Automata, Games and Verification: Lecture 6

Lemma 1 For every semi-deterministic Büchi automaton \mathcal{A} there exists a deterministic Muller automaton \mathcal{A}^{\prime} with $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

Proof:

Let $\mathcal{A}=(N \uplus D, I, T, F), d=|D|$, and let D be ordered by $<$. We construct the DMA $\left(S^{\prime},\left\{s_{0}^{\prime}\right\}, T^{\prime}, \mathcal{F}\right)$:

- $S^{\prime}=2^{N} \times\{0, \ldots, 2 d\} \rightarrow D \cup\{\llcorner \}$
- $s_{0}^{\prime}=\left(\{N \cap I\},\left(d_{1}, d_{2}, \ldots, d_{n},\right\lrcorner, \ldots\right.$, ь $\left.)\right)$,
where $\left.d_{i}<d_{i+1},\left\{d_{1}, \ldots, d_{n}\right\}=D \cap I\right\}$.
- $T^{\prime}=\left\{\left(\left(N_{1}, f_{1}\right), \sigma,\left(N_{2}, f_{2}\right)\right) \mid N_{2}=p r_{3}\left(T \cap N_{1} \times\{\sigma\} \times N\right)\right.$
$D^{\prime}=p_{3}\left(T \cap N_{1} \times\{\sigma\} \times D\right)$
$g_{1}: n \mapsto d_{2} \in D \Leftrightarrow f_{1}: n \mapsto d_{1} \in D \wedge d_{1} \rightarrow^{\sigma} d_{2}$
g_{2} : insort the elements of D^{\prime} in the empty slots of g_{1} (using $<$),
f_{2} : delete every recurrance (leaving an empty slot) $\}$;
- $\mathcal{F}=\left\{F^{\prime} \subseteq S^{\prime} \mid \exists i \in 1, \ldots, 2 d\right.$ s.t.

$$
\begin{aligned}
& f(i) \neq- \text { for all }\left(N^{\prime}, f\right) \in F^{\prime} \text { and } \\
& \left.f(i) \in F \text { for some }\left(N^{\prime}, f\right) \in F^{\prime}\right\} .
\end{aligned}
$$

$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right):$
$\overline{\text { If } \alpha \in \mathcal{L}(\mathcal{A}), \mathcal{A}}$ has an accepting run $r=n_{0} \ldots n_{j-1} d_{j} d_{j+1} d_{j+2} \ldots$
where $n_{k} \in N$ for $k<j$ and $d_{k} \in D$ for $k \geq j$.
Consider the run $r^{\prime}=\left(N_{0}, f_{0}\right),\left(N_{1}, f_{1}\right), \ldots$ of \mathcal{A}^{\prime} on α.

- $n_{k} \in N_{k}$ for all $k<j$,
- for all $k \geq j, d_{k}=f_{k}(i)$ for some $i \leq 2 d$,
- these i 's are non-increasing, and hence stabilize eventually.
- for this stable i,
$f(i) \neq\lrcorner$ for all $\left(N^{\prime}, f\right) \in \operatorname{In}\left(r^{\prime}\right)$ and $f(i) \in F$ for some $\left(N^{\prime}, f\right) \in \operatorname{In}\left(r^{\prime}\right)$.
- $\operatorname{In}\left(r^{\prime}\right) \in \mathcal{F}$.
$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \subseteq \mathcal{L}(\mathcal{A}):$
$\overline{\text { For } \alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)}, \mathcal{A}^{\prime}$ has an accepting run $r^{\prime}=\left(N_{0}, f_{0}\right),\left(N_{1}, f_{1}\right), \ldots$.
- We pick an i and an accepting set $F^{\prime} \in \mathcal{F}$ s.t. $f(i) \neq\left\llcorner\right.$ for all $\left(N^{\prime}, f\right) \in F^{\prime}$ and $f(i) \in F$ for some $\left(N^{\prime}, f\right) \in F^{\prime}$.
- We pick a $j \in \omega$ such that $f_{n}(i) \neq 屯$ for all $n>j$.
- There is a run $r=s_{0} s_{1} \ldots s_{j} f_{j+1}(i) f_{j+2}(i) f_{j+3}(i) \ldots$ of \mathcal{A} for α.
- r is accepting.

