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21 Computation Tree Logic

Example: Examples of CTL* formulas:

• AG(q → F p)

• EF(p ∧ ¬q)

• AG(EF ¬p ∧ ¬q)
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Definition 1 Let AP be a set of atomic propositions. A Kripke structure over AP is a
tuple M = (S,R, L)

• S : a set of states

• R ⊆ S × S : a transition relation

• L : S → 2AP : labels each states with the set of atomic propositions that are assured
to be true in S

Definition 2 A pointed Kripke structure (M, s) is a Kripke structure M with an initial
state s ∈ S.

CTL* Syntax (f, g - state formulas, ϕ, ψ - path formulas):

• State formulas f :
f ::= AP | ¬f | f ∨ g | Aϕ | Eϕ

• Path formulas ϕ:

ϕ ::= f | ¬ϕ | ϕ ∨ ψ | Gϕ | Fϕ | ϕUψ | Xϕ

CTL* Semantics (M - Kripke structure, s - state, πi - suffix of π starting at i):

• M, s |= p iff p ∈ L(s) for p ∈ AP

• M, s |= ¬f iff M, s 6|= f

• M, s |= Eϕ iff there is a path π from s such that M, π |= ϕ

• M, s |= Aϕ iff for every path π from s such that M, π |= ϕ



• M, π |= f iff M, s |= f where π = sπ1

• M, π |= ¬ϕ iff M, π 6|= ϕ

• M, π |= ϕ ∨ ψ iff M, π |= ϕ or M, π |= ψ

• M, π |= Gϕ iff for every i M, πi |= ϕ

• M, π |= Fϕ iff there exists i such that M, πi |= ϕ

• M, π |= ϕUψ iff there exists i such that for every j < i M, πj |= ϕ and M, πi |= ψ

• M, π |= Xϕ iff M, π1 |= ϕ

LTL. Special case of CTL* formulas: A ϕ, where ϕ is a path formula with only atomic
propositions as state subformulas.
CTL. Special case of CTL* formulas where each temporal operator must immediately
be preceeded by a path quantifier.
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Figure 1: Relative expressiveness of LTL, CTL and CTL*

• AF(p ∧ Xp) is not equivalent to AF(p ∧ AXp)
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s0 |= AF(p ∧ Xp) but s0 6|= AF(p ∧ AXp)︸ ︷︷ ︸
path s0 s1 (s2)ω violates it

• AF AGp is not equivalent to AF Gp
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s0 |= AF Gp but s0 6|= AF AG p︸ ︷︷ ︸
path sω

0
violates it

• The CTL-formula AG EF p cannot be expressed in LTL

Proof by contradiction: assume ϕ ≡ AG EFp; let:

M′
:M : ∅{p}

s s′

∅

s

– M, s |= AG EFp, and thus—by assumption—M, s |= ϕ

– Every path in M′ is also a path in M; hence, M′, s |= ϕ

– But M′, s 6|= AG EF p.

• The LTL-formula AFGp cannot be expressed in CTL

– Provide two series of Kripke structures Mn and M̂n

– such that Mn, sn 6|= AFGp and M̂n, sn |= AFGp, and

– for any CTL formula Φ with |Φ| ≤ n :

Mn, sn |= Φ iff M̂n, sn |= Φ
(proof is by induction on n; omitted here)
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only difference: Mn includes tn → sn, while M̂n does not

Theorem 1 For every CTL* formula Φ, the following are equivalent:

1. there is an LTL formula Aϕ that is equivalent to Φ



2. Φ is equivalent to A(removeE,A(Φ)), where removeE,A(Φ) is obtained from Φ by
deleting all path quantifiers.

Proof:

M, s |= Φ ⇔ M, s |= Aϕ
⇔ ∀ paths π from s : π |= ϕ
⇔ ∀ paths π from s : Mπ |= ϕ

where Mπ is the restriction of M to π
⇔ ∀ paths π from s : Mπ, s |= Aϕ
⇔ ∀ paths π from s : Mπ, s |= Φ
⇔ ∀ paths π from s : Mπ, s |= A(removeE,A(Φ))

(because there is only a single path)
⇔ ∀ paths π from s : π |= removeE,A(Φ)

⇔ M, s |= A(removeE,A(Φ))

22 The Modal µ-calculus

Syntax: given a set of atomic propositions AP , the set of formulas is defined inductively
as follows (where ϕ and ψ are formulas)

• ⊥,⊤

• p,¬p for every p ∈ AP

• ϕ ∧ ψ, ϕ ∨ ψ

• 2ϕ, 3ϕ (Note: the meaning of 2 and 3 used here are different from the Box and
Diamond operators of LTL.)

• µp ϕ, νp ϕ, where p ∈ AP and p only occurs positively in ϕ.

Note: negation only allowed for atomic propositions. However arbitrary negation can
be expressed as follows:

• ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

• 3ϕ ≡ ¬2¬ψ

• µp ϕ ≡ ¬νp¬ψ[p/¬p]

Normal form: every p ∈ AP is quantified at most once and all occurrances of p are in the
scope of the quantifier. Let ϕp be the unique subformula starting with this quantifier.



Semantics: Formulas are interpreted as sets of states.

• ‖⊥‖
M

= ∅

• ‖⊤‖
M

= S

• ‖p‖
M

= {s|p ∈ L(s)}

• ‖¬p‖
M

= {s|p 6∈ L(s)}

• ‖ϕ ∨ ψ‖
M

= ‖ϕ‖
M

∪ ‖ψ‖
M
, ‖ϕ ∧ ψ‖

M
= ‖ϕ‖

M
∩ ‖ψ‖

M

• ‖2ϕ‖
M

= {s|∀t.(s, t) ∈ R → t ∈ ‖ϕ‖
M
}

• ‖3ϕ‖
M

= {s|∃t.(s, t) ∈ R ∧ t ∈ ‖ϕ‖
M
}

• ‖µp.ϕ‖
M

=
⋂
{S ′ ⊆ S | ‖ψ‖M[p 7→S] ⊆ S ′}

• ‖νp.ϕ‖
M

=
⋃
{S ′ ⊆ S | ‖ψ‖M[p 7→S] ⊇ S ′}

where M[p 7→ S ′] = (S,R, L[p 7→ S ′]), L[p 7→ S ′](n) =

{
L(n) ∪ {p} if n ∈ S ′

L(n)r {p} if p 6∈ S ′

Direct evaluation algorithm:

eval(ϕ,M) :

• if ϕ = ⊥ then return ∅

• ...

• if ϕ = µp.ϕ′ then

– S ′ = ∅

– repeat

∗ S ′
old

= S ′

∗ S ′ = eval(ϕ′,M[p 7→ S ′])

– until S ′
old

= S ′

– return S ′

• if ϕ = νp.ϕ′ then

– S ′ = S

– repeat

∗ S ′
old

= S ′

∗ S ′ = eval(ϕ′,M[p 7→ S ′])

– until S ′
old

= S ′

– return S ′



Examples:

• µq.(p∨3q) contains every state s such that there is a path from s to a state where
p holds

• Attractor set (Let p0 be an atomic propositions such that p0 ∈ L(n) iff n ∈ V0.):

µp′(p ∨ ((p0 ∧ 3p′) ∨ (¬p0 ∧ 2p′)))

• Translating CTL:

– p′ = p

– (f ∧ g)′ = f ′ ∧ g′

– (EXf)′ = 3f ′

– (E(fUg))′ = µq.(g′ ∨ (f ′ ∧ 3q))

– (EGf)′ = νq.(f ′ ∧ 3Q)


