Automata, Games and Verification: Lecture 4

Theorem 1 For each Büchi automaton \mathcal{A} there exists a Büchi automaton \mathcal{A}^{\prime} such that $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$.

Helpful definitions:

- A level ranking is a function $g: S \rightarrow\{0, \ldots, 2 \cdot|S|\} \cup\{\perp\}$ such that if $g(s)$ is odd, then $s \notin F$.
- Let \mathcal{R} be the set of all level rankings.
- A level ranking g^{\prime} covers a level ranking g if, for all $s, s^{\prime} \in S$, if $g(s) \geq 0$ and $\left(s, \sigma, s^{\prime}\right) \in T$, then $0 \leq g^{\prime}\left(s^{\prime}\right) \leq g(s)$.

Proof:

We define $\mathcal{A}^{\prime}=\left(S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right)$ with

- $S^{\prime}=\mathcal{R} \times 2^{S}$;
- $I^{\prime}=\left\{\left\langle g_{0}, \emptyset\right\rangle\right.$, where $g_{0}(s)=2 \cdot|S|$ if $s \in I$ and $g_{0}(s)=\perp$ if $s \notin I$;
- $T=\left\{\left(\langle g, \emptyset\rangle, \sigma,\left\langle g^{\prime}, P^{\prime}\right\rangle\right) \mid g^{\prime}\right.$ covers g, and $P^{\prime}=\left\{s^{\prime} \in S \mid g^{\prime}\left(s^{\prime}\right)\right.$ is even $\}$
$\cup\left\{\left(\langle g, P\rangle, \sigma,\left\langle g^{\prime}, P^{\prime}\right\rangle\right) \mid P \neq \emptyset, g^{\prime}\right.$ covers g, and $P^{\prime}=\left\{s^{\prime} \in S \mid\left(s, \sigma, s^{\prime}\right) \in T, s \in P, g^{\prime}\left(s^{\prime}\right)\right.$ is even $\} ;$
- $F=\mathcal{R} \times\{\emptyset\}$.
(Intuition: \mathcal{A}^{\prime} guesses the level rankings for the run DAG. The P component tracks the states whose corresponding vertices in the run DAG have even ranks. Paths that traverse such vertices should eventually reach a vertex with odd rank. The acceptance condition ensures that all paths visit a vertex with odd rank infinitely often.)
$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \subseteq \Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A}):$
- Let $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$ and let $r^{\prime}=\left(g_{0}, P_{0}\right),\left(g_{1}, P_{1}\right), \ldots$ be an accepting run of \mathcal{A}^{\prime} on α.
- Let $G=(V, E)$ be the run DAG of \mathcal{A} on α.
- The function $f:\langle s, l\rangle \mapsto g_{l}(s), s \in S_{l}, l \in \omega$ is a ranking for G :
- if $g_{i}(s)$ is odd then $s \notin F$;
- for all $\left(\langle s, l\rangle,\left\langle s^{\prime}, l+1\right\rangle\right) \in E, g_{l+1}\left(s^{\prime}\right) \leq g_{l}(s)$.
- f is an odd ranking:
- Assume otherwise. Then there exists a path $\left\langle s_{0}, l_{0}\right\rangle,\left\langle s_{1}, l_{1}\right\rangle,\left\langle s_{2}, l_{2}\right\rangle, \ldots$ in G such that for infinitely many $i \in \omega, f\left(\left\langle s_{i}, l_{i}\right\rangle\right)$ is even.
- Hence, there exists an index $j \in \omega$, such that $f\left(\left\langle s_{j}, l_{j}\right\rangle\right)$ is even and, for all $k \geq 0, f\left(\left\langle s_{j+k}, l_{j+k}\right\rangle\right)=f\left(\left\langle s_{j}, l_{j}\right\rangle\right)$.
- Since r^{\prime} is accepting, $P_{j^{\prime}}=\emptyset$ for infinitely many j^{\prime}. Let j^{\prime} be the smallest such index $\geq j$.
- $P_{j^{\prime}+1+k} \neq \emptyset$ for all $k \geq 0$.
- Contradiction.
- Since there exists an odd ranking, $\alpha \notin \mathcal{L}(\mathcal{A})$.
$\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right):$
- Let $\alpha \in \Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$ and let $G=(V, E)$ be the run DAG of \mathcal{A} on α.
- There exists an odd ranking f on G.
- There is a run $r^{\prime}=\left(g_{0}, P_{0}\right),\left(g_{1}, P_{1}\right), \ldots$ of \mathcal{A}^{\prime} on α, where

