Automata, Games and Verification: Lecture 6

Lemma 1 For every semi-deterministic Büchi automaton \mathcal{A} there exists a deterministic Muller automaton \mathcal{A}' with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Proof:

Let $\mathcal{A} = (N \uplus D, I, T, F)$, d = |D|, and let D be ordered by <. We construct the DMA $(S', \{s'_0\}, T', \mathcal{F})$:

- $S' = 2^N \times \{0, \dots, 2d\} \rightarrow D \cup \{\bot\}$
- $s'_0 = (\{N \cap I\}, (d_1, d_2, \dots, d_n, \square, \dots, \square)),$ where $d_i < d_{i+1}, \{d_1, \dots, d_n\} = D \cap I\}.$
- $T' = \{((N_1, f_1), \sigma, (N_2, f_2)) \mid N_2 = pr_3(T \cap N_1 \times \{\sigma\} \times N)$ $D' = pr_3(T \cap N_1 \times \{\sigma\} \times D)$ $g_1 : n \mapsto d_2 \in D \Leftrightarrow f_1 : n \mapsto d_1 \in D \land d_1 \to^{\sigma} d_2$ $g_2:$ insort the elements of D' in the empty slots of g_1 (using <), $f_2:$ delete every recurrance (leaving an *empty* slot) $\};$

•
$$\mathcal{F} = \{ F' \subseteq S' \mid \exists i \in 1, \dots, 2d \text{ s.t.} \}$$

$$f(i) \neq _$$
 for all $(N', f) \in F'$ and
 $f(i) \in F$ for some $(N', f) \in F'$.

 $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$:

If $\alpha \in \mathcal{L}(\mathcal{A})$, \mathcal{A} has an accepting run $r = n_0 \dots n_{j-1} d_j d_{j+1} d_{j+2} \dots$ where $n_k \in N$ for k < j and $d_k \in D$ for $k \ge j$. Consider the run $r' = (N_0, f_0), (N_1, f_1), \dots$ of \mathcal{A}' on α .

- $n_k \in N_k$ for all k < j,
- for all $k \ge j$, $d_k = f_k(i)$ for some $i \le 2d$,
- $\bullet\,$ these i 's are non-increasing, and hence stabilize eventually.
- for this stable i, $f(i) \neq _$ for all $(N', f) \in In(r')$ and $f(i) \in F$ for some $(N', f) \in In(r')$.
- $In(r') \in \mathcal{F}$.

 $\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A})$:

For $\alpha \in \mathcal{L}(\mathcal{A}')$, \mathcal{A}' has an accepting run $r' = (N_0, f_0), (N_1, f_1), \dots$

- We pick an *i* and an accepting set $F' \in \mathcal{F}$ s.t. $f(i) \neq _$ for all $(N', f) \in F'$ and $f(i) \in F$ for some $(N', f) \in F'$.
- We pick a $j \in \omega$ such that $f_n(i) \neq \Box$ for all n > j.
- There is a run $r = s_0 s_1 \dots s_j f_{j+1}(i) f_{j+2}(i) f_{j+3}(i) \dots$ of \mathcal{A} for α .
- r is accepting.

8 Linear-Time Temporal Logic (LTL)

1977: Amir Pnueli, The temporal logic of programs (Turing award 1996)

Syntax:

- Given a set of atomic propositions *AP*.
- Any atomic proposition $p \in AP$ is an LTL formula
- If φ, ψ are LTL formulars then so are

 $\begin{aligned} &- \neg \varphi, \ \varphi \wedge \phi, \\ &- \bigcirc \varphi, \ \varphi \, \mathcal{U} \, \psi \end{aligned}$

Abbreviations:

 $\begin{array}{l} \diamond \varphi \ \equiv true \ \mathcal{U} \ \varphi; \\ \Box \ \varphi \ \equiv \ \neg (\diamond \neg \varphi); \\ \varphi \ \mathcal{W} \ \psi \ \equiv \ (\varphi \ \mathcal{U} \ \psi) \lor \Box \varphi; \end{array}$

The *temporal operators:*

 $\begin{array}{ccc} & X & Next \\ \Box & G & Always \\ \diamond & F & Eventually \\ \mathcal{U} & & Until \\ \end{array}$

 \mathcal{W} Weak Until

Semantics: LTL formulas are interpreted over ω -words over 2^{AP} . Notation: $\alpha, i \models \varphi$, where $\alpha \in (2^{AP})^{\omega}, i \in \omega$.

