Automata, Games and Verification: Lecture 12

Complementation of Parity Tree Automata 19

Reference: W. Thomas: Languages, Automata and Logic, Handbook of formal languages, Volume 3.

Theorem 1 For each parity tree automaton \mathcal{A} over Σ there is a parity tree automaton \mathcal{A}' with $\mathcal{L}(\mathcal{A}') = T_{\Sigma} - \mathcal{L}(\mathcal{A}).$

Proof:

- \mathcal{A} does not accept some tree t iff Player 1 has a winning memoryless strategy f in $\mathcal{G}_{\mathcal{A},t}$ from (ε, s_0)
- Strategy

$$f: \{0,1\}^* \times M \to \{0,1\}^* \times S$$

can be represented as

$$f': \{0,1\}^* \times M \to \{0,1\}$$

(where $f(u, (q, \sigma, q'_0, q'_1)) = (u \cdot i, q'_i)$ iff $f'(u, \tau) = i$).

• f' is isomorphic to

$$g: \{0,1\}^* \to (M \to \{0,1\})$$

 $(M \to \{0, 1\}$ is the finite "local strategy")

• Hence, \mathcal{A} does not accept t iff

(1) there is a
$$(M \to \{0, 1\})$$
-tree v such that
(2) for all $i_0, i_1, i_2, \ldots \in \{0, 1\}^{\omega}$
(3) for all $\tau_0, \tau_1, \ldots \in M^{\omega}$
(4) if
 $-$ for all $j,$
 $\tau_j = (q, a, q'_0, q'_1)$
 $\Rightarrow a = t(i_0, i_1, \ldots, i_j)$ and
 $- i_0 i_1 \ldots = v(\varepsilon)(\tau_0)v(i_0)(\tau_1) \ldots$
then the generated state sequence $q_0q_1 \ldots$

with $q_0 = s_0, (q_j, a, q^0, q^1) = \tau_j,$ $q_{j+1} = q^{v(i_0, \dots, i_{j-1})(\tau_j)}$ for all jviolates c.

and

• Condition (4) is a property of words over

$$\Sigma' = \underbrace{(M \to \{0,1\})}_{v} \times \underbrace{\Sigma}_{t} \times \underbrace{M}_{\tau} \times \underbrace{\{0,1\}}_{i}$$

and can be checked by a parity word automaton $\mathcal{A}_4 = (S_4, \{s_4\}, T_4, c_4)$:

$$- S_4 = S \cup \{\bot\};
- s_4 = s_0;
- T_4 = \{(q, (f, a, (q, a, q'_0, q'_1), i), q'_i) \mid q \in S, f : M \to \{0, 1\},
(q, a, q'_0, q'_1) \in M, i = f(q, a, q'_0, q'_1)\}
\cup \{(q, (f, a, (q, a', q'_0, q'_1), i), \bot) \mid a \neq a' \text{ or } i \neq f(q, a', q'_0, q'_1)\}
\cup \{(\bot, a, \bot) \mid a \in \Sigma'\};
- c_4(q) = c(q) + 1 \text{ for } q \in S;
- c_4(\bot) = 0.$$

- Condition (3) is a property of words $(M \to \{0, 1\}) \times \Sigma \times \{0, 1\}$ which results from (4) by universal quantification (= complement; project; complement) \Rightarrow there is a deterministic parity word automaton \mathcal{A}_3 that checks (3).
- Condition (2) defines a property of $(M \to \{0,1\}) \times \Sigma$ -trees. It can be checked by a tree automaton $\mathcal{A}_2 = (S_2, s_2, M_2, c_2)$, simulating \mathcal{A}_3 along each path:

$$-S_{2} = S_{3};$$

$$-S_{2} = s_{3};$$

$$-M_{2} = \{(q, (f, a), q'_{0}, q'_{1}) \mid (q, (f, a, 0), q'_{0}) \in T_{3}, (q, (f, a, 1), q'_{1}) \in T_{3}\};$$

$$-c_{2} = c_{1}.$$

• Condition (1) is a property on Σ -trees: Use nondeterminism to guess $M \to \{0, 1\}$ label: $\mathcal{A}_1 = (S_1, s_1, M_1, c_1)$, where

 $- S_1 = S_2;$ $- s_1 = s_2;$ $- M_1 = \{(q, a, q'_0, q'_1) \mid \exists f : M \to \{0, 1\}.(q, (f, a), q'_0, q'_1) \in M_2\};$ $- c_1 = c_2.$

20 Monadic Second-Order Theory of Two Successors (S2S)

Syntax:

- first-order variable set $V_1 = \{x_0, x_1, \ldots\}$
- second-order variable set $V_2 = \{X_0, X_1, \ldots\}$
- Terms t:

 $t ::= \epsilon \mid x \mid t0 \mid t1$

• Formulas φ :

$$\varphi ::= t \in X \mid t_1 = t_2 \mid \neg \varphi \mid \varphi_0 \lor \varphi_1 \mid \exists x.\varphi \mid \exists X.\varphi$$

