Automata, Games & Verification

Summary #4

Today at 4:00pm in SR 014 Games in Verification and Synthesis Walid Haddad: *Model checking games* (*Simulation Games* postponed to June 12.)

Complementation

Theorem 1. For each Büchi automaton \mathcal{A} there exists a Büchi automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}') = \Sigma^{\omega} \smallsetminus \mathcal{L}(\mathcal{A})$.

Definition 1. Let $\mathcal{A} = (S, I, T, F)$ be a nondeterministic Büchi automaton. The run DAG of \mathcal{A} on a word $\alpha \in \Sigma^{\omega}$ is the directed acyclic graph G = (V, E) where

- $V = \bigcup_{l \ge 0} (S_l \times \{l\})$ where $S_0 = I$ and $S_{l+1} = \bigcup_{s \in S_l, (s, \alpha(l), s') \in T} \{s'\}$
- $E = \{(\langle s, l \rangle, \langle s', l+1 \rangle) \mid l \ge 0, (s, \alpha(l), s') \in T\}$

A path in a run DAG is accepting iff it visits F infinitely often. The automaton accepts α if some path is accepting.

Muller Automata

Definition 2. A (nondeterministic) Muller automaton \mathcal{A} over alphabet Σ is a tuple (S, I, T, F):

- S, I, T : defined as before
- $\mathcal{F} \subseteq 2^S$: set of accepting subsets, called the table.

Definition 3. A run r of a Muller automaton is accepting iff $In(r) \in F$

Theorem 2. For every (deterministic) Büchi automaton A, there is a (deterministic) Muller automaton A', such that $\mathcal{L}(A) = \mathcal{L}(A')$.

Theorem 3. For every nondeterministic Muller automaton \mathcal{A} there is a nondeterministic Büchi automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Theorem 4. The languages recognizable by deterministic Muller automata are closed under boolean operations.

Theorem 5. A language \mathcal{L} is recognizable by a deterministic Muller automaton iff \mathcal{L} is a boolean combination of languages \overrightarrow{W} where $W \subseteq \Sigma^*$ is regular.

Parity, Rabin, Streett

- A parity automaton is a tuple (S, I, T, c : S → N).
 A run r of a parity automaton is accepting iff max{c(s) | s ∈ In(r)} is even.
- A Rabin automaton is a tuple (S, I, T, {(A_i, R_i) | i ∈ J}).
 A run r of a Rabin automaton is accepting iff, for some i ∈ J, In(r) ∩ A_i ≠ Ø and In(r) ∩ R_i = Ø.
- A Streett automaton is a tuple (S, I, T, {(A_i, R_i) | i ∈ J}).
 A run r of a Streett automaton is accepting iff, for all i ∈ J, In(r) ∩ A_i ≠ Ø or In(r) ∩ R_i = Ø.

Theorem 6. [Tutorial] Büchi, Muller, Rabin, Streett and parity automata are equally expressive.

Theorem 7. [Tutorial] *Deterministic Muller, Rabin, Streett and parity automata are equally expressive.*