- $\alpha, i \vDash p$ if $p \in \alpha(i)$;
- $\alpha, i \vDash \neg \varphi$ if $\alpha, i \nvDash \varphi$;
- $\alpha, i \vDash \varphi \land \psi$ if $\alpha, i \vDash \varphi$ and $\alpha, i \vDash \psi$;
- $\alpha, i \models \bigcirc \varphi$ if $\alpha, i + 1 \models \varphi$ $\alpha, i \models \varphi \mathcal{U} \psi$ if there is some $j \ge i$ s.t. $\alpha, j \models \psi$ and for all $i \le k < j$: $\alpha, k \models \varphi$

Abbreviation: $\alpha \vDash \varphi \equiv \alpha, 0 \vDash \varphi$

Definition 1

- $models(\varphi) = \{ \alpha \in (2^{AP})^w \mid \alpha \vDash \varphi \}$
- an LTL formula φ is satisfiable if $models(\varphi) \neq \emptyset$
- an LTL formula φ is valid if $models(\varphi) = (2^{AP})^{\omega}$

Example: LTL formulas with $AP = \{p, q\}$:

There are Büchi recognizable languages that are not LTL-definable. Example: $(\emptyset \emptyset)^* \{p\}^{\omega}$

Definition 2 A language $L \subseteq \Sigma^{\omega}$ is non-counting iff $\exists n_0 \in \omega : \forall n \ge n_0 : \forall u, v \in \Sigma^*, \gamma \in \Sigma^{\omega} :$ $uv^n \gamma \in L \iff uv^{n+1} \gamma \in L$

Example: $L = (\emptyset \emptyset)^* \{p\}^{\omega}$ is counting. For every $\emptyset^n \{p\}^{\omega} \in L$, $\emptyset^{n+1} \{p\}^{\omega} \notin L$.

Theorem 1 For every LTL-formula φ , models(φ) is non-counting.

Proof:

Structural induction on φ :

- $\varphi = p$: choose $n_0 = 1$.
- $\varphi = \varphi_1 \land \varphi_2$: By IH, φ_1 defines non-counting language with threshold $n'_0 \in \omega$, φ_2 with n''_0 ; choose $n_0 = \max(n'_0, n''_0)$;
- $\varphi = \neg \varphi_1$: choose $n_0 = n'_0$.
- $\varphi = \bigcirc \varphi_1$: choose $n_0 = n'_0 + 1$.
 - We show for $n \ge n_0$: $uv^n \gamma \models \bigcirc \varphi \iff uv^{n+1} \gamma \models \bigcirc \varphi$.
 - Case $u \neq \epsilon$, i.e., u = au' for some $a \in \Sigma, u' \in \Sigma^*$: $au'v^n \gamma \models \bigcirc \varphi$

(IH)

- $\text{iff } u'v^n\gamma\models\varphi$
- $\text{iff } u'v^{n+1}\gamma\models\varphi$
- $\text{iff } au'v^{n+1}\gamma\models \bigcirc\varphi.$
- Case $u = \epsilon, v = av'$ for some $a \in \Sigma, v' \in \Sigma^*$:

$$(av')^n \gamma \models \bigcirc \varphi$$

- iff $(av')(av')^{n-1}\gamma \models \bigcirc \varphi$
- iff $v'(av')^{n-1}\gamma \models \varphi$
- $\text{iff } v'(av')^n \gamma \models \varphi \qquad \text{(IH)}$
- iff $(av')^{n+1}\gamma \models \bigcirc \varphi$.

• $\varphi = \varphi_1 \mathcal{U} \varphi_2$: choose $n_0 = \max(n'_0, n''_0) + 1$. Claim: for $n \ge n_0$: $uv^n \gamma \models \varphi_1 \mathcal{U} \varphi_2 \Rightarrow uv^{n+1} \gamma \models \varphi_1 \mathcal{U} \varphi_2$. $- uv^n \gamma \models \varphi_1 \mathcal{U} \varphi_2 \Rightarrow \exists j . uv^n \gamma, j \models \varphi_2$ and $\forall i < j . uv^n \gamma, i \models \varphi_1$. $- \text{Case } j \le |u|$:

- by IH, uv^{n+1} , $j \models \varphi_2$ and for all i < j. uv^{n+1} , $i \models \varphi_1$;
- $\begin{array}{l} \operatorname{Case} \, j > |u|:\\ uv^{n+1}\gamma, j + |v| \models \varphi_2;\\ \text{for all } |u| + |v| \leq i < j + |v| \, . \, uv^{n+1}\gamma, i \models \varphi_1;\\ \text{By (IH), for all } i < |u| + |v| \, . \, uvv^n\gamma, i \models \varphi_1, \text{ because } uvv^{n-1}\gamma, i \models \varphi_1. \end{array}$

Claim: for $n \ge n_0$: $uv^{n+1}\gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2 \ \Rightarrow \ uv^n\gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2$

- $uv^{n+1}\gamma \models \varphi_1 \ \mathcal{U} \ \varphi_2 \ \Rightarrow \ \exists j \ . \ uv^{n+1}\gamma, j \models \varphi_2 \text{ and } \forall i < j \ . \ uv^{n+1}\gamma, i \models \varphi_1.$
- $\begin{array}{l} \operatorname{Case} j \leq |u| + |v|:\\ \text{by IH, } uvv^{n-1}, j \models \varphi_2 \text{ and for all } i < j . uvv^{n-1}, i \models \varphi_1;\\ \operatorname{Case} j > |u| + |v|:\\ uv^n \gamma, j |v| \models \varphi_2;\\ \text{for all } |u| + |v| \leq i < j . uv^n \gamma, i \models \varphi_1;\\ \text{By (IH), for all } i < |u| + |v| . uvv^{n-1} \gamma, i \models \varphi_1, \text{ because } uvv^n \gamma, i \models \varphi_1. \end{array}$