Automata, Games and Verification: Lecture 14

Reference: An Automata-Theoretic Approach to Branching-Time Model Checking by Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper

23 Alternating Tree Automata

Definition 1 An alternating tree automaton over binary Σ-trees is a tuple $\mathcal{A}=$ $\left(S, s_{0}, \delta, \varphi\right)$:

- S: finite set of states
- $s_{0} \in S$
- $\delta: S \times \Sigma \rightarrow \mathbb{B}^{+}(\{0,1\} \times S)$ is the transition function.
- φ : acceptance condition (Büchi, parity, ...)

More general: set of directions $\mathcal{D}=\{0, \ldots, k-1\}, T \subseteq \mathcal{D}^{*}$, degree $d: \mathcal{D}^{*} \rightarrow\{1, \ldots, k\}$
Definition 2 An alternating tree automaton over Σ-trees is a tuple $\mathcal{A}=\left(S, s_{0}, \delta, \varphi\right)$:

- S: finite set of states
- $s_{0} \in S$
- $\delta: S \times \Sigma \times\{1, \ldots k\} \rightarrow \mathbb{B}^{+}(\{0,1, \ldots k-1\} \times S)$ is the transition function.
- φ : acceptance condition (Büchi, parity, ...)

Definition $3 A$ run of a tree automaton \mathcal{A} on a Σ-tree v is a $\mathcal{D}^{*} \times S$-tree (T, r), s.t.

1. $r(\epsilon)=\left(\epsilon, s_{0}\right)$
2. Let $y \in T$ with $r(y)=(x, q)$ and $\delta(q, v(x), d(x))=\theta$. Then there is a (possibly empty) set $Q=\left\{\left(c_{0}, q_{0}^{\prime}\right),\left(c_{1}, q_{1}^{\prime}\right), \ldots,\left(c_{n}, q_{n}^{\prime}\right)\right\} \subseteq\{0, \ldots, d(x)-1\} \times S$, such that the following hold:

- $Q \models \theta$
- for all $0 \leq i \leq n$, we have $y \cdot i \in T$ and $r(y \cdot i)=\left(x \cdot c_{i}, q_{i}^{\prime}\right)$.

Definition $4 A$ run is accepting if every branch is accepting (by φ). A Σ-tree is accepted if there exists an accepting run.

Tree automata on Kripke structures

Example: For a pointed Kripke structure $\left(\mathcal{M}, s_{0}\right)$:

we build a computation tree t

Let k be the max number of successors in $\mathcal{M}=(S, R, L)$. Define a mapping: f : $\{0, \ldots, k-1\}^{*} \rightarrow S$:

- $f(\epsilon)=s_{o}$
- Assume there is, for each $s \in S$, a fixed order on the successors $\left(s, s_{1}^{\prime}\right),\left(s, s_{2}^{\prime}\right), \ldots \in E$ $f(w \cdot i)=s_{i}^{\prime}$ where s_{i}^{\prime} is the i th successor of $s=f(w)$.

Definition 5 For a pointed Kripke structure $\left(\mathcal{M}, s_{0}\right)$ over AP with $\mathcal{M}=(S, R, L)$, the computation tree of $\left(\mathcal{M}, s_{0}\right)$ is a $2^{A P}$-tree ($\left.T, t\right)$ with $t(v)=L(f(v))$ and $d(v)=d(f(v))$ for all $v \in T$.