8 Linear-Time Temporal Logic (LTL)

1977: Amir Pnueli, The temporal logic of programs (Turing award 1996)

Syntax:

- Given a set of atomic propositions $A P$.
- Any atomic proposition $p \in A P$ is an LTL formula
- If φ, ψ are LTL formulars then so are
$-\neg \varphi, \varphi \wedge \phi$,
$-\bigcirc \varphi, \varphi \mathcal{U} \psi$
Abbreviations:
$\diamond \varphi \equiv$ true $\mathcal{U} \varphi$;
$\square \varphi \equiv \neg(\diamond \neg \varphi)$;
$\varphi \mathcal{W} \psi \equiv(\varphi \mathcal{U} \psi) \vee \square \varphi ;$
The temporal operators:
- X Next
\square G Always
\diamond F Eventually
$\mathcal{U} \quad$ Until
$\mathcal{W} \quad$ Weak Until
Semantics: LTL formulas are interpreted over ω-words over $2^{A P}$.
Notation: $\alpha, i \vDash \varphi$, where $\alpha \in\left(2^{A P}\right)^{\omega}, i \in \omega$.
- $\alpha, i \vDash p$ if $p \in \alpha(i)$;
- $\alpha, i \vDash \neg \varphi$ if $\alpha, i \not \vDash \varphi$;
- $\alpha, i \vDash \varphi \wedge \psi$ if $\alpha, i \vDash \varphi$ and $\alpha, i \vDash \psi$;
- $\alpha, i \vDash O \varphi$ if $\alpha, i+1 \vDash \varphi$
$\alpha, i \vDash \varphi \mathcal{U} \psi$ if there is some $j \geq i$ s.t. $\alpha, j \vDash \psi$ and for all $i \leq k<j: \alpha, k \vDash \varphi$
Abbreviation: $\alpha \vDash \varphi \equiv \alpha, 0 \vDash \varphi$

Definition 1

- $\operatorname{models}(\varphi)=\left\{\alpha \in\left(2^{A P}\right)^{w} \mid \alpha \vDash \varphi\right\}$
- an LTL formula φ is satisfiable if $\operatorname{models}(\varphi) \neq \emptyset$
- an LTL formula φ is valid if $\operatorname{models}(\varphi)=\left(2^{A P}\right)^{\omega}$

Example: LTL formulas with $A P=\{p, q\}$:

- Safety: $\square p$
- Guarantee: $\diamond p$

There are Büchi recognizable languages that are not LTL-definable.
Example: $(\emptyset \emptyset)^{*}\{p\}^{\omega}$
Definition 2 A language $L \subseteq \Sigma^{\omega}$ is non-counting iff $\exists n_{0} \in \omega . \forall n \geq n_{0} . \forall u, v \in \Sigma^{*}, \gamma \in \Sigma^{\omega}$.
$u v^{n} \gamma \in L \Leftrightarrow u v^{n+1} \gamma \in L$
Example: $L=(\emptyset \emptyset)^{*}\{p\}^{\omega}$ is counting. For every $\emptyset^{n}\{p\}^{\omega} \in L, \emptyset^{n+1}\{p\}^{\omega} \notin L$.
Theorem 1 For every LTL-formula φ, models (φ) is non-counting.

