Automata, Games and Verification: Lecture 11

17 McNaughton's Algorithm

 $McNaughton(\mathcal{G})$

- 1. c := highest color in \mathcal{G}
- 2. <u>if</u> c = 0 or $V = \emptyset$ <u>then return</u> (V, \emptyset)
- 3. set σ to $c \mod 2$
- 4. set $W_{1-\sigma}$ to \emptyset
- 5. repeat
 - (a) $\mathcal{G}' := \mathcal{G} \smallsetminus Attr_{\sigma}(\alpha^{-1}(c))$
 - (b) $(W'_0, W'_1) := McNaughton(\mathcal{G}')$
 - (c) <u>if</u> $(W'_{1-\sigma} = \emptyset)$ <u>then</u> i. $W_{\sigma} := V \smallsetminus W_{1-\sigma}$ ii. <u>return</u> (W_0, W_1) (d) $W_{1-\sigma} := W_{1-\sigma} \cup Attr_{(1-\sigma)}(W'_{1-\sigma})$ (e) $\mathcal{G} := \mathcal{G} \smallsetminus Attr_{(1-\sigma)}(W'_{1-\sigma})$

18 Tree Automata

Binary Tree: $T = \{0, 1\}^*$. Notation: T_{Σ} : set of all binary Σ -trees

Definition 1 A tree automaton (over binary Σ -trees) is a tuple $\mathcal{A} = (S, s_0, M, \varphi)$:

- S: finite set of states
- $s_0 \in S$
- $M = S \times \Sigma \times S \times S$
- φ : acceptance condition (Büchi, parity, ...)

Definition 2 A run of a tree automaton \mathcal{A} on a Σ -tree v is a S-tree (T, r), s.t.

• $r(\epsilon) = s_0$

• $(r(q), v(q), r(q0), r(q1)) \in M$ for all $q \in \{0, 1\}^*$

Definition 3 A run is accepting if every branch is accepting (by φ). A Σ -tree is accepted if there exists an accepting run. $\mathcal{L}(A) := set of accepted \Sigma$ -trees.

Example: $\{a, b\}$ -trees with infinitely many bs on each path.

 $\begin{aligned} \mathcal{A} &= (S, s_0, M, c); \Sigma &= \{a, b\}; \\ S &= \{q_a, q_b\}; s_0 = q_a; \\ M &= \{(q_a, a, q_a, q_a), (q_b, a, q_a, q_a), (q_a, b, q_b, q_b), (q_b, b, q_b, q_b)\}; \\ \text{Büchi } F &= \{q_b\}. \end{aligned}$

 Σ -tree:

run:

Theorem 1 A parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ accepts an input tree t iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A},t} = (V_0, V_1, E, c')$ from position (ε, s_0) .

- $V_0 = \{(w,q) \mid w \in \{0,1\}^*, q \in S\};$
- $V_1 = \{(w, \tau) \mid w \in \{0, 1\}^*, \tau \in M\};$

•
$$E = \{((w,q), (w,\tau)) \mid \tau = (q, t(w), q'_0, q'_1), \tau \in M\}$$

 $\cup \{((w,\tau), (w',q')) \mid \tau = (q, \sigma, q'_0, q'_1) \text{ and}$
 $((w' = w0 \text{ and } q' = q'_0) \text{ or } (w' = w1 \text{ and } q' = q'_1))\};$

- c'(w,q) = c(q) if $q \in S$;
- $c'(w,\tau) = 0$ if $\tau \in M$.

Example:

Proof:

• Given an accepting run r construct a winning strategy f_0 :

$$f_0(w,q) = (w, (r(w), t(w), r(w0), r(w1)))$$

• Given a memoryless winning strategy f_0 construct an accepting run $r(\varepsilon) = s_0$ $\forall w \in \{0, 1\}^*$

$$-r(w0) = q$$
 where $f_0(w, r(w)) = (w, (-, -, q, -))$

- r(w1) = q where $f_0(w, r(w)) = (w, (-, -, -, q))$

Lemma 1 For each parity tree automaton \mathcal{A} over Σ -trees there exists a parity tree automaton \mathcal{A}' over $\{1\}$ -trees, such that $\mathcal{L}(\mathcal{A}) = \emptyset$ iff $\mathcal{L}(\mathcal{A}') = \emptyset$.

