Automata, Games and Verification: Lecture 10

13 Games

Definition 1 A game arena is a triple $\mathcal{A} = (V_0, V_1, E)$, where

- V_0 and V_1 are disjoint sets of positions, called the positions of player 0 and 1,
- $E \subseteq V \times V$ for set $V = V_0 \uplus V_1$ of game positions,
- every position $p \in V$ has at least one outgoing edge $(p, p') \in E$.

Definition 2 A play is an infinite sequence $\pi = p_0 p_1 p_2 \ldots \in V^{\omega}$ such that $\forall i \in \omega . (p_i, p_{i+1}) \in E$.

Definition 3 A strategy for player σ is a function $f_{\sigma}: V^* \cdot V_{\sigma} \to V$ s.t. $(p, p') \in E$ whenever $f(u \cdot p) = p'$.

Definition 4 A play $\pi = p_0, p_1, \ldots$ conforms to strategy f_{σ} of player σ if $\forall i \in \omega$. if $p_i \in V_{\sigma}$ then $p_{i+1} = f_{\sigma}(p_0, \ldots, p_i)$.

Definition 5

- A reachability game $\mathcal{G} = (\mathcal{A}, R)$ consists of a game area and a winning set of positions $R \subseteq V$. Player 0 wins a play $\pi = p_0 p_1 \dots$ if $p_i \in R$ for some $i \in \omega$, otherwise Player 1 wins.
- A Büchi game $\mathcal{G} = (\mathcal{A}, F)$ consists of an arena \mathcal{A} and a set $F \subseteq V$. Player 0 wins a play π if $In(\pi) \cap F \neq \emptyset$, otherwise Player 1 wins.
- A Parity game $\mathcal{G} = (\mathcal{A}, c)$ consists of an arena \mathcal{A} and a coloring function $c : V \to \mathbb{N}$. Player 0 wins play π if max $\{c(q) \mid q \in In(\pi)\}$ is even, otherwise Player 1 wins.

Definition 6

- A strategy f_{σ} is p-winning for player σ and position p if all plays that conform to f_{σ} and that start in p are won by Player σ .
- The winning region for player σ is the set of positions

 $W_{\sigma} = \{ p \in V \mid \text{ there is a strategy } f_{\sigma} \text{ s.t. } f_{\sigma} \text{ is } p\text{-winning} \}.$

Definition 7 A game is determined if $V = W_0 \cup W_1$.

Definition 8

- A memoryless strategy for player σ is a function $f_{\sigma} : V_{\sigma} \to V$ which defines a strategy $f'_{\sigma}(u \cdot v) = f_{\sigma}(v)$.
- A game is memoryless determined if for every position some player wins the game with memoryless strategy.

^{• . . .}

14 Solving Reachability Games

Attractor Construction:

$$Attr^{0}_{\sigma}(X) = \emptyset;$$

$$Attr^{i+1}_{\sigma}(X) = Attr^{i}_{\sigma}(X)$$

$$\cup \{ p \in V_{\sigma} \mid \exists p' . (p, p') \in E \land p' \in Attr^{i}_{\sigma}(X) \cup X \}$$

$$\cup \{ p \in V_{1-\sigma} \mid \forall p' . (p, p') \in E \Rightarrow p' \in Attr^{i}_{\sigma}(X) \cup X \};$$

$$Attr^{+}_{\sigma}(X) = \bigcup_{i \in \omega} Attr^{i}_{\sigma}(X).$$

 $Attr_{\sigma}(X) = Attr_{\sigma}^{+}(X) \cup X$

The attractor construction solves the reachability game: $W_0 = Attr_0(R), W_1 = V \smallsetminus W_0.$

Example: Consider the following reachability game with $R = \{1, 7\}$:

 $Attr_0^0(\{1,7\}) = \emptyset;$ $Attr_0^1(\{1,7\}) = \{4,8\};$ $Attr_0^2(\{1,7\}) = \{4,8,7,9\};$ $Attr_0^3(\{1,7\}) = \{4,6,7,8,9\};$ $Attr_0^4(\{1,7\}) = \{4,6,7,8,9\};$ $Attr_0^+(\{1,7\}) = \{4,6,7,8,9\};$ $Attr_0(\{1,7\}) = \{1,4,6,7,8,9\}.$

Theorem 1 Reachability games are memoryless determined.

