Automata, Games and Verification: Lecture 13

21 Computation Tree Logic

Example: Examples of CTL* formulas:

- $\mathrm{AG}(q \rightarrow \mathrm{~F} p)$
- $\operatorname{EF}(p \wedge \neg q)$
- $\mathrm{AG}(\mathrm{EF} \neg p \wedge \neg q)$

Definition 1 Let AP be a set of atomic propositions. A Kripke structure over AP is a tuple $M=(S, R, L)$

- S : a set of states
- $R \subseteq S \times S$: a transition relation
- $L: S \rightarrow 2^{A P}$: labels each states with the set of atomic propositions that are assured to be true in S

Definition $2 A$ pointed Kripke structure (\mathcal{M}, s) is a Kripke structure \mathcal{M} with an initial state $s \in S$.

CTL* $\operatorname{Syntax}(f, g$ - state formulas, φ, ψ - path formulas):

- State formulas f :

$$
f::=A P|\neg f| f \vee g|A \varphi| E \varphi
$$

- Path formulas φ :

$$
\varphi::=f|\neg \varphi| \varphi \vee \psi|G \varphi| F \varphi|\varphi U \psi| X \varphi
$$

CTL* Semantics (\mathcal{M} - Kripke structure, s - state, π^{i} - suffix of π starting at i):

- $\mathcal{M}, s \models p$ iff $p \in L(s)$ for $p \in A P$
- $\mathcal{M}, s \models \neg f$ iff $\mathcal{M}, s \notin f$
- $\mathcal{M}, s \models E \varphi$ iff there is a path π from s such that $\mathcal{M}, \pi \models \varphi$
- $\mathcal{M}, s \models A \varphi$ iff for every path π from s such that $\mathcal{M}, \pi \models \varphi$
- $\mathcal{M}, \pi \models f$ iff $\mathcal{M}, s \models f$ where $\pi=s \pi^{1}$
- $\mathcal{M}, \pi \models \neg \varphi$ iff $\mathcal{M}, \pi \not \models \varphi$
- $\mathcal{M}, \pi \models \varphi \vee \psi$ iff $\mathcal{M}, \pi \models \varphi$ or $\mathcal{M}, \pi \models \psi$
- $\mathcal{M}, \pi \models G \varphi$ iff for every $i \mathcal{M}, \pi^{i} \models \varphi$
- $\mathcal{M}, \pi \models F \varphi$ iff there exists i such that $\mathcal{M}, \pi^{i} \models \varphi$
- $\mathcal{M}, \pi \models \varphi U \psi$ iff there exists i such that for every $j<i \mathcal{M}, \pi^{j} \models \varphi$ and $\mathcal{M}, \pi^{i} \models \psi$
- $\mathcal{M}, \pi \models X \varphi$ iff $\mathcal{M}, \pi^{1} \models \varphi$

LTL. Special case of CTL* formulas: A φ, where φ is a path formula with only atomic propositions as state subformulas.
CTL. Special case of CTL* formulas where each temporal operator must immediately be preceeded by a path quantifier.

Figure 1: Relative expressiveness of LTL, CTL and CTL*

- $\operatorname{AF}(p \wedge \mathrm{X} p)$ is not equivalent to $\mathrm{AF}(p \wedge \mathrm{AX} p)$

$$
s_{0} \models \mathrm{AF}(p \wedge \mathrm{X} p) \text { but } \underbrace{s_{0} \not \models \mathrm{AF}(p \wedge \mathrm{AX} p)}_{\text {path } s_{0} s_{1}\left(s_{2}\right)^{\omega} \text { violates it }}
$$

- AF AGp is not equivalent to AF Gp

$$
s_{0} \models \mathrm{AF} \mathrm{G} p \text { but } \underbrace{s_{0} \not \models \mathrm{AF} \text { violates it } \mathrm{AG} p}_{\text {path } s_{0}^{\omega}}
$$

- The CTL-formula AG EF p cannot be expressed in LTL

Proof by contradiction: assume $\varphi \equiv \mathrm{AG}$ EF p; let:
$\mathcal{M}:$