Proof:

- S' = S;
- $s'_0 = s_0;$
- $M' = \{(q, 1, q_0.q_1) \mid (q, \sigma, q_0, q_1) \in M, \sigma \in \Sigma\}$
- c' = c

Theorem 2 The language of a parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ is non-empty iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A},t} = (V_0, V_1, E, c')$ from position s_0 .

- $V_0 = S;$
- $V_1 = M;$
- $E = \{(q, \tau) \mid \tau = (q, 1, q'_0, q'_1), \tau \in M\}$ $\cup \{(\tau, q') \mid \tau = (q, 1, q'_0, q'_1) \text{ and }$ $(q' = q'_0 \text{ or } q' = q'_1)\};$
- c'(q) = c(q) for $q \in S$;
- $c(\tau) = 0$ for $\tau \in M$.

Theorem 3 Büchi tree automata are structly weaker than parity tree automata.

Proof:

- Consider the tree language $T = \{t \in T_{\{a,b\}} \mid every branch of t has only finitely many b\}$
- T is recognized by a parity tree automaton. For example by $\mathcal{A} = (S, s_0, M, c)$ with $S = \{q_a, q_b\}; s_0 = q_a; M = \{(q_a, a, q_a, q_a), (q_b, a, q_a, q_a), (q_a, b, q_b, q_b), (q_b, b, q_b, q_b)\}; c(q_a) = 0, c(q_b) = 1.$
- T is not recognized by any Büchi tree automaton. Assume, by way of contradiction, that there is a Büchi tree automaton $\mathcal{A} = (S, s_0, M, F)$ such that $\mathcal{L}(\mathcal{A}) = T$.
 - Let n = |S|.
 - Consider the input tree t_n , where b appears exactly at nodes $1^{+}0, 1^{+}01^{+}0, \ldots, (1^{+}0)^n$.
 - $-t_n \in T \Rightarrow$ there exists an accepting run r of \mathcal{A} on t_n .
 - On the branch consisting of the finite prefixes of 1^{ω} there are infinitely many visits to $F \Rightarrow \exists m_0 \in \omega$ such that $r(1^{m_0}) \in F$.
 - Analogously, on the branch consisting of the finite prefixes of $1^{m_0}01^{\omega}$, there are infinitely many visits to $F \Rightarrow \exists m_1 \in \omega$ such that $r(1^{m_0}01^{m_1}) \in F$.

- Repeating this argument, we obtain n + 1 positions $1^{m_0}, 1^{m_0}01^{m_1}, \ldots, 1^{m_0}01^{m_1}0\ldots01^{m_n}$ where F is visited.
- There must exist two different nodes u, v on the path to $1^{m_0}01^{m_1}0...01^{m_n}$ such that u is a prefix of v and $r(u) = r(v) \in F$. The path from u to vcontains a left turn and therefore contains a node labeled with b.
- We construct a new input tree t_n and a run tree r' by repeating the path from u to v infinitely often:
 - * let $v = u \cdot \pi$.
 - * $t'_n(x) = t_n(u \cdot y)$ if $x = u \cdot \pi^* \cdot y$ for some shortest $y \in \{0, 1\}^*$ $t'_n(x) = t_n(x)$ otherwise
 - * $r'(x) = r(u \cdot y)$ if $x = u \cdot \pi^* \cdot y$ for some shortest $y \in \{0, 1\}^*$ r'(x) = r(x) otherwise
 - * r' is accepting: the branch consisting of the finite prefixes of $u \cdot \pi^{\omega}$ has infinitely many visits to F; all other branches have the same labeling as in r after some finite prefix. Since r is accepting, these branches thus must also visit F infinitely often.
 - * Hence t'_n is accepted by \mathcal{A} , but $t'_n \notin T$, because the branch consisting of the finite prefixes of $u \cdot \pi^{\omega}$ has infinitely many b. Contradiction.