17 McNaughton's Algorithm

McNaughton(\mathcal{G})

1. $c:=$ highest color in \mathcal{G}
2. if $c=0$ or $V=\emptyset$
then return (V, \emptyset)
3. set σ to $c \bmod 2$
4. set $W_{1-\sigma}$ to \emptyset
5. repeat
(a) $\mathcal{G}^{\prime}:=\mathcal{G} \backslash \operatorname{Attr}_{\sigma}\left(\alpha^{-1}(c)\right)$
(b) $\left(W_{0}^{\prime}, W_{1}^{\prime}\right):=\operatorname{McNaughton}\left(\mathcal{G}^{\prime}\right)$
(c) if $\left(W_{1-\sigma}^{\prime}=\emptyset\right)$ then
i. $W_{\sigma}:=V \backslash W_{1-\sigma}$
ii. return $\left(W_{0}, W_{1}\right)$
(d) $W_{1-\sigma}:=W_{1-\sigma} \cup \operatorname{Attr}_{(1-\sigma)}\left(W_{1-\sigma}^{\prime}\right)$
(e) $\mathcal{G}:=\mathcal{G} \backslash \operatorname{Attr}_{(1-\sigma)}\left(W_{1-\sigma}^{\prime}\right)$

18 Tree Automata

Binary Tree: $T=\{0,1\}^{*}$.
Notation: T_{Σ} : set of all binary Σ-trees
Definition $1 A$ tree automaton (over binary Σ-trees) is a tuple $\mathcal{A}=\left(S, s_{0}, M, \varphi\right)$:

- S : finite set of states
- $s_{0} \in S$
- $M=S \times \Sigma \times S \times S$
- φ : acceptance condition (Büchi, parity, ...)

Definition 2 A run of a tree automaton \mathcal{A} on a Σ-tree v is a S-tree (T, r), s.t.

- $r(\epsilon)=s_{0}$
- $(r(q), v(q), r(q 0), r(q 1)) \in M$ for all $q \in\{0,1\}^{*}$

Definition 3 A run is accepting if every branch is accepting (by φ). A Σ-tree is accepted if there exists an accepting run.
$\mathcal{L}(A):=$ set of accepted Σ-trees.
Example: $\{a, b\}$-trees with infinitely many $b s$ on each path.
$\mathcal{A}=\left(S, s_{0}, M, c\right) ; \Sigma=\{a, b\} ;$
$S=\left\{q_{a}, q_{b}\right\} ; s_{0}=q_{a} ;$
$M=\left\{\left(q_{a}, a, q_{a}, q_{a}\right),\left(q_{b}, a, q_{a}, q_{a}\right),\left(q_{a}, b, q_{b}, q_{b}\right),\left(q_{b}, b, q_{b}, q_{b}\right)\right\} ;$
Büchi $F=\left\{q_{b}\right\}$.
Σ-tree:

run:

Theorem 1 A parity tree automaton $\mathcal{A}=\left(S, s_{0}, M, c\right)$ accepts an input tree t iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A}, t}=\left(V_{0}, V_{1}, E, c^{\prime}\right)$ from position $\left(\varepsilon, s_{0}\right)$.

- $V_{0}=\left\{(w, q) \mid w \in\{0,1\}^{*}, q \in S\right\} ;$
- $V_{1}=\left\{(w, \tau) \mid w \in\{0,1\}^{*}, \tau \in M\right\} ;$
- $E=\left\{((w, q),(w, \tau)) \mid \tau=\left(q, t(w), q_{0}^{\prime}, q_{1}^{\prime}\right), \tau \in M\right\}$

$$
\begin{aligned}
& \cup\left\{\left((w, \tau),\left(w^{\prime}, q^{\prime}\right)\right) \mid \tau=\left(q, \sigma, q_{0}^{\prime}, q_{1}^{\prime}\right)\right. \text { and } \\
& \left.\quad\left(\left(w^{\prime}=w 0 \text { and } q^{\prime}=q_{0}^{\prime}\right) \text { or }\left(w^{\prime}=w 1 \text { and } q^{\prime}=q_{1}^{\prime}\right)\right)\right\} ;
\end{aligned}
$$

- $c^{\prime}(w, q)=c(q)$ if $q \in S$;
- $c^{\prime}(w, \tau)=0$ if $\tau \in M$.

Example:

Proof:

- Given an accepting run r construct a winning strategy f_{0} :

$$
f_{0}(w, q)=(w,(r(w), t(w), r(w 0), r(w 1))
$$

- Given a memoryless winning strategy f_{0} construct an accepting run $r(\varepsilon)=s_{0}$
$\forall w \in\{0,1\}^{*}$
$-r(w 0)=q$ where $f_{0}(w, r(w))=(w,(-,-, q,-))$
$-r(w 1)=q$ where $f_{0}(w, r(w))=(w,(-,-,-, q))$

Lemma 1 For each parity tree automaton \mathcal{A} over Σ-trees there exists a parity tree automaton \mathcal{A}^{\prime} over $\{1\}$-trees, such that $\mathcal{L}(\mathcal{A})=\emptyset$ iff $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\emptyset$.

