#### Automata, Games and Verification: Lecture 13

#### **Computation Tree Logic** $\mathbf{21}$

**Example:** Examples of CTL\* formulas:

- $AG(q \rightarrow F p)$
- $\mathrm{EF}(p \wedge \neg q)$
- AG(EF  $\neg p \land \neg q$ )



**Definition 1** Let AP be a set of atomic propositions. A Kripke structure over AP is a tuple M = (S, R, L)

- S : a set of states
- $R \subseteq S \times S$  : a transition relation
- $L: S \to 2^{AP}$ : labels each states with the set of atomic propositions that are assured to be true in S

**Definition 2** A pointed Kripke structure  $(\mathcal{M}, s)$  is a Kripke structure  $\mathcal{M}$  with an initial state  $s \in S$ .

CTL\* Syntax (f, g - state formulas,  $\varphi, \psi$  - path formulas):

• State formulas f:

$$f ::= AP \mid \neg f \mid f \lor g \mid A\varphi \mid E\varphi$$

• Path formulas  $\varphi$ :

$$\varphi ::= f \mid \neg \varphi \mid \varphi \lor \psi \mid G\varphi \mid F\varphi \mid \varphi U\psi \mid X\varphi$$

CTL\* Semantics ( $\mathcal{M}$  - Kripke structure, s - state,  $\pi^i$  - suffix of  $\pi$  starting at i):

- $\mathcal{M}, s \models p \text{ iff } p \in L(s) \text{ for } p \in AP$
- $\mathcal{M}, s \models \neg f$  iff  $\mathcal{M}, s \not\models f$
- $\mathcal{M}, s \models E\varphi$  iff there is a path  $\pi$  from s such that  $\mathcal{M}, \pi \models \varphi$
- $\mathcal{M}, s \models A\varphi$  iff for every path  $\pi$  from s such that  $\mathcal{M}, \pi \models \varphi$

- $\mathcal{M}, \pi \models f$  iff  $\mathcal{M}, s \models f$  where  $\pi = s\pi^1$
- $\mathcal{M}, \pi \models \neg \varphi \text{ iff } \mathcal{M}, \pi \not\models \varphi$
- $\mathcal{M}, \pi \models \varphi \lor \psi$  iff  $\mathcal{M}, \pi \models \varphi$  or  $\mathcal{M}, \pi \models \psi$
- $\mathcal{M}, \pi \models G\varphi$  iff for every  $i \mathcal{M}, \pi^i \models \varphi$
- $\mathcal{M}, \pi \models F\varphi$  iff there exists *i* such that  $\mathcal{M}, \pi^i \models \varphi$
- $\mathcal{M}, \pi \models \varphi U \psi$  iff there exists *i* such that for every  $j < i \mathcal{M}, \pi^j \models \varphi$  and  $\mathcal{M}, \pi^i \models \psi$
- $\mathcal{M}, \pi \models X \varphi$  iff  $\mathcal{M}, \pi^1 \models \varphi$

**LTL**. Special case of CTL\* formulas: A  $\varphi$ , where  $\varphi$  is a path formula with only atomic propositions as state subformulas.

 $\mathbf{CTL}$ . Special case of  $\mathbf{CTL}^*$  formulas where each temporal operator must immediately be preceded by a path quantifier.



Figure 1: Relative expressiveness of LTL, CTL and CTL\*

•  $AF(p \wedge Xp)$  is not equivalent to  $AF(p \wedge AXp)$ 



 $s_0 \models \operatorname{AF} \operatorname{G} p$  but  $\underbrace{s_0 \not\models \operatorname{AF} \operatorname{AG} p}_{\operatorname{path} s_0^{\omega}}$  violates it

• The CTL-formula AG EF p cannot be expressed in LTL

Proof by contradiction: assume  $\varphi \equiv AG EFp$ ; let:



- $-\mathcal{M}, s \models AG EFp$ , and thus—by assumption— $\mathcal{M}, s \models \varphi$
- Every path in  $\mathcal{M}'$  is also a path in  $\mathcal{M}$ ; hence,  $\mathcal{M}', s \models \varphi$
- But  $\mathcal{M}', s \not\models AG EF p$ .
- The LTL-formula AFGp cannot be expressed in CTL
  - Provide two series of Kripke structures  $\mathcal{M}_n$  and  $\widehat{\mathcal{M}}_n$
  - such that  $\mathcal{M}_n, s_n \not\models AFGp$  and  $\widehat{\mathcal{M}}_n, s_n \models AFGp$ , and
  - for any CTL formula  $\Phi$  with  $|\Phi| \leq n$ :  $\mathcal{M}_n, s_n \models \Phi$  iff  $\widehat{\mathcal{M}}_n, s_n \models \Phi$ (proof is by induction on *n*; omitted here)



only difference:  $\mathcal{M}_n$  includes  $t_n \to s_n$ , while  $\widehat{\mathcal{M}}_n$  does not

# **Theorem 1** For every $CTL^*$ formula $\Phi$ , the following are equivalent:

1. there is an LTL formula  $A\varphi$  that is equivalent to  $\Phi$ 

2.  $\Phi$  is equivalent to  $A(remove_{E,A}(\Phi))$ , where  $remove_{E,A}(\Phi)$  is obtained from  $\Phi$  by deleting all path quantifiers.