- $\mathcal{M}, s \models \mathrm{AG} \mathrm{EF} p$, and thus-by assumption- $\mathcal{M}, s \models \varphi$
- Every path in \mathcal{M}^{\prime} is also a path in \mathcal{M}; hence, $\mathcal{M}^{\prime}, s \models \varphi$
- But $\mathcal{M}^{\prime}, s \not \models$ AG EF p.
- The LTL-formula AFGp cannot be expressed in CTL
- Provide two series of Kripke structures \mathcal{M}_{n} and $\widehat{\mathcal{M}}_{n}$
- such that $\mathcal{M}_{n}, s_{n} \not \vDash \operatorname{AFG} p$ and $\widehat{\mathcal{M}}_{n}, s_{n} \models \operatorname{AFG} p$, and
- for any CTL formula Φ with $|\Phi| \leq n$:
$\mathcal{M}_{n}, s_{n} \models \Phi$ iff $\widehat{\mathcal{M}}_{n}, s_{n} \models \Phi$
(proof is by induction on n; omitted here)

only difference: \mathcal{M}_{n} includes $t_{n} \rightarrow s_{n}$, while $\widehat{\mathcal{M}}_{n}$ does not

Theorem 1 For every CTL* formula Φ, the following are equivalent:

1. there is an LTL formula $A \varphi$ that is equivalent to Φ
2. Φ is equivalent to $A\left(\right.$ remove $\left._{E, A}(\Phi)\right)$, where remove $E, A(\Phi)$ is obtained from Φ by deleting all path quantifiers.

Proof:

$$
\begin{aligned}
\mathcal{M}, s \models \Phi & \Leftrightarrow \mathcal{M}, s \models \mathrm{~A} \varphi \\
& \Leftrightarrow \forall \text { paths } \pi \text { from } s: \pi \models \varphi \\
& \Leftrightarrow \forall \text { paths } \pi \text { from } s: \mathcal{M}_{\pi} \models \varphi \\
& \text { where } \mathcal{M}_{\pi} \text { is the restriction of } \mathcal{M} \text { to } \pi \\
& \Leftrightarrow \forall \text { paths } \pi \text { from } s: \mathcal{M}_{\pi}, s \models \mathrm{~A} \varphi \\
& \Leftrightarrow \forall \text { paths } \pi \text { from } s: \mathcal{M}_{\pi}, s \models \Phi \\
& \Leftrightarrow \forall \text { paths } \pi \text { from } s: \mathcal{M}_{\pi}, s \models A\left(\text { remove }_{\mathrm{E}, \mathrm{~A}}(\Phi)\right) \\
& \text { (because there is only a single path) } \\
& \Leftrightarrow \forall \text { paths } \pi \text { from } s: \pi \models \text { remove } \mathrm{E}, \mathrm{~A}(\Phi) \\
& \Leftrightarrow \mathcal{M}, s \models \mathrm{~A}\left(\operatorname{rrmove}_{\mathrm{E}, \mathrm{~A}}(\Phi)\right)
\end{aligned}
$$

22 The Modal μ-calculus

Syntax: given a set of atomic propositions $A P$, the set of formulas is defined inductively as follows (where φ and ψ are formulas)

- \perp, T
- $p, \neg p$ for every $p \in A P$
- $\varphi \wedge \psi, \varphi \vee \psi$
- $\square \varphi, \diamond \varphi$ (Note: the meaning of \square and \diamond used here are different from the Box and Diamond operators of LTL.)
- $\mu p \varphi, \nu p \varphi$, where $p \in A P$ and p only occurs positively in φ.

Note: negation only allowed for atomic propositions. However arbitrary negation can be expressed as follows:

- $\varphi \vee \psi \equiv \neg(\neg \varphi \wedge \neg \psi)$
- $\diamond \varphi \equiv \neg \square \neg \psi$
- $\mu p \varphi \equiv \neg \nu p \neg \psi[p / \neg p]$

Normal form: every $p \in A P$ is quantified at most once and all occurrances of p are in the scope of the quantifier. Let φ_{p} be the unique subformula starting with this quantifier.