Proof:

Let $q \in V$.

- 1. If $p \in Attr_0(R)$, then $p \in W_0$, with memoryless strategy f_0 :
 - Fix an arbitrary total ordering on V.
 - for $p \in V_0$ we define $f_0(q)$:

- if $p \in Attr_0^i(R)$ for some smallest i > 0, choose the minimal $p' \in Attr_0^{i-1}(R) \cup R$.
- otherwise, choose the minimal $p' \in V$ such that $(p, p') \in E$.
- Hence, if $p \in Attr_0^i(R)$ for some *i*, then any play that conforms to f_0 reaches *R* in at most *i* steps.
- 2. If $p \notin Attr_0(R)$, then $p \in W_1$ with memoryless strategy f_1 :
 - for $p \in V_1$ we define $f_1(q)$:
 - if $p \in V_1 \smallsetminus Attr_0(R)$, pick minimal $p' \in V \smallsetminus Attr_0(R)$ such that $(p, p') \in E$. Such a p' must exist, since otherwise $p \in Attr_0(R)$. - otherwise, pick minimal $p' \in V$ such that $(p, p') \in E$.

• Hence, if $p \in V \setminus Attr_0(R)$, then any play that conforms to f_1 never visits $Attr_0(R)$ and hence never R.

15 Solving Büchi Games

Recurrence Construction:

 $Recur_{\sigma}^{0} = F;$ $Recur_{\sigma}^{i+1} = F \cap Attr_{\sigma}^{+}(Recur_{\sigma}^{i});$

 $Recur_{\sigma} = \bigcap_{i \in \omega} Recur_{\sigma}^{i}.$

The recurrence construction solves the Büchi game: $W_0 = Attr_0(Recur_0), W_1 = V \smallsetminus W_0.$

Example: Same example as before, now as Büchi game with $F = \{1, 7\}$: $Recur_0^0(\mathcal{G}) = \{1, 7\}$ $W_0 = \{4, 6, 7, 8, 9\}$ $Attr_0^+(\{1, 7\}, \mathcal{G}) = \{4, 6, 7, 8, 9\}$ $W_1 = \{1, 2, 3, 5\}$ $Recur_0^1(\mathcal{G}) = \{7\}$ $Attr_0^+(\{7\}, \mathcal{G}) = \{4, 6, 7, 8, 9\}$ $Recur_0(\mathcal{G}) = \{7\}$ $Attr_0(\{7\}, \mathcal{G}) = \{4, 6, 7, 8, 9\}$

Theorem 2 Büchi games are memoryless determined.

Proof:

- If $p \in Attr_0(Recur_0)$, then $p \in W_0$, with memoryless strategy f_0 :
 - Fix an arbitrary total ordering on V.
 - for $p \in V_0$ we define $f_0(q)$:
 - * if $p \in Attr_0(Recur_0)$, choose
 - the minimal $p' \in Recur_0$, if $(p, p') \in E$ exists,
 - the minimal $p' \in Attr_0^i(Recur_0)$ for minimal *i* such that $(p, p') \in E$ exists, otherwise.

* if $p \notin Attr_0(Recur_0)$, choose minimal $p' \in V$ with $(p, p') \in E$.

- If $p \notin Attr_0(Recur_0)$, then $p \in W_1$ with memoryless strategy f_1 : we define memoryless strategies f_1^i such that if a play starts in $p \in V \smallsetminus Attr_0^+(Recur_0^i)$ and conforms to f_1^i , then there are at most *i* further visits to *F* (not counting a possible visit in the first position).
 - $-f_1^0(p)$: choose minimal $p' \in V$ such that $(p, p') \in E$ and $p' \in V \smallsetminus Attr_0(F)$.
 - if $p \in V \setminus Attr_0^+(Recur_0^i), f_1^{i+1}(p) = f_1^i(p);$
 - if $p \notin V \smallsetminus Attr_0^+(Recur_0^i)$, i.e., if $p \in Attr_0^+(Recur_0^i) \smallsetminus Attr_0^+(Recur_0^{i+1})$, then for $f_1^{i+1}(p)$ choose minimal p' such that $(p, p') \in E$ and $p' \in Attr_0^+(Recur_0^i) \smallsetminus Attr_0^+(Recur_0^{i+1})$.
- Induction on *i*:
 - -i = 0: Player 1 can avoid $Attr_0(F)$ and hence F;
 - -i+1:
 - * case 1: play never reaches F;
 - * case 2: play reaches $p' \in F \setminus Recur_0^{i+1} = F \setminus Attr_0^+(Recur_0^i) \subseteq V \setminus Attr_0^+(Recur_0^i)$; by induction hypothesis, at most *i* further visits to *F*, not counting the visit in *p'*, hence a total of at most *i* + 1 visits from *p*.

