Automata, Games and Verification: Lecture 9

Date: June 26, 2008

Definition 1 Two nodes $x_1, x_2 \in T$ in a run tree (T, r) are similar if $|x_1| = |x_2|$ and $r(x_1) = r(x_2).$

Definition 2 A run tree (T,r) is memoryless if for all similar nodes x_1 and x_2 and for all $y \in D^*$ we have that $(x_1 \cdot y \in T \text{ iff } x_2 \cdot y \in T)$ and $r(x_1 \cdot y) = r(x_2 \cdot y)$.

Theorem 1 If an alternating Büchi Automaton A accepts a word α , then there exists a memoryless accepting run of A on α .

Proof:

- Let (T,r) be an accepting run tree on α with directions D.
- We define $\gamma: T \to \omega$ (measures the number of steps since the last visit to F):

$$-\gamma(\epsilon) = 0$$

$$\gamma(x) + 1 \quad \text{if } x$$

$$- \gamma(x \cdot d) = \begin{cases} \gamma(x) + 1 & \text{if } x \notin F; \\ 0 & \text{otherwise;} \end{cases}$$

- We define $\Delta: S \times \omega \to T$: $\Delta(s,n) = \text{leftmost } y \in T \text{ with } |y| = n, r(y) = s \text{ and } (\forall z \in T, |z| = n \land r(z) = r)$ $s \Rightarrow \gamma(z) \leq \gamma(y)$.
- We define (T', r'):

$$-\epsilon \in T, r'(\epsilon) = r(\epsilon);$$

- for
$$n \in T'$$
, $d \in D$,
 $x \cdot d \in T'$ iff $\Delta(r'(n), |n|) \cdot d \in T$;
 $r'(n \cdot d) = r(\Delta(r'(n), |n|) \cdot d)$

Claim 1: (T', r') is a run of \mathcal{A} on α .

- $r'(\epsilon) = r(\epsilon) = s_0$
- For $n \in T'$, let $q_n = \Delta(r'(n), |n|)$.
- For every $n \in T'$, $\{r(q_n \cdot d) \mid d \in D, q_n \cdot d \in T\} \models \delta(r(q_n), \alpha(|q_n|))$ and therefore $\{r'(n \cdot d) \mid d \in D, n \cdot d \in T'\} \models \delta(r'(n), \alpha(|n|)).$

Claim 2: If (T, r) is accepting, then so is (T', r'). Proof by contradiction:

- Suppose (T', r') is not accepting, then there is an infinite branch $\pi : n_0, n_1, n_2, \ldots \in$ T' and $\exists k \in \omega$ such that $\forall j \geq k : r'(b_i) \notin F$.
- Let $m_i = \Delta(r'(n_i), |n_i|)$ for $i \geq k$.
- Claim 2.1: For every $m \in T'$, $\gamma(m) \leq \gamma(\Delta(r'(m), |m|))$. Proof by induction on the length of m:

- for
$$m = \epsilon$$
, $\gamma(m) = 0$
- for $m = m' \cdot d$ (where $d \in D$),
* if $r(m') \in F$, then $\gamma(m) = 0$
* if $r(m') \notin F$, then
$$\gamma(\Delta(r'(m' \cdot d), |m' \cdot d|))$$

$$\geq (\Delta \text{ definition})$$

$$\gamma(\Delta(r'(m'), |m'|) \cdot d)$$

$$= (\gamma \text{ definition})$$

$$1 + \gamma(\Delta(r'(m'), |m'|))$$

$$\geq (\text{induction hypothesis})$$

$$1 + \gamma(m')$$

$$= (\gamma \text{ definition})$$

• We have,

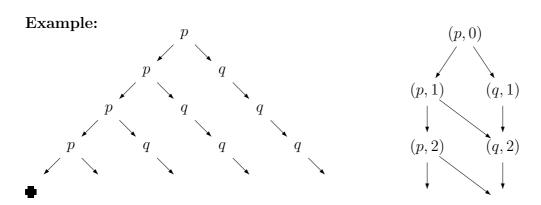
$$\gamma(n_k) < \gamma(n_{k+1}) < \dots$$
 $/\bigwedge / \bigwedge$
 $\gamma(m_k) < \gamma(m_{k+1}) < \dots$
So, for any $k' > k, \gamma(m_k) \ge k' - k$.

Since T is finitely branching, there must be a branch with an infinite suffix of non-F labeled positions. This contradicts our assumption that (T, r) is accepting.

 $\gamma(m' \cdot d)$

Definition 3 A run DAG of an alternating Büchi Automaton \mathcal{A} on word α is a DAG (V, E), where

- $V \subseteq S \times \omega$
- $E \subseteq \bigcup_{i \in \omega} (S \times \{i\}) \times (S \times \{i+1\});$
- $(s_0, 0) \in V$
- $\forall (s,i) \in V$. $\exists Y \subseteq S$ s.t. $Y \models \delta(s,\alpha(i)), Y \times \{i+1\} \subseteq V$ and $\{(s,i)\} \times (Y \times \{i+1\}) \subseteq E$.