Semantics:

- first-order valuation $\sigma_1: V_1 \to \mathbb{B}^*$
- second-order valuation $\sigma_2: V_2 \to 2^{\mathbb{B}^*}$

Semantics of terms:

- $\llbracket \epsilon \rrbracket = \epsilon$
- $\llbracket x \rrbracket_{\sigma_1} = \sigma_1(x)$
- $[t0]_{\sigma_1} = [t]_{\sigma_1} 0$
- $[t1]_{\sigma_1} = [t]_{\sigma_1} 1$

Semantics of formulas:

- $\sigma_1, \sigma_2 \models t \in X$ iff $\llbracket t \rrbracket_{\sigma_1} \in \sigma_2(X)$
- $\sigma_1, \sigma_2 \models t_1 = t_2$ iff $[t_1]_{\sigma_1} = [t_2]_{\sigma_1}$
- $\sigma_1, \sigma_2 \models \neg \varphi \text{ iff } \sigma_1, \sigma_2 \not\models \varphi$
- $\sigma_1, \sigma_2 \models \varphi_0 \lor \varphi_1$ iff $\sigma_1, \sigma_2 \models \varphi_0$ or $\sigma_1, \sigma_2 \models \varphi_1$
- $\sigma_1, \sigma_2 \models \exists x_i. \varphi \text{ iff there is a } a \in \mathbb{B}^* \text{ s.t.}$

$$\sigma_1'(y) = \begin{cases} \sigma_1(y) & \text{if } x \neq y, \\ a & \text{otherwise;} \end{cases}$$

and $\sigma'_1, \sigma_2 \models \varphi$

• $\sigma_1, \sigma_2 \models \exists X_i. \varphi \text{ iff there is a } A \subseteq \mathbb{B}^* \text{ s.t.}$

$$\sigma'_2(Y) = \begin{cases} \sigma_2(Y) & \text{if } X \neq Y \\ A & \text{otherwise;} \end{cases}$$

and $\sigma_1, \sigma_2' \models \varphi$

Examples:

• "node x is a prefix of node y"

$$x \leq y \quad \Leftrightarrow \quad \forall X.((y \in X \land \forall z(z0 \in X \Rightarrow z \in X) \land \forall z.(z1 \in X \Rightarrow z \in X)) \Rightarrow x \in X)$$

• "X is linearly ordered by \leq "

$$Chain(X) \quad \Leftrightarrow \quad \forall x. \forall y. ((x \in X \land y \in X) \Rightarrow (x \le y \lor y \le x))$$

• "X is a path"

$$\begin{aligned} \operatorname{Path}(X) &\Leftrightarrow \operatorname{Chain}(X) \land \neg \exists Y. \ (X \subseteq Y \land X \neq Y \land \operatorname{Chain}(Y)) \\ X \subseteq Y &\Leftrightarrow \forall z. (z \in X \Rightarrow z \in Y) \\ X = Y &\Leftrightarrow X \subseteq Y \land Y \subseteq X \end{aligned}$$

• "X is infinite"

$$Inf(X) \quad \Leftrightarrow \quad \exists Y. (Y \neq \emptyset \land \forall y \in Y. \exists y' \in Y. \exists x' \in X. \ (y < y' \land y < x'))$$

Theorem 2 For each Muller tree automaton $\mathcal{A} = (S, s_0, M, \mathcal{F})$ over $\Sigma = 2^{V_2}$ there is a S2S formula φ over V_2 s.t. $t \in \mathcal{L}(\mathcal{A})$ iff $\sigma_2 \models \varphi$ where $\sigma_2(P) = \{q \in \{0, 1\}^* \mid P \in t(q)\}$.

Proof:

Use $\overline{R} = (R_q)_{q \in S}$ to encode the run tree.

$$\begin{array}{lll} \varphi \ \Leftrightarrow \ \exists \overline{R}.(\operatorname{Part} \wedge \operatorname{Init} \wedge \operatorname{Trans} \wedge \operatorname{Accept}) \\ \operatorname{Part} \ \Leftrightarrow \ \forall x. \bigvee_{q \in S} \operatorname{State}_q(x) \\ \operatorname{State}_q(x) \ \Leftrightarrow \ R_q(x) \wedge \bigwedge_{q' \in S \smallsetminus \{q\}} \neg R_{q'}(x) \\ \operatorname{Init} \ \Leftrightarrow \ \operatorname{State}_{s_0}(\epsilon) \\ \operatorname{Trans} \ \Leftrightarrow \ \forall x. \bigvee_{(q,A,q'_0,q'_1) \in M} (\operatorname{State}_q(x) \wedge (\bigwedge_{V \in A} V(x) \wedge \bigwedge_{V \notin A} \neg V(x)) \wedge \\ & \wedge \operatorname{State}_{q'_0}(x0) \wedge \operatorname{State}_{q'_1}(x1)) \\ \operatorname{InfOcc}_q(P) \ \Leftrightarrow \ \exists Q.(Q \subseteq P \wedge Q \subseteq R_q \wedge \operatorname{Inf}(Q)) \\ \operatorname{Inf}(P) \ \Leftrightarrow \ \exists P'.(P' \neq \emptyset \wedge \forall x' \in P'. \exists y \in P. \exists y' \in P'.(x' < y \wedge y < y')) \\ \operatorname{Muller}(P) \ \Leftrightarrow \ \bigvee_{F \in \mathcal{F}} (\bigwedge_{q \in F} \operatorname{InfOcc}_q(P) \wedge \bigwedge_{q \notin F} \neg \operatorname{InfOcc}_q(P)) \\ \operatorname{Accept} \ \Leftrightarrow \ \forall P.(\operatorname{Path}(P) \Rightarrow \operatorname{Muller}(P)) \end{array}$$

