Automata, Games & Verification

Summary #11

Today at 4:15pm in SR 014

Games in Verification and Synthesis Daniel Dahrendorf: *Counterexample-guided control* Georg Neis: *Three-valued abstractions of games*

Reminder: Exam on Friday, July 25, 14:00-16:00 in Hörsaal 002, building E 1 3. The exam will be *open book*, i.e., handwritten notes as well as books and other printed materials are allowed.

Determinacy of parity games

Assumptions:

- arena is finite or countably infinite.
- the number of colors is finite (max color k).

Lemma 1. Merging strategies

Given a parity game \mathcal{G} and a set of nodes $U \subseteq V$, s.t. for every $p \in U$, Player σ has a memoryless strategy $f_{\sigma,p}$ that wins from p, then there is a memoryless winning strategy f_{σ} that wins from all $p \in U$.

Theorem 1. Parity games are memoryless determined.

Nondeterministic Tree Automata

Definition 1. A nondeterministic tree automaton (over binary Σ -trees) $\mathcal{A} = (S, s_0, M, \varphi)$ consists of

- *S*: finite set of states;
- $s_0 \in S$;
- $M = S \times \Sigma \times S \times S;$
- φ : acceptance condition (Büchi, parity, ...).

Definition 2. A run of a nondeterministic tree automaton \mathcal{A} on a Σ -tree v

is a S-tree (T, r), s.t.

- $r(\epsilon) = s_0;$
- $(r(q), v(q), r(q0), r(q1)) \in M$ for all $q \in \{0, 1\}^*$;

A run is accepting if every branch is accepting.

Example: $\{a, b\}$ -trees with infinitely many bs on each path.

$$\begin{aligned} \mathcal{A} &= (S, s_0, M, c); \Sigma &= \{a, b\}; \\ S &= \{q_a, q_b\}; s_0 = q_a; \\ M &= \{(q_a, a, q_a, q_a), (q_b, a, q_a, q_a), (q_a, b, q_b, q_b), (q_a, a, q_b, q_b), \ldots\}; \\ \text{Büchi } F &= \{q_b\}. \end{aligned}$$

Theorem 2. [Acceptance Game] A parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ accepts an input tree t iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A},t} = (V_0, V_1, E, c')$ from position (ε, s_0) .

•
$$V_0 = \{(w,q) \mid w \in \{0,1\}^*, q \in S\};$$

•
$$V_1 = \{(w, \tau) \mid w \in \{0, 1\}^*, \tau \in M\};$$

•
$$E = \{((w,q), (w,\tau)) \mid \tau = (q, t(w), q'_0, q'_1), \tau \in M\}$$

 $\cup \{((w,\tau), (w',q')) \mid \tau = (q, \sigma, q'_0, q'_1) \text{ and}$
 $((w' = w0 \text{ and } q' = q'_0) \text{ or } (w' = w1 \text{ and } q' = q'_1))\};$

•
$$c'(w,q) = c(q)$$
 if $q \in S$;

• $c'(w,\tau) = 0$ if $\tau \in M$.

Theorem 3. [Emptiness Game] The language of a parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ is non-empty iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A},t} = (V_0, V_1, E, c')$ from position s_0 .

•
$$V_0 = S;$$

• $V_1 = M;$ $\rbrace \leftarrow V$ is finite!

•
$$E = \{(q, \tau) \mid \tau = (q, 1, q'_0, q'_1), \tau \in M\}$$

 $\cup \{(\tau, q') \mid \tau = (q, 1, q'_0, q'_1) \text{ and }$
 $(q' = q'_0 \text{ or } q' = q'_1)\};$

•
$$c'(q) = c(q)$$
 for $q \in S$;

•
$$c(\tau) = 0$$
 for $\tau \in M$.