q_0), \mathcal{M} = (S_{\mathcal{M}}, R, L)$  is accepted by an alternating tree automaton  $\mathcal{A} = (S_{\mathcal{A}}, s_0, \delta, \varphi)$  iff Player Accept has a winning strategy from  $(s_0, q_0)$  in the following game:

• 
$$V_0 = S_{\mathcal{A}} \times S_{\mathcal{M}}$$

- $V_0 = S_{\mathcal{A}} \times 2^{\{0,\dots,k-1\} \times S_{\mathcal{A}}} \times S_{\mathcal{M}}$
- $E = \{ ((s,q), (s,\eta,q)) \mid \eta \models \delta(s, L(q), d(q)) \}$  $\cup \{ ((s,\eta,q), (s',q')) \mid (i,q') \in \eta, s' \text{ is the ith successor of } s \}$
- winning condition:  $\varphi$  applied to the first component

## $\operatorname{CTL}$

Translation from CTL formula  $\varphi$  to alternating Büchi tree automaton  $\mathcal{A}_{\varphi}$ :

- $S = \text{closure}(\varphi) := \text{set of all subformulas and their negations}$
- for  $p \in AP$ :

$$-\delta(p,\sigma,k) = true \text{ if } p \in \sigma$$

- $-\delta(p,\sigma,k) = false \text{ if } p \notin \sigma$
- $-\delta(\neg p,\sigma,k) = false \text{ if } p \in \sigma$

$$-\delta(\neg p,\sigma,k) = true \text{ if } p \notin \sigma$$

- $\delta(\varphi \wedge \psi, \sigma, k) = \delta(\varphi, \sigma, k) \wedge \delta(\psi, \sigma, k)$
- $\delta(\varphi \lor \psi, \sigma, k) = \delta(\varphi, \sigma, k) \lor \delta(\psi, \sigma, k)$
- $\delta(\mathbf{AX}\varphi, \sigma, k) = \bigwedge_{c=0}^{k-1} (c, \varphi)$
- $\delta(\mathrm{EX}\varphi, \sigma, k) = \bigvee_{c=0}^{k-1} (c, \varphi)$
- $\delta(A\varphi \ \mathcal{U} \ \psi, \sigma, k) = \delta(\psi, \sigma, k) \lor (\delta(\varphi, \sigma, k) \land \bigwedge_{c=0}^{k-1} (c, A\varphi \ \mathcal{U} \ \psi)$
- $\delta(\mathrm{E}\varphi \ \mathcal{U} \ \psi, \sigma, k) = \delta(\psi, \sigma, k) \lor (\delta(\varphi, \sigma, k) \land \bigvee_{c=0}^{k-1} (c, \mathrm{E}\varphi \ \mathcal{U} \ \psi)$
- $\delta(\neg \varphi, \sigma, k) = \overline{\delta(\varphi, \sigma, k)}$

**Theorem 2** For every CTL formula  $\varphi$  and a set of directions  $\mathcal{D}$  there is an alternating Büchi tree automaton  $\mathcal{A}_{\varphi}$  such that  $\mathcal{L}(\mathcal{A}_{\mathcal{D},\varphi})$  is exactly the set of  $\mathcal{D}$ -branching trees that satisfy  $\varphi$ .

## Alternation-free $\mu$ -calculus

Guarded formulas: A  $\mu$ -calculus formula is *guarded* if it is in normal form and for every quantified atomic proposition p, all occurrences are in the scope of a modality that is in the scope of the quantifier.

