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19 Complementation of Parity Tree Automata

Reference: W. Thomas: Languages, Automata and Logic, Handbook of formal lan-
guages, Volume 3.

Theorem 1 For each parity tree automaton A over Σ there is a parity tree automaton

A′ with L(A′) = TΣ − L(A).

Proof:

• A does not accept some tree t iff Player 1 has a winning memoryless strategy
f in GA,t from (ε, s0)

• Strategy
f : {0, 1}∗ ×M → {0, 1}∗ × S

can be represented as

f ′ : {0, 1}∗ ×M → {0, 1}

(where f(u, (q, σ, q′0, q
′
1)) = (u · i, q′i) iff f ′(u, τ) = i).

• f ′ is isomorphic to

g : {0, 1}∗ → (M → {0, 1})

(M → {0, 1} is the finite “local strategy”)

• Hence, A does not accept t iff

(1) there is a (M → {0, 1})-tree v such that
(2) for all i0, i1, i2, . . . ∈ {0, 1}ω

(3) for all τ0, τ1, . . . ∈ Mω

(4) if
– for all j,

τj = (q, a, q′0, q
′
1)

⇒ a = t(i0, i1, . . . , ij) and

– i0i1 . . . = v(ε)(τ0)v(i0)(τ1) . . .

then the generated state sequence q0q1 . . .
with q0 = s0, (qj, a, q

0, q1) = τj,
qj+1 = qv(i0,...,ij−1)(τj) for all j
violates c.



• Condition (4) is a property of words over

Σ′ = (M → {0, 1})
︸ ︷︷ ︸

v

× Σ
︸︷︷︸

t

× M
︸︷︷︸

τ

×{0, 1}
︸ ︷︷ ︸

i

and can be checked by a parity word automaton A4 = (S4, {s4}, T4, c4):

– S4 = S ∪ {⊥};

– s4 = s0;

– T4 = {(q, (f, a, (q, a, q′0, q
′
1), i), q

′
i) | q ∈ S, f : M → {0, 1},

(q, a, q′0, q
′
1) ∈ M, i = f(q, a, q′0, q

′
1)}

∪ {(q, (f, a, (q, a′, q′0, q
′
1), i),⊥) | a 6= a′ or i 6= f(q, a′, q′0, q

′
1)}

∪ {(⊥, a,⊥) | a ∈ Σ′};

– c4(q) = c(q) + 1 for q ∈ S;

– c4(⊥) = 0.

• Condition (3) is a property of words (M → {0, 1})×Σ× {0, 1} which results
from (4) by universal quantification (= complement; project; complement) ⇒
there is a deterministic parity word automaton A3 that checks (3).

• Condition (2) defines a property of (M → {0, 1})×Σ-trees. It can be checked
by a tree automaton A2 = (S2, s2,M2, c2), simulating A3 along each path:

– S2 = S3;

– s2 = s3;

– M2 = {(q, (f, a), q′0, q
′
1) | (q, (f, a, 0), q

′
0) ∈ T3, (q, (f, a, 1), q

′
1) ∈ T3};

– c2 = c1.

• Condition (1) is a property on Σ-trees: Use nondeterminism to guess M →
{0, 1} label: A1 = (S1, s1,M1, c1), where

– S1 = S2;

– s1 = s2;

– M1 = {(q, a, q′0, q
′
1) | ∃f : M → {0, 1}.(q, (f, a), q′0, q

′
1) ∈ M2};

– c1 = c2.

20 Monadic Second-Order Theory of Two Successors

(S2S)

Syntax:

• first-order variable set V1 = {x0, x1, . . .}

• second-order variable set V2 = {X0, X1, . . .}

• Terms t:

t ::= ǫ | x | t0 | t1



• Formulas ϕ:

ϕ ::= t ∈ X | t1 = t2 | ¬ϕ | ϕ0 ∨ ϕ1 | ∃x.ϕ | ∃X.ϕ

Semantics:

• first-order valuation σ1 : V1 → B
∗

• second-order valuation σ2 : V2 → 2B
∗

Semantics of terms:

• JǫK = ǫ

• JxKσ1
= σ1(x)

• Jt0Kσ1
= JtKσ1

0

• Jt1Kσ1
= JtKσ1

1

Semantics of formulas:

• σ1, σ2 |= t ∈ X iff JtKσ1
∈ σ2(X)

• σ1, σ2 |= t1 = t2 iff Jt1Kσ1
= Jt2Kσ1

• σ1, σ2 |= ¬ϕ iff σ1, σ2 |6= ϕ

• σ1, σ2 |= ϕ0 ∨ ϕ1 iff σ1, σ2 |= ϕ0 or σ1, σ2 |= ϕ1

• σ1, σ2 |= ∃xi.ϕ iff there is a a ∈ B
∗ s.t.

σ′
1(y) =

{
σ1(y) ifx 6= y,
a otherwise;

and σ′
1, σ2 |= ϕ

• σ1, σ2 |= ∃Xi.ϕ iff there is a A ⊆ B
∗ s.t.