Proof:

- $S^{\prime}=S$;
- $s_{0}^{\prime}=s_{0}$;
- $M^{\prime}=\left\{\left(q, 1, q_{0} \cdot q_{1}\right) \mid\left(q, \sigma, q_{0}, q_{1}\right) \in M, \sigma \in \Sigma\right\}$
- $c^{\prime}=c$

Theorem 2 The language of a parity tree automaton $\mathcal{A}=\left(S, s_{0}, M, c\right)$ is non-empty iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A}, t}=\left(V_{0}, V_{1}, E, c^{\prime}\right)$ from position s_{0}.

- $V_{0}=S$;
- $V_{1}=M$;
- $E=\left\{(q, \tau) \mid \tau=\left(q, 1, q_{0}^{\prime}, q_{1}^{\prime}\right), \tau \in M\right\}$ $\cup\left\{\left(\tau, q^{\prime}\right) \mid \tau=\left(q, 1, q_{0}^{\prime}, q_{1}^{\prime}\right)\right.$ and

$$
\left.\left(q^{\prime}=q_{0}^{\prime} \text { or } q^{\prime}=q_{1}^{\prime}\right)\right\} ;
$$

- $c^{\prime}(q)=c(q)$ for $q \in S$;
- $c(\tau)=0$ for $\tau \in M$.

Theorem 3 Büchi tree automata are structly weaker than parity tree automata.

Proof:

- Consider the tree language $T=\left\{t \in T_{\{a, b\}} \quad \mid\right.$ every branch of t has only finitely many $b\}$
- T is recognized by a parity tree automaton. For example by $\mathcal{A}=\left(S, s_{0}, M, c\right)$ with $S=\left\{q_{a}, q_{b}\right\} ; s_{0}=q_{a} ; M=$ $\left\{\left(q_{a}, a, q_{a}, q_{a}\right),\left(q_{b}, a, q_{a}, q_{a}\right),\left(q_{a}, b, q_{b}, q_{b}\right),\left(q_{b}, b, q_{b}, q_{b}\right)\right\} ; c\left(q_{a}\right)=0, c\left(q_{b}\right)=1$.
- T is not recognized by any Büchi tree automaton. Assume, by way of contradiction, that there is a Büchi tree automaton $\mathcal{A}=\left(S, s_{0}, M, F\right)$ such that $\mathcal{L}(\mathcal{A})=T$.
- Let $n=|S|$.
- Consider the input tree t_{n}, where b appears exactly at nodes $1^{+} 0,1^{+} 01^{+} 0, \ldots,\left(1^{+} 0\right)^{n}$.
$-t_{n} \in T \Rightarrow$ there exists an accepting run r of \mathcal{A} on t_{n}.
- On the branch consisting of the finite prefixes of 1^{ω} there are infinitely many visits to $F \Rightarrow \exists m_{0} \in \omega$ such that $r\left(1^{m_{0}}\right) \in F$.
- Analogously, on the branch consisting of the finite prefixes of $1^{m_{0}} 01^{\omega}$, there are infinitely many visits to $F \Rightarrow \exists m_{1} \in \omega$ such that $r\left(1^{m_{0}} 01^{m_{1}}\right) \in F$.
- Repeating this argument, we obtain $n+1$ positions $1^{m_{0}}, 1^{m_{0}} 01^{m_{1}}, \ldots, 1^{m_{0}} 01^{m_{1}} 0 \ldots 01^{m_{n}}$ where F is visited.
- There must exist two different nodes u, v on the path to $1^{m_{0}} 01^{m_{1}} 0 \ldots 01^{m_{n}}$ such that u is a prefix of v and $r(u)=r(v) \in F$. The path from u to v contains a left turn and therefore contains a node labeled with b.
- We construct a new input tree t_{n} and a run tree r^{\prime} by repeating the path from u to v infinitely often:
* let $v=u \cdot \pi$.
* $t_{n}^{\prime}(x)=t_{n}(u \cdot y)$ if $x=u \cdot \pi^{*} \cdot y$ for some shortest $y \in\{0,1\}^{*}$ $t_{n}^{\prime}(x)=t_{n}(x)$ otherwise
* $r^{\prime}(x)=r(u \cdot y)$ if $x=u \cdot \pi^{*} \cdot y$ for some shortest $y \in\{0,1\}^{*}$ $r^{\prime}(x)=r(x)$ otherwise
* r^{\prime} is accepting: the branch consisting of the finite prefixes of $u \cdot \pi^{\omega}$ has infinitely many visits to F; all other branches have the same labeling as in r after some finite prefix. Since r is accepting, these branches thus must also visit F infinitely often.
* Hence t_{n}^{\prime} is accepted by \mathcal{A}, but $t_{n}^{\prime} \notin T$, because the branch consisting of the finite prefixes of $u \cdot \pi^{\omega}$ has infinitely many $b \mathrm{~s}$. Contradiction.