Proof:

Structural induction on φ :

- $\varphi=p$: choose $n_{0}=1$.
- $\varphi=\varphi_{1} \wedge \varphi_{2}$: By IH, φ_{1} defines non-counting language with threshold $n_{0}^{\prime} \in \omega$, φ_{2} with $n_{0}^{\prime \prime}$; choose $n_{0}=\max \left(n_{0}^{\prime}, n_{0}^{\prime \prime}\right)$;
- $\varphi=\neg \varphi_{1}$: choose $n_{0}=n_{0}^{\prime}$.
- $\varphi=\bigcirc \varphi_{1}$: choose $n_{0}=n_{0}^{\prime}+1$.
- We show for $n \geq n_{0}: u v^{n} \gamma \models O \varphi \Leftrightarrow u v^{n+1} \gamma \models O \varphi$.
- Case $u \neq \epsilon$, i.e., $u=a u^{\prime}$ for some $a \in \Sigma, u^{\prime} \in \Sigma^{*}$:
$a u^{\prime} v^{n} \gamma \models O \varphi$
iff $u^{\prime} v^{n} \gamma \models \varphi$
iff $u^{\prime} v^{n+1} \gamma \models \varphi$
iff $a u^{\prime} v^{n+1} \gamma \models O \varphi$.
- Case $u=\epsilon, v=a v^{\prime}$ for some $a \in \Sigma, v^{\prime} \in \Sigma^{*}$:

$$
\left(a v^{\prime}\right)^{n} \gamma \models O \varphi
$$

iff $\left(a v^{\prime}\right)\left(a v^{\prime}\right)^{n-1} \gamma \models O \varphi$
iff $v^{\prime}\left(a v^{\prime}\right)^{n-1} \gamma \models \varphi$
iff $v^{\prime}\left(a v^{\prime}\right)^{n} \gamma \models \varphi$
iff $\left(a v^{\prime}\right)^{n+1} \gamma \models O \varphi$.

- $\varphi=\varphi_{1} \mathcal{U} \varphi_{2}$: choose $n_{0}=\max \left(n_{0}^{\prime}, n_{0}^{\prime \prime}\right)+1$.

Claim: for $n \geq n_{0}: u v^{n} \gamma \models \varphi_{1} \mathcal{U} \varphi_{2} \Rightarrow u v^{n+1} \gamma \models \varphi_{1} \mathcal{U} \varphi_{2}$.
$-u v^{n} \gamma \models \varphi_{1} \mathcal{U} \varphi_{2} \Rightarrow \exists j . u v^{n} \gamma, j \models \varphi_{2}$ and $\forall i<j . u v^{n} \gamma, i \models \varphi_{1}$.

- Case $j \leq|u|$:
by IH, $u v^{n+1}, j \models \varphi_{2}$ and for all $i<j . u v^{n+1}, i \models \varphi_{1}$;
- Case $j>|u|$:
$u v^{n+1} \gamma, j+|v| \models \varphi_{2} ;$
for all $|u|+|v| \leq i<j+|v| . u v^{n+1} \gamma, i \models \varphi_{1}$;
By (IH), for all $i<|u|+|v| . u v v^{n} \gamma, i \models \varphi_{1}$, because $u v v^{n-1} \gamma, i \models \varphi_{1}$.
Claim: for $n \geq n_{0}: u v^{n+1} \gamma \models \varphi_{1} \mathcal{U} \varphi_{2} \Rightarrow u v^{n} \gamma \models \varphi_{1} \mathcal{U} \varphi_{2}$
$-u v^{n+1} \gamma \models \varphi_{1} \mathcal{U} \varphi_{2} \Rightarrow \exists j \cdot u v^{n+1} \gamma, j \models \varphi_{2}$ and $\forall i<j . u v^{n+1} \gamma, i \models \varphi_{1}$.
- Case $j \leq|u|+|v|$:
by IH, uvv ${ }^{n-1}, j \models \varphi_{2}$ and for all $i<j . u v v^{n-1}, i \models \varphi_{1}$;
- Case $j>|u|+|v|$: $u v^{n} \gamma, j-|v| \models \varphi_{2} ;$ for all $|u|+|v| \leq i<j . u v^{n} \gamma, i \models \varphi_{1}$;
By (IH), for all $i<|u|+|v| . u v v^{n-1} \gamma, i \models \varphi_{1}$, because $u v v^{n} \gamma, i \models \varphi_{1}$.