σ′
2(Y ) =

{
σ2(Y ) ifX 6= Y
A otherwise;

and σ1, σ
′
2 |= ϕ

Examples:

• “node x is a prefix of node y”

x ≤ y ⇔ ∀X.((y ∈ X ∧ ∀z(z0 ∈ X ⇒ z ∈ X) ∧ ∀z.(z1 ∈ X ⇒ z ∈ X)) ⇒ x ∈ X)

• “X is linearly ordered by ≤”

Chain(X) ⇔ ∀x.∀y.((x ∈ X ∧ y ∈ X) ⇒ (x ≤ y ∨ y ≤ x))



• “X is a path”

Path(X) ⇔ Chain(X) ∧ ¬∃Y. (X ⊆ Y ∧X 6= Y ∧ Chain(Y ))

X ⊆ Y ⇔ ∀z.(z ∈ X ⇒ z ∈ Y )

X = Y ⇔ X ⊆ Y ∧ Y ⊆ X

• “X is infinite”

Inf(X) ⇔ ∃Y.(Y 6= ∅ ∧ ∀y ∈ Y.∃y′ ∈ Y.∃x′ ∈ X. (y < y′ ∧ y < x′))

Theorem 2 For each Muller tree automaton A = (S, s0,M,F) over Σ = 2V2 there is a

S2S formula ϕ over V2 s.t. t ∈ L(A) iff σ2 |= ϕ where σ2(P ) = {q ∈ {0, 1}∗ | P ∈ t(q)}.

Proof:

Use R = (Rq)q∈S to encode the run tree.

ϕ ⇔ ∃R.(Part ∧ Init ∧ Trans ∧ Accept)

Part ⇔ ∀x.
∨

q∈S

Stateq(x)

Stateq(x) ⇔ Rq(x) ∧
∧

q′∈Sr{q}

¬Rq′(x)

Init ⇔ States0(ǫ)

Trans ⇔ ∀x.
∨

(q,A,q′
0
,q′

1
)∈M

(Stateq(x) ∧ (
∧

V ∈A

V (x) ∧
∧

V 6∈A

¬V (x)) ∧

∧Stateq′
0
(x0) ∧ Stateq′

1
(x1))

InfOccq(P ) ⇔ ∃Q.(Q ⊆ P ∧Q ⊆ Rq ∧ Inf(Q))

Inf(P ) ⇔ ∃P ′.(P ′ 6= ∅ ∧ ∀x′ ∈ P ′.∃y ∈ P.∃y′ ∈ P ′.(x′ < y ∧ y < y′))

Muller(P ) ⇔
∨

F∈F

(
∧

q∈F

InfOccq(P ) ∧
∧

q 6∈F

¬InfOccq(P ))

Accept ⇔ ∀P.(Path(P ) ⇒ Muller(P ))

Theorem 3 For every S2S formula ϕ over V1, V2 there is a Muller tree automaton A
over Σ = 2V1∪V2 such that t ∈ L(A) iff σ1, σ2 |= ϕ where

σ1(x) = q iff x ∈ t(q);

σ2(X) = {q ∈ {0, 1}∗ | X ∈ t(q)}.

Proof:

First, we rewrite S2S formulas to a normal form, for which we only have the following
types of equalities:

x = ǫ, x = y0, x = y1, x ∈ Y, x = y

Next we inductively translate S2S formulas to tree automata. (Analogous to the
proof for S1S in Lecture 7.)



• x ∈ Y :

– S = {q0, q1}

– s0 = q0

– M = {(q0, A, q0, q1) | x /∈ A}
∪ {(q0, A, q1, q0) | x /∈ A}
∪ {(q0, A, q1, q1) | x ∈ A, Y ∈ A}
∪ {(q1, A, q1, q1) | x /∈ A}

– F = {q1}

• x = y0:

– S = {q0, q1, q2}

– s0 = q0

– M = {(q0, A, q0, q2) | {x, y} ∩ A = ∅}
∪ {(q0, A, q2, q0) | {x, y} ∩ A = ∅}
∪ {(q0, A, q1, q2) | x /∈ A, y ∈ A}
∪ {(q1, A, q2, q2) | x ∈ A, y /∈ A}
∪ {(q2, A, q1, q2) | x /∈ A, y ∈ A}
∪ {(q2, A, q2, q2) | {x, y} ∩ A = ∅}

– F = {q2}

• etc.

Corollary 1 S2S is decidable.

SnS is the monadic second order theory of n successors.

Corollary 2 SnS is decidable.

Proof:

Repeat exercise for automata on n-ary trees.

SωS is the monadic second order theory of ω successors.

Theorem 4 SωS is decidable.

Proof:

We give an effective translation from SωS to S2S.

• Bijection β from ω∗ to 0B∗:

– β(ǫ) := ǫ

– β(vn) := β(v)01n



• One-to-many relation R between SωS and S2S structures: label a position
β(x) in the binary tree with σ iff x is labeled with σ in the ω-ary tree.

• Bring given SωS formula in normal form and translate as follows:

– x = ǫ 7→ x = ǫ

– x = yn 7→ x = y01n for n ∈ ω

– x ∈ Y 7→ x ∈ Y

– x = y 7→ x ∈ Y

– ∃X . . . 7→ ∃X .(∀y ∈ X . ¬1 ≤ y) ∧ . . .

WS2S is the weak monadic second order theory of two successors. It has the same syntax
as S1S and the following difference in the semantics:
σ1, σ2 |= ∃X.ϕ iff there is a finite A ⊆ B

∗ s.t.

σ′
2(Y ) =

{
σ2(Y ) ifX 6= Y
A otherwise

and σ1, σ
′
2 |= ϕ.

Corollary 3 WS2S is decidable.

Theorem 5 For a language L ⊆ TΣ, the following are equivalent:

1. Both L and its complement are recognizable by a Büchi tree automaton.

2. L is WS2S-definable.

Corollary 4 WS2S is strictly weaker than S2S.