**Example:**  $\mu y.(p \lor \diamondsuit y)$  is guarded,  $\diamondsuit \mu y.(p \lor y)$  is not guarded.

**Theorem 3** For every  $\mu$  calculus formula in normal form there is an equivalent guarded formula.

### **Proof:**

- Function  $new: \mu$ -calculus formulas  $\times \{\mu, \nu\} \times AP \to \mu$ -calculus formulas:
  - $new(p, \mu, p) = false$
  - $new(p, \nu, p) = true$
  - $new(\varphi \land \psi, \lambda, p) = new(\varphi, \lambda, p) \land new(\psi, \lambda, p)$
  - $new(\varphi \lor \psi, \lambda, p) = new(\varphi, \lambda, p) \lor new(\psi, \lambda, p)$
  - For all other formulas  $\varphi$ :  $new(\varphi, \lambda, p) = \varphi$
- Note that the definition of the *new* function ensures that  $\lambda y.\varphi(y)$  is semantically equivalent to  $\lambda y.new(\varphi, \mu, y)(y)$  for all  $\mu$ -calculus formulas  $\varphi(y)$ .
- Translation: Starting from the innermost quantified subformulas, replace  $\lambda y.\varphi(y)$  by  $new(\varphi, \lambda, y)(\lambda y.new(\varphi, \lambda, y)(y))$  (1)
- Note that in new(φ, μ, y)(y), all occurrences of y are in the scope of a modality, hence in (1), all occurrences of variables (e.g. z) that are in the scope of a fixpoint operator are also in the scope of a modality.

Closure  $cl(\varphi)$  of a  $\mu$ -calculus formula  $\varphi$ :

- $\varphi \in cl(\varphi)$
- if  $\psi \lor \eta \in cl(\varphi)$  then  $\psi, \eta \in cl(\varphi)$
- if  $\psi \wedge \eta \in cl(\varphi)$  then  $\psi, \eta \in cl(\varphi)$
- if  $\diamond \psi \in cl(\varphi)$  then  $\psi \in cl(\varphi)$
- if  $\Box \psi \in cl(\varphi)$  then  $\psi \in cl(\varphi)$
- if  $\mu y.\psi(y) \in cl(\varphi)$  then  $\psi(\mu y.\psi(y)) \in cl(\varphi)$
- if  $\nu y.\psi(y) \in cl(\varphi)$  then  $\psi(\nu y.\psi(y)) \in cl(\varphi)$

Alternation-free  $\mu$ -calculus: no  $\nu$  between  $\mu y$ . and y; no  $\mu$  between  $\nu y$ . and y. Translation from a guarded alternation-free  $\mu$ -calculus formula  $\varphi$  to an alternating Büchi tree automaton  $\mathcal{A}_{\varphi}$ :

- $\delta(p,\sigma,k) = true$  if  $p \in \sigma$
- $\delta(p,\sigma,k) = false \text{ if } p \notin \sigma$
- $\delta(\neg p, \sigma, k) = false \text{ if } p \in \sigma$
- $\delta(\neg p, \sigma, k) = true$  if  $p \notin \sigma$
- $\delta(\varphi \wedge \psi, \sigma, k) = \delta(\varphi, \sigma, k) \wedge \delta(\psi, \sigma, k)$
- $\delta(\varphi \lor \psi, \sigma, k) = \delta(\varphi, \sigma, k) \lor \delta(\psi, \sigma, k)$

- $\delta(\Box\varphi,\sigma,k) = \bigwedge_{c=0}^{k-1} (c,\varphi)$
- $\delta(\Diamond \varphi, \sigma, k) = \bigvee_{c=0}^{k-1} (c, \varphi)$
- $\delta(\mu y.\psi(y), \sigma, k) = \delta(\psi(\mu y.\psi(y)), \sigma, k)$
- $\delta(\nu y.\psi(y),\sigma,k) = \delta(\psi(\nu y.\psi(y)),\sigma,k)$

Note that since  $\varphi$  is guarded, the definition is not circular.

Let  $\approx$  be an equivalence relation on  $\mu$ -calculus formulas such that  $\varphi \approx \psi$  if  $\varphi \in cl(\psi)$ and  $\psi \in cl(\varphi)$ .

 $F = \{\text{set of formulas that are equivalent to some formula } \nu y.\psi(y) \in cl(\varphi)\}$ 

**Theorem 4** For every alternation-free  $\mu$ -calculus formula  $\varphi$  and a set of directions  $\mathcal{D}$ there is an alternating Büchi tree automaton  $\mathcal{A}_{\varphi}$  such that  $\mathcal{L}(\mathcal{A}_{\mathcal{D},\varphi})$  is exactly the set of  $\mathcal{D}$ -branching trees satisfying  $\varphi$ .