16 Parity Games

Assumptions:

- arena is finite or countably infinite.
- the number of colors is finite (max color k).

Theorem 3 Parity games are memoryless determined.

Proof:

Induction on k:

- k = 0: $W_0 = V, W_1 = \emptyset$. Memoryless winning strategy: fix arbitrary order on $V. f_0(p) = \min\{q \mid (p,q) \in E\}.$
- k + 1:
 - If k + 1 is even, consider player $\sigma = 0$, otherwise $\sigma = 1$.
 - Let $W_{1-\sigma}$ be the set of positions where Player (1σ) has a memoryless winning strategy. We show that Player σ has a memoryless winning strategy from $V \smallsetminus W_{1-\sigma}$.
 - Consider subgame \mathcal{G}' :
 - $* V_0' = V_0 \smallsetminus W_{1-\sigma};$

- * $V'_1 = V_1 \smallsetminus W_{1-\sigma};$ * $E' = E \cap (V' \times V');$
- $* E' = E \mapsto (V' \times V');$
- * c'(p) = c(p) for all $p \in V'$.
- \mathcal{G}' is still a game:
 - * for $p \in V'_{\sigma}$, there is a $q \in V \setminus W_{1-\sigma}$ with $(p,q) \in E'$, otherwise $p \in W_{1-\sigma}$;
 - * for $p \in V'_{1-\sigma}$, for all $q \in V$ with $(p,q) \in E$, $q \in V \setminus W_{1-\sigma}$, hence there is a $q \in V'$ with $(p,q) \in E$.
- Let $C'_i = \{ p \in V' \mid c'(p) = i \}.$
- Let $Y = Attr'_{\sigma}(C'_{k+1})$. (Attr': Attractor set on \mathcal{G}')
- Let f_A be the attractor strategy on \mathcal{G}' into C'_{k+1} .
- Consider subgame \mathcal{G}'' :
 - $* V_0'' = V_0' \smallsetminus Y;$
 - * $V_1'' = V_1 \smallsetminus Y;$
 - * $E'' = E' \cap (V'' \times V'');$

*
$$c'': V'' \to \{0, \dots, k\}; c''(p) = c'(p) \text{ for all } p \in V''.$$

- \mathcal{G}'' is still a game.
- Induction hypothesis: \mathcal{G}'' is memoryless determined.
- Also: $W_{1-\sigma}'' = \emptyset$ (because $W_{1-\sigma}' \subseteq W_{1-\sigma}$: assume Player $(1-\sigma)$ had a winning strategy from some position in V''. Then this strategy would win in \mathcal{G} , too, since Player σ has no chance to leave \mathcal{G}'' other than to $W_{1-\sigma}$.)
- Hence, there is a winning memoryless winning strategy f_{IH} for player σ from V''.
- We define:

$$f_{\sigma}(p) = \begin{cases} f_{IH}(p) & \text{if } p \in V'';\\ f_{A}(p) & \text{if } p \in Y \smallsetminus C'_{k+1};\\ \text{min. successor in } V \smallsetminus W_{1-\sigma} & \text{if } p \in Y \cap C'_{k+1};\\ \text{min. successor in } V & \text{otherwise.} \end{cases}$$

- f_{σ} is winning for Player σ on $V \smallsetminus W_{1-\sigma}$. Consider a play that conforms to f_{σ} :
 - * Case 1: Y is visited infinitely often.

 \Rightarrow Player σ wins (inf. often even color k + 1).

* Case 2: Eventually only positions in V'' are visited. \Rightarrow Since Player σ follows f_{IH} , Player σ wins.