Automata, Games \& Verification

Summary \#4

Today at 4:00pm in SR 014 Games in Verification and Synthesis Walid Haddad: Model checking games (Simulation Games postponed to June 12.)

Complementation

Theorem 1. For each Büchi automaton \mathcal{A} there exists a Büchi automaton \mathcal{A}^{\prime} such that $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$.

Definition 1. Let $\mathcal{A}=(S, I, T, F)$ be a nondeterministic Büchi automaton. The run DAG of \mathcal{A} on a word $\alpha \in \Sigma^{\omega}$ is the directed acyclic graph $G=(V, E)$ where

- $V=\bigcup_{l \geqslant 0}\left(S_{l} \times\{l\}\right)$ where $S_{0}=I$ and $S_{l+1}=\bigcup_{s \in S_{l}\left(s, \alpha(l), s^{\prime}\right) \in T}\left\{s^{\prime}\right\}$
- $E=\left\{\left(\langle s, l\rangle,\left\langle s^{\prime}, l+1\right\rangle\right) \mid l \geqslant 0,\left(s, \alpha(l), s^{\prime}\right) \in T\right\}$

A path in a run DAG is accepting iff it visits F infinitely often. The automaton accepts α if some path is accepting.

Muller Automata

Definition 2. A (nondeterministic) Muller automaton \mathcal{A} over alphabet Σ is a tuple ($S, I, T, F)$:

- S, I, T : defined as before
- $\mathcal{F} \subseteq 2^{S}$: set of accepting subsets, called the table.

Definition 3. A run r of a Muller automaton is accepting iff $\operatorname{In}(r) \in F$

Theorem 2. For every (deterministic) Büchi automaton \mathcal{A}, there is a (deterministic) Muller automaton \mathcal{A}^{\prime}, such that $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

Theorem 3. For every nondeterministic Muller automaton \mathcal{A} there is a nondeterministic Büchi automaton \mathcal{A}^{\prime} such that $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

Theorem 4. The languages recognizable by deterministic Muller automata are closed under boolean operations.

Theorem 5. A language \mathcal{L} is recognizable by a deterministic Muller automaton iff \mathcal{L} is a boolean combination of languages \vec{W} where $W \subseteq$ Σ^{*} is regular.

Parity, Rabin, Streett

- A parity automaton is a tuple $(S, I, T, c: S \rightarrow \mathbb{N})$. A run r of a parity automaton is accepting iff $\max \{c(s) \mid s \in \operatorname{In}(r)\}$ is even.
- A Rabin automaton is a tuple $\left(S, I, T,\left\{\left(A_{i}, R_{i}\right) \mid i \in J\right\}\right)$. A run r of a Rabin automaton is accepting iff, for some $i \in J, \operatorname{In}(r) \cap A_{i} \neq \varnothing$ and $\operatorname{In}(r) \cap R_{i}=\varnothing$.
- A Streett automaton is a tuple $\left(S, I, T,\left\{\left(A_{i}, R_{i}\right) \mid i \in J\right\}\right)$. A run r of a Streett automaton is accepting iff, for all $i \in J, \operatorname{In}(r) \cap A_{i} \neq \varnothing$ or $\operatorname{In}(r) \cap R_{i}=\varnothing$.

Theorem 6. [Tutorial] Büchi, Muller, Rabin, Streett and parity automata are equally expressive.

Theorem 7. [Tutorial] Deterministic Muller, Rabin, Streett and parity automata are equally expressive.