### **Proof:**

| $\mathcal{M}, s \models \Phi$ | $\Leftrightarrow$ | $\mathcal{M}, s \models A \varphi$                                                                                         |
|-------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|
|                               | $\Leftrightarrow$ | $\forall \text{ paths } \pi \text{ from } s : \pi \models \varphi$                                                         |
|                               | $\Leftrightarrow$ | $\forall \text{ paths } \pi \text{ from } s : \mathcal{M}_{\pi} \models \varphi$                                           |
|                               |                   | where $\mathcal{M}_{\pi}$ is the restriction of $\mathcal{M}$ to $\pi$                                                     |
|                               | $\Leftrightarrow$ | $\forall \text{ paths } \pi \text{ from } s : \mathcal{M}_{\pi}, s \models A\varphi$                                       |
|                               | $\Leftrightarrow$ | $\forall \text{ paths } \pi \text{ from } s : \mathcal{M}_{\pi}, s \models \Phi$                                           |
|                               | $\Leftrightarrow$ | $\forall \text{ paths } \pi \text{ from } s : \mathcal{M}_{\pi}, s \models A(\text{remove}_{\mathbf{E},\mathbf{A}}(\Phi))$ |
|                               |                   | (because there is only a single path)                                                                                      |
|                               | $\Leftrightarrow$ | $\forall$ paths $\pi$ from $s:\pi \models \text{remove}_{\mathbf{E},\mathbf{A}}(\Phi)$                                     |
|                               |                   | $\mathcal{M}, s \models \mathcal{A}(\text{remove}_{\mathbf{E}, \mathbf{A}}(\Phi))$                                         |
|                               |                   |                                                                                                                            |

# 22 The Modal $\mu$ -calculus

**Syntax:** given a set of atomic propositions AP, the set of formulas is defined inductively as follows (where  $\varphi$  and  $\psi$  are formulas)

- $\bot, \top$
- $p, \neg p$  for every  $p \in AP$
- $\varphi \land \psi, \, \varphi \lor \psi$
- □φ, ◇φ (Note: the meaning of □ and ◇ used here are different from the Box and Diamond operators of LTL.)
- $\mu p \varphi$ ,  $\nu p \varphi$ , where  $p \in AP$  and p only occurs positively in  $\varphi$ .

Note: negation only allowed for atomic propositions. However arbitrary negation can be expressed as follows:

- $\varphi \lor \psi \equiv \neg(\neg \varphi \land \neg \psi)$
- $\Diamond \varphi \equiv \neg \Box \neg \psi$
- $\mu p \ \varphi \equiv \neg \nu p \neg \psi [p/\neg p]$

Normal form: every  $p \in AP$  is quantified at most once and all occurrances of p are in the scope of the quantifier. Let  $\varphi_p$  be the unique subformula starting with this quantifier.

Semantics: Formulas are interpreted as sets of states.

- $\|\bot\|_{\mathcal{M}} = \emptyset$
- $\bullet \ \|\top\|_{\mathcal{M}} = S$
- $\|p\|_{\mathcal{M}} = \{s | p \in L(s)\}$
- $\|\neg p\|_{\mathcal{M}} = \{s | p \notin L(s)\}$
- $\|\varphi \lor \psi\|_{\mathcal{M}} = \|\varphi\|_{\mathcal{M}} \cup \|\psi\|_{\mathcal{M}}, \ \|\varphi \land \psi\|_{\mathcal{M}} = \|\varphi\|_{\mathcal{M}} \cap \|\psi\|_{\mathcal{M}}$
- $\|\Box\varphi\|_{\mathcal{M}} = \{s | \forall t.(s,t) \in R \to t \in \|\varphi\|_{\mathcal{M}}\}$
- $\|\Diamond \varphi\|_{\mathcal{M}} = \{s | \exists t.(s,t) \in R \land t \in \|\varphi\|_{\mathcal{M}}\}$
- $\|\mu p.\varphi\|_{\mathcal{M}} = \bigcap \{S' \subseteq S \mid \|\psi\|_{\mathcal{M}[p \mapsto S]} \subseteq S'\}$
- $\|\nu p.\varphi\|_{\mathcal{M}} = \bigcup \{S' \subseteq S \mid \|\psi\|_{\mathcal{M}[p \mapsto S]} \supseteq S'\}$

where  $\mathcal{M}[p \mapsto S'] = (S, R, L[p \mapsto S']), L[p \mapsto S'](n) = \begin{cases} L(n) \cup \{p\} & \text{if } n \in S' \\ L(n) \smallsetminus \{p\} & \text{if } p \notin S' \end{cases}$ 

# Direct evaluation algorithm:

 $eval(\varphi, \mathcal{M})$  :

- if  $\varphi = \bot$  then return  $\emptyset$
- ...
- if  $\varphi = \mu p.\varphi'$  then

$$S' = \emptyset$$

- repeat

\* 
$$S'_{old} = S'$$
  
\*  $S' = eval(\varphi', \mathcal{M}[p \mapsto S'])$ 

\* 
$$\mathcal{S} = eour(\varphi, \mathcal{M}[p \mapsto$$

- until  $S'_{old} = S'$
- return S'
- if  $\varphi = \nu p.\varphi'$  then
  - -S' = S
  - repeat

$$* S'_{old} = S'$$
$$* S' = eval(\varphi', \mathcal{M}[p \mapsto S'])$$

- until 
$$S'_{ill} = S'$$

return 
$$S'$$

# Examples:

- $\mu q.(p \lor \diamondsuit q)$  contains every state s such that there is a path from s to a state where p holds
- Attractor set (Let  $p_0$  be an atomic propositions such that  $p_0 \in L(n)$  iff  $n \in V_0$ .):

$$\mu p'(p \lor ((p_0 \land \diamondsuit p') \lor (\neg p_0 \land \Box p')))$$

• Translating CTL:

$$- p' = p$$
  

$$- (f \land g)' = f' \land g'$$
  

$$- (EXf)' = \diamondsuit f'$$
  

$$- (E(fUg))' = \mu q.(g' \lor (f' \land \diamondsuit q))$$
  

$$- (EGf)' = \nu q.(f' \land \diamondsuit Q)$$