Theorem 3 For every S2S formula φ over V_1, V_2 there is a Muller tree automaton \mathcal{A} over $\Sigma = 2^{V_1 \cup V_2}$ such that $t \in \mathcal{L}(\mathcal{A})$ iff $\sigma_1, \sigma_2 \models \varphi$ where

$$\begin{aligned}
\sigma_1(x) &= q \text{ iff } x \in t(q); \\
\sigma_2(X) &= \{q \in \{0,1\}^* \mid X \in t(q)\}.
\end{aligned}$$

Proof:

First, we rewrite S2S formulas to a normal form, for which we only have the following types of equalities:

$$x = \epsilon, x = y0, x = y1, x \in Y, x = y$$

Next we inductively translate S2S formulas to tree automata. (Analogous to the proof for S1S in Lecture 7.)

•
$$x \in Y$$
:
- $S = \{q_0, q_1\}$
- $s_0 = q_0$
- $M = \{(q_0, A, q_0, q_1) \mid x \notin A\}$
 $\cup \{(q_0, A, q_1, q_0) \mid x \notin A\}$
 $\cup \{(q_0, A, q_1, q_1) \mid x \in A, Y \in A\}$
 $\cup \{(q_1, A, q_1, q_1) \mid x \notin A\}$
- $\mathcal{F} = \{q_1\}$
• $x = y0$:
- $S = \{q_0, q_1, q_2\}$
- $s_0 = q_0$
- $M = \{(q_0, A, q_0, q_2) \mid \{x, y\} \cap A = \emptyset\}$
 $\cup \{(q_0, A, q_2, q_0) \mid \{x, y\} \cap A = \emptyset\}$
 $\cup \{(q_0, A, q_1, q_2) \mid x \notin A, y \in A\}$
 $\cup \{(q_2, A, q_1, q_2) \mid x \notin A, y \in A\}$
 $\cup \{(q_2, A, q_2, q_2) \mid \{x, y\} \cap A = \emptyset\}$
 $- \mathcal{F} = \{q_2\}$
• etc.

Corollary 1 S2S is decidable.

SnS is the monadic second order theory of n successors.

Corollary 2 SnS is decidable.

Proof:

Repeat exercise for automata on *n*-ary trees.

 $\mathrm{S}\omega\mathrm{S}$ is the monadic second order theory of ω successors.

Theorem 4 $S\omega S$ is decidable.

Proof:

We give an effective translation from $S\omega S$ to S2S.

• Bijection β from ω^* to $0\mathbb{B}^*$:

$$- \beta(\epsilon) := \epsilon$$

- $\beta(vn) := \beta(v)01^n$

• One-to-many relation R between $S\omega S$ and S2S structures: label a position $\beta(x)$ in the binary tree with σ iff x is labeled with σ in the ω -ary tree.

• Bring given $S\omega S$ formula in normal form and translate as follows:

$$-x = \epsilon \mapsto x = \epsilon$$

$$-x = yn \mapsto x = y01^n \text{ for } n \in \omega$$

$$-x \in Y \mapsto x \in Y$$

$$-x = y \mapsto x \in Y$$

$$-\exists X \dots \mapsto \exists X . (\forall y \in X . \neg 1 \le y) \land \dots$$

WS2S is the weak monadic second order theory of two successors. It has the same syntax as S1S and the following difference in the semantics: $\sigma_1, \sigma_2 \models \exists X. \varphi$ iff there is a **finite** $A \subseteq \mathbb{B}^*$ s.t.

$$\sigma'_2(Y) = \begin{cases} \sigma_2(Y) & \text{if } X \neq Y \\ A & \text{otherwise} \end{cases}$$

and $\sigma_1, \sigma'_2 \models \varphi$.

Corollary 3 WS2S is decidable.

Theorem 5 For a language $L \subseteq T_{\Sigma}$, the following are equivalent:

- 1. Both L and its complement are recognizable by a Büchi tree automaton.
- 2. L is WS2S-definable.

Corollary 4 WS2S is strictly weaker than S2S.