Automata, Games \& Verification

Summary \#2

Büchi's Characterization Theorem

Definition 1. The ω-regular expressions are defined as follows.

- If R is an regular expression where $\epsilon \notin \mathcal{L}(R)$, then R^{ω} is an ω-regular expression.
$\mathcal{L}\left(R^{\omega}\right)=\mathcal{L}(R)^{\omega}$
where $L^{\omega}=\left\{u_{0} u_{1} \ldots\left|u_{i} \in L,\left|u_{i}\right|>0\right.\right.$ for all $\left.i \in \omega\right\}$ for $L \subseteq \Sigma^{*}$.
- If R is a regular expression and U is an ω-regular expression, then $R \cdot U$ is an ω-regular expression.

```
L}(R\cdotU)=\mathcal{L}(R)\cdot\mathcal{L}(U
where }\mp@subsup{L}{1}{}\cdot\mp@subsup{L}{2}{\prime}={r\cdotu|r\in\mp@subsup{L}{1}{},u\in\mp@subsup{L}{2}{}}\mathrm{ for }\mp@subsup{L}{1}{}\subseteq\mp@subsup{\Sigma}{}{*},\mp@subsup{L}{2}{}\subseteq\mp@subsup{\Sigma}{}{\omega}\mathrm{ .
```

- If U_{1} and U_{2} are ω-regular expressions, then $U_{1}+U_{2}$ is an ω-regular expression.
$\mathcal{L}\left(U_{1}+U_{2}\right)=\mathcal{L}\left(U_{1}\right) \cup \mathcal{L}\left(U_{2}\right)$.

Definition 2. An ω-regular language is a finite union of ω-languages of the form $U \cdot V^{\omega}$ where $U, V \subseteq \Sigma^{*}$ are regular languages.

Theorem 1. If L_{1} and L_{2} are Büchi recognizable, then so is $L_{1} \cup L_{2}$.
Theorem 2. If L_{1} and L_{2} are Büchi recognizable, then so is $L_{1} \cap L_{2}$.
Theorem 3. If L_{1} is a regular language and L_{2} is Büchi recognizable, then $L_{1} \cdot L_{2}$ is Büchi-recognizable.

Theorem 4. If L is a regular language then L^{ω} is Büchi recognizable.
Theorem 5. [Büchi's Characterization Theorem (1962)] An w-language is Büchi recognizable iff it is ω-regular.

Deterministic Büchi Automata

Theorem 6. The language $L=\left\{\alpha \in \Sigma^{\omega} \mid \operatorname{In}(\alpha)=\{b\}\right\}$ over $\Sigma=\{a, b\}$ is not recognizable by a deterministic Büchi automaton.

Definition 3. [Substrings] Let $\alpha \in \Sigma^{*}$. For two integers $n \leq m$ we define

$$
\alpha(n, m)=\alpha(n) \alpha(n+1) \ldots \alpha(m) .
$$

Definition 4. [Limit] For $W \subseteq \Sigma^{*}$:

$$
\vec{W}=\left\{\alpha \in \Sigma^{\omega} \mid \text { there exist infinitely many } n \in \omega \text { s.t. } \alpha(0, n) \in W\right\} .
$$

Theorem 7. An ω-language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there is a regular language $W \subseteq \Sigma^{*}$ s.t. $L=\vec{W}$.