Theorem 1 The computation tree of a pointed Kripke structure $\left(\mathcal{M}, q_{0}\right), \mathcal{M}=$ $\left(S_{\mathcal{M}}, R, L\right)$ is accepted by an alternating tree automaton $\mathcal{A}=\left(S_{\mathcal{A}}, s_{0}, \delta, \varphi\right)$ iff Player Accept has a winning strategy from $\left(s_{0}, q_{0}\right)$ in the following game:

- $V_{0}=S_{\mathcal{A}} \times S_{\mathcal{M}}$
- $V_{0}=S_{\mathcal{A}} \times 2^{\{0, \ldots, k-1\} \times S_{\mathcal{A}}} \times S_{\mathcal{M}}$
- $E=\{((s, q),(s, \eta, q)) \mid \eta \models \delta(s, L(q), d(q))\}$
$\cup\left\{\left((s, \eta, q),\left(s^{\prime}, q^{\prime}\right)\right) \mid\left(i, q^{\prime}\right) \in \eta, s^{\prime}\right.$ is the ith successor of $\left.s\right\}$
- winning condition: φ applied to the first component

CTL

Translation from CTL formula φ to alternating Büchi tree automaton \mathcal{A}_{φ} :

- $S=\operatorname{closure}(\varphi):=$ set of all subformulas and their negations
- for $p \in A P$:
$-\delta(p, \sigma, k)=$ true if $p \in \sigma$
- $\delta(p, \sigma, k)=$ false if $p \notin \sigma$
$-\delta(\neg p, \sigma, k)=$ false if $p \in \sigma$
$-\delta(\neg p, \sigma, k)=$ true if $p \notin \sigma$
- $\delta(\varphi \wedge \psi, \sigma, k)=\delta(\varphi, \sigma, k) \wedge \delta(\psi, \sigma, k)$
- $\delta(\varphi \vee \psi, \sigma, k)=\delta(\varphi, \sigma, k) \vee \delta(\psi, \sigma, k)$
- $\delta(\mathrm{AX} \varphi, \sigma, k)=\bigwedge_{c=0}^{k-1}(c, \varphi)$
- $\delta(\operatorname{EX} \varphi, \sigma, k)=\bigvee_{c=0}^{k-1}(c, \varphi)$
- $\delta(\mathrm{A} \varphi \mathcal{U} \psi, \sigma, k)=\delta(\psi, \sigma, k) \vee\left(\delta(\varphi, \sigma, k) \wedge \bigwedge_{c=0}^{k-1}(c, \mathrm{~A} \varphi \mathcal{U} \psi)\right.$
- $\delta(\mathrm{E} \varphi \mathcal{U} \psi, \sigma, k)=\delta(\psi, \sigma, k) \vee\left(\delta(\varphi, \sigma, k) \wedge \bigvee_{c=0}^{k-1}(c, \mathrm{E} \varphi \mathcal{U} \psi)\right.$
- $\delta(\neg \varphi, \sigma, k)=\overline{\delta(\varphi, \sigma, k)}$

Theorem 2 For every CTL formula φ and a set of directions \mathcal{D} there is an alternating Büchi tree automaton \mathcal{A}_{φ} such that $\mathcal{L}\left(\mathcal{A}_{\mathcal{D}, \varphi}\right)$ is exactly the set of \mathcal{D}-branching trees that satisfy φ.

Alternation-free μ-calculus

Guarded formulas: A μ-calculus formula is guarded if it is in normal form and for every quantified atomic proposition p, all occurrences are in the scope of a modality that is in the scope of the quantifier.

Example: $\mu y .(p \vee \diamond y)$ is guarded, $\diamond \mu y .(p \vee y)$ is not guarded.
Theorem 3 For every μ calculus formula in normal form there is an equivalent guarded formula.

Proof:

- Function new : μ-calculus formulas $\times\{\mu, \nu\} \times A P \rightarrow \mu$-calculus formulas:
$-\operatorname{new}(p, \mu, p)=$ false
- new $(p, \nu, p)=$ true
$-\operatorname{new}(\varphi \wedge \psi, \lambda, p)=\operatorname{new}(\varphi, \lambda, p) \wedge \operatorname{new}(\psi, \lambda, p)$
$-\operatorname{new}(\varphi \vee \psi, \lambda, p)=\operatorname{new}(\varphi, \lambda, p) \vee \operatorname{new}(\psi, \lambda, p)$
- For all other formulas $\varphi: \operatorname{new}(\varphi, \lambda, p)=\varphi$
- Note that the definition of the new function ensures that $\lambda y . \varphi(y)$ is semantically equivalent to λy.new $(\varphi, \mu, y)(y)$ for all μ-calculus formulas $\varphi(y)$.
- Translation: Starting from the innermost quantified subformulas, replace $\lambda y . \varphi(y)$ by $\operatorname{new}(\varphi, \lambda, y)(\lambda y . n e w(\varphi, \lambda, y)(y))(1)$
- Note that in new $(\varphi, \mu, y)(y)$, all occurrences of y are in the scope of a modality, hence in (1), all occurrences of variables (e.g. z) that are in the scope of a fixpoint operator are also in the scope of a modality.

Closure $c l(\varphi)$ of a μ-calculus formula φ :

- $\varphi \in \operatorname{cl}(\varphi)$
- if $\psi \vee \eta \in \operatorname{cl}(\varphi)$ then $\psi, \eta \in \operatorname{cl}(\varphi)$
- if $\psi \wedge \eta \in \operatorname{cl}(\varphi)$ then $\psi, \eta \in \operatorname{cl}(\varphi)$
- if $\diamond \psi \in \operatorname{cl}(\varphi)$ then $\psi \in \operatorname{cl}(\varphi)$
- if $\square \psi \in \operatorname{cl}(\varphi)$ then $\psi \in \operatorname{cl}(\varphi)$
- if $\mu y . \psi(y) \in \operatorname{cl}(\varphi)$ then $\psi(\mu y . \psi(y)) \in \operatorname{cl}(\varphi)$
- if $\nu y \cdot \psi(y) \in \operatorname{cl}(\varphi)$ then $\psi(\nu y . \psi(y)) \in \operatorname{cl}(\varphi)$

Alternation-free μ-calculus: no ν between μy. and y; no μ between νy. and y.
Translation from a guarded alternation-free μ-calculus formula φ to an alternating Büchi tree automaton \mathcal{A}_{φ} :

- $\delta(p, \sigma, k)=$ true if $p \in \sigma$
- $\delta(p, \sigma, k)=$ false if $p \notin \sigma$
- $\delta(\neg p, \sigma, k)=$ false if $p \in \sigma$
- $\delta(\neg p, \sigma, k)=$ true if $p \notin \sigma$
- $\delta(\varphi \wedge \psi, \sigma, k)=\delta(\varphi, \sigma, k) \wedge \delta(\psi, \sigma, k)$
- $\delta(\varphi \vee \psi, \sigma, k)=\delta(\varphi, \sigma, k) \vee \delta(\psi, \sigma, k)$
- $\delta(\square \varphi, \sigma, k)=\bigwedge_{c=0}^{k-1}(c, \varphi)$
- $\delta(\diamond \varphi, \sigma, k)=\bigvee_{c=0}^{k-1}(c, \varphi)$
- $\delta(\mu y \cdot \psi(y), \sigma, k)=\delta(\psi(\mu y \cdot \psi(y)), \sigma, k)$
- $\delta(\nu y \cdot \psi(y), \sigma, k)=\delta(\psi(\nu y \cdot \psi(y)), \sigma, k)$

Note that since φ is guarded, the definition is not circular.
Let \approx be an equivalence relation on μ-calculus formulas such that $\varphi \approx \psi$ if $\varphi \in \operatorname{cl}(\psi)$ and $\psi \in \operatorname{cl}(\varphi)$.
$F=\{$ set of formulas that are equivalent to some formula $\nu y \cdot \psi(y) \in \operatorname{cl}(\varphi)\}$
Theorem 4 For every alternation-free μ-calculus formula φ and a set of directions \mathcal{D} there is an alternating Büchi tree automaton \mathcal{A}_{φ} such that $\mathcal{L}\left(\mathcal{A}_{\mathcal{D}, \varphi}\right)$ is exactly the set of \mathcal{D}-branching trees satisfying φ.