Notation: Level $((V, E), i) = \{s \in S \mid (s, i) \in V\}$

Definition 4 A run DAG is accepting if every path has infinitely many visits to $F \times \omega$.

Corollary 1 A word α is accepted by an alternating Büchi automaton \mathcal{A} iff \mathcal{A} has an accepting run DAG on α .

Theorem 2 (Miyano and Hayashi, 1984) For every alternating Büchi automaton A, there exists a nondeterministic Büchi automaton A' with $\mathcal{L}(A) = \mathcal{L}(A')$.

Proof:

- $S' = 2^S \times 2^S$;
- $I' = \{(\{s_0\}, \emptyset)\};$
- $F' = \{(X, \emptyset) \mid X \subseteq S\};$
- $T' = \{((X, \emptyset), \sigma, (X', X' F)) \mid X' \models \bigwedge_{s \in X} \delta(s, \sigma)\}$ $\cup \{((x, W), \sigma, (X', W' \setminus F)) \mid W \neq \emptyset, W' \subseteq X', X' \models \bigwedge_{s \in X} \delta(s, \sigma),$ $W' \models \bigwedge_{s \in W} \delta(s, \sigma)\}.$

 $\mathcal{L}(\mathcal{A}')\subseteq\mathcal{L}(\mathcal{A})$:

• Let $\alpha \in L(\mathcal{A}')$ with accepting run

$$r': (X_0, W_0)(X_1, W_1)(X_2, W_2) \dots$$

where $W_0 = \emptyset, X_0 = \{s_0\}.$

- We construct the run DAG (V, E) for \mathcal{A} on α :
 - $V = \bigcup_{i \in \omega} X_i \times \{i\};$ $E = \bigcup_{i \in \omega} (\bigcup_{x \in X_i \setminus W_i} \{(x, i)\} \times (X_{i+1} \times \{i+1\})$ $\cup \bigcup_{x \in W_i} \{(x, i)\} \times \{(X_{i+1} \cap (F \cup W_{i+1})) \times \{i+1\}).$
- (V, E) is an accepting run DAG:
 - $-(s_0,0) \in V;$
 - for $(x, i) \in V$:
 - * if $x \in X_i \setminus W_i$, $X_{i+1} \models \delta(x, \alpha(i))$;
 - * if $x \in W_i$, $X_{i+1} \cap (F \cup W_{i+1}) \models \delta(x, \alpha(i))$.

- Every path through the run DAG visits F infinitely often (otherwise $W_i = \emptyset$ only for finitely many i).

$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$$
:

- Let $\alpha \in L(A')$ and (V, E) an accepting run DAG of A' on α .
- We construct a run

$$r': (X_0, W_0)(X_1, W_1)(X_2, W_2) \dots$$

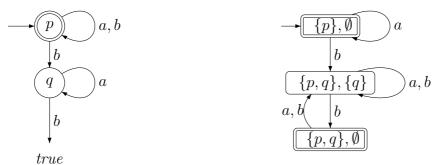
on \mathcal{A} as follows:

- $-X_0 = \{s_0\}, W_0 = \emptyset;$
- for i > 0, $X_i = Level((V, E), i)$
 - * if $W_i = \emptyset$ then $W_{i+1} = X_{i+1} \setminus F$,
 - * otherwise,

$$W_{i+1} := \{ y' \in S \setminus F \mid \exists (y,i) \in V, ((y,i),(y',i+1)) \in E, y \in W_i \}.$$

- r' is an accepting run:
 - starts with $(\{s_0\},\emptyset)$
 - obeys T':
 - * for $x \in X_i \setminus W_i$, $X_{i+1} \models \delta(x, \alpha(i))$;
 - * for $x \in W_i$, $X_{i+1} \cap (F \cup W_{i+1}) \models \delta(x, \alpha(i))$.
 - -r' is accepting (otherwise there exists a path in (V, E) that is not accepting).

Example: We translate the following *universal* automaton (all branchings are conjunctions) into an equivalent nondeterministic automaton:



Corollary 2 A language is ω -regular iff it is recognizable by an alternating Büchi automaton.

Proof:

Translation from nondeterministic Büchi automaton $(S, \{s_0\}, T, F)$ to alternating Büchi automaton (S, s_0, δ, F) with

•
$$\delta(s, \sigma) = \bigvee_{s' \in pr_3(T \cap \{s\} \times \{\sigma\} \times S)} s'$$
 for all $s \in S$

Corollary 3 Satisfiability of an LTL formula φ can be checked in time exponential in the length of φ .

Corollary 4 Validity of an LTL formula φ can be checked in time exponential in the length of φ .

Comment: Acceptance of a word α by an alternating Büchi automaton can also be characterized by a game:

- Positions of player Blue: $B = S \times \omega$;
- Positions of player Green: $G = 2^S \times \omega$;
- Edges: $\{((s,i),(X,i)) \mid X \models \delta(s,\alpha(i))\}\$ $\cup \{((X,i),(s,i+1)) \mid s \in X\}$

Blue wins a play iff $F \times \omega$ is visited infinitely often.

The word α is accepted iff Blue has a strategy to win the game from position $(s_0, 0)$. **End Comment**