Automata, Games & Verification

Summary #9

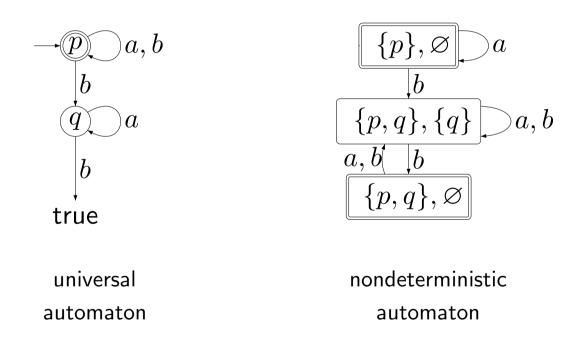
Today at 4:15pm in SR 014

Games in Verification and Synthesis

Patrick Jungblut: *Timed Games* Christine Rizkallah: *Synthesis of Asynchronous Systems*

Corollary 1.

A language is ω -regular iff it is recognizable by an alternating Büchi automaton.



Definition 1. Two nodes $x_1, x_2 \in T$ in a run tree (T, r) are similar if $|x_1| = |x_2|$ and $r(x_1) = r(x_2)$.

Definition 2. A run tree (T, r) is memoryless if for all similar nodes x_1 and x_2 and for all $y \in D^*$ we have that $(x_1 \cdot y \in T \text{ iff } x_2 \cdot y \in T)$ and $r(x_1 \cdot y) = r(x_2 \cdot y)$.

Theorem 1. If an alternating Büchi Automaton \mathcal{A} accepts a word α , then there exists a memoryless accepting run of \mathcal{A} on α .

Corollary 2.

Satisfiability of an LTL formula φ can be checked in time exponential in the length of φ .

Corollary 3.

Validity of an LTL formula φ can be checked in time exponential in the length of φ .

Theorem 2. [Tutorial] Let \mathcal{P}_1 and \mathcal{P}_2 be two alternating parity automata.

- 1. The language $\mathcal{L}(\mathcal{P}_1) \cup \mathcal{L}(\mathcal{P}_2)$ is recognizable by an alternating parity automaton linear in the size of \mathcal{P}_1 and \mathcal{P}_2 .
- 2. The language $\mathcal{L}(\mathcal{P}_1) \cap \mathcal{L}(\mathcal{P}_2)$ is recognizable by an alternating parity automaton linear in the size of \mathcal{P}_1 and \mathcal{P}_2 .
- 3. The language $\overline{\mathcal{L}(\mathcal{P}_1)}$ is recognizable by an alternating parity automaton linear in the size of \mathcal{P}_1 .

Which automata recognize the ω -regular languages?

	Büchi	co-Büchi	parity	Muller
deterministic	_	_	+	+
nondeterministic	+	_	+	+
universal	—	+	+	+
alternating	+	+	+	+

Acceptance of a word α by an alternating Büchi automaton can also be characterized by a game:

- Positions of Player 0: $V_0 = S \times \omega$;
- Positions of Player 1: $V_1 = 2^S \times \omega$;
- Edges: $\{ ((s,i), (X,i)) \mid X \models \delta(s, \alpha(i)) \}$ $\cup \{ ((X,i), (s,i+1)) \mid s \in X \}$

Player 0 wins a play iff $F \times \omega$ is visited infinitely often.

The word α is accepted iff Player 0 has a strategy to win the game from position $(s_0, 0)$.