Semantics: Formulas are interpreted as sets of states.

- $\|\perp\|_{\mathcal{M}}=\emptyset$
- $\|\top\|_{\mathcal{M}}=S$
- $\|p\|_{\mathcal{M}}=\{s \mid p \in L(s)\}$
- $\|\neg p\|_{\mathcal{M}}=\{s \mid p \notin L(s)\}$
- $\|\varphi \vee \psi\|_{\mathcal{M}}=\|\varphi\|_{\mathcal{M}} \cup\|\psi\|_{\mathcal{M}},\|\varphi \wedge \psi\|_{\mathcal{M}}=\|\varphi\|_{\mathcal{M}} \cap\|\psi\|_{\mathcal{M}}$
- $\|\square \varphi\|_{\mathcal{M}}=\left\{s \mid \forall t .(s, t) \in R \rightarrow t \in\|\varphi\|_{\mathcal{M}}\right\}$
- $\|\diamond \varphi\|_{\mathcal{M}}=\left\{s \mid \exists t .(s, t) \in R \wedge t \in\|\varphi\|_{\mathcal{M}}\right\}$
- $\|\mu p . \varphi\|_{\mathcal{M}}=\bigcap\left\{S^{\prime} \subseteq S \mid\|\psi\|_{\mathcal{M}[p \mapsto S]} \subseteq S^{\prime}\right\}$
- $\|\nu p . \varphi\|_{\mathcal{M}}=\bigcup\left\{S^{\prime} \subseteq S \mid\|\psi\|_{\mathcal{M}[p \mapsto S]} \supseteq S^{\prime}\right\}$
where $\mathcal{M}\left[p \mapsto S^{\prime}\right]=\left(S, R, L\left[p \mapsto S^{\prime}\right]\right), L\left[p \mapsto S^{\prime}\right](n)= \begin{cases}L(n) \cup\{p\} & \text { if } n \in S^{\prime} \\ L(n) \backslash\{p\} & \text { if } p \notin S^{\prime}\end{cases}$

Direct evaluation algorithm:

$\operatorname{eval}(\varphi, \mathcal{M})$:

- if $\varphi=\perp$ then return \emptyset

- ...

- if $\varphi=\mu p . \varphi^{\prime}$ then
$-S^{\prime}=\emptyset$
- repeat
* $S_{\text {old }}^{\prime}=S^{\prime}$
* $S^{\prime}=\operatorname{eval}\left(\varphi^{\prime}, \mathcal{M}\left[p \mapsto S^{\prime}\right]\right)$
- until $S_{\text {old }}^{\prime}=S^{\prime}$
- return S^{\prime}
- if $\varphi=\nu p . \varphi^{\prime}$ then
$-S^{\prime}=S$
- repeat
* $S_{\text {old }}^{\prime}=S^{\prime}$
* $S^{\prime}=\operatorname{eval}\left(\varphi^{\prime}, \mathcal{M}\left[p \mapsto S^{\prime}\right]\right)$
- until $S_{\text {old }}^{\prime}=S^{\prime}$
- return S^{\prime}

Examples:

- $\mu q .(p \vee \diamond q)$ contains every state s such that there is a path from s to a state where p holds
- Attractor set (Let p_{0} be an atomic propositions such that $p_{0} \in L(n)$ iff $n \in V_{0}$.):

$$
\mu p^{\prime}\left(p \vee\left(\left(p_{0} \wedge \diamond p^{\prime}\right) \vee\left(\neg p_{0} \wedge \square p^{\prime}\right)\right)\right)
$$

- Translating CTL:

$$
\begin{aligned}
& -p^{\prime}=p \\
& -(f \wedge g)^{\prime}=f^{\prime} \wedge g^{\prime} \\
& -(E X f)^{\prime}=\diamond f^{\prime} \\
& -(E(f U g))^{\prime}=\mu q \cdot\left(g^{\prime} \vee\left(f^{\prime} \wedge \diamond q\right)\right) \\
& -(E G f)^{\prime}=\nu q \cdot\left(f^{\prime} \wedge \diamond Q\right)
\end{aligned}
$$