$$
\begin{aligned}
& g_{l}(s)= \begin{cases}f(\langle s, l\rangle) & \text { if } s \in S_{l} ; \\
\perp & \text { otherwise; }\end{cases} \\
& P_{0}=\emptyset, \\
& P_{l+1}= \begin{cases}\left\{s \in S \mid g_{l+1}(s) \text { is even }\right\} & \text { if } P_{l}=\emptyset, \\
\left\{s^{\prime} \in S \mid \exists s \in S_{l} \cap P_{l} .\left(\langle s, l\rangle,\left\langle s^{\prime}, l+1\right\rangle\right) \in E, g_{l+1}\left(s^{\prime}\right) \text { is even }\right\} & \text { otherwise. }\end{cases}
\end{aligned}
$$

- r^{\prime} is accepting. (Assume there is an index i such that $P_{j} \neq \emptyset$ for all $j \geq i$. Then there exists a path in G that visits an even rank infinitely often.)
- Hence, $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

6 Muller Automata

Definition $1 A$ (nondeterministic) Muller automaton \mathcal{A} over alphabet Σ is a tuple (S, I, T, F) :

- S,I,T : defined as before
- $\mathcal{F} \subseteq 2^{S}$: set of accepting subsets, called the table.

Definition 2 A run r of a Muller automaton is accepting iff $\operatorname{In}(r) \in F$

Example:

- for $\mathcal{F}=\{\{q\}\}: \mathcal{L}(\mathcal{A})=(a \cup b)^{*} b^{\omega}$
- for $\mathcal{F}=\{\{q\},\{p, q\}\}: \mathcal{L}(\mathcal{A})=\left(a^{*} b\right)^{\omega}$

Theorem 2 For every (deterministic) Büchi automaton \mathcal{A}, there is (deterministic) Muller automaton \mathcal{A}^{\prime}, such that $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

Proof:

$$
\begin{aligned}
& S^{\prime}=S, I^{\prime}=I, T^{\prime}=T \\
& \mathcal{F}^{\prime}=\{Q \subseteq S \mid Q \cap F \neq \emptyset\}
\end{aligned}
$$

Theorem 3 For every nondeterministic Muller automaton \mathcal{A} there is a nondeterministic Büchi automaton \mathcal{A}^{\prime} such that $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

Proof:

- $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$
- $S^{\prime}=S \cup \bigcup_{i=1}^{n}\{i\} \times F_{i} \times 2^{F_{i}}$
- $I^{\prime}=I$
- $T^{\prime}=T$
$\cup\left\{\left(s, \sigma,\left(i, s^{\prime}, \emptyset\right)\right) \mid 1 \leq i \leq n,\left(s, \sigma, s^{\prime}\right) \in T, s^{\prime} \in F_{i}\right\}$
$\cup\left\{\left((i, s, R), \sigma,\left(i^{\prime}, s^{\prime}, R^{\prime}\right)\right) \mid 1 \leq i \leq n, s, s^{\prime} \in F_{i}, R, R^{\prime} \subseteq F_{i}\right.$,
$\left(s, \sigma, s^{\prime}\right) \in T, R^{\prime}=R \cup\{s\}$ if $R \neq F_{i}$ and $R^{\prime}=\emptyset$ if $\left.R=F_{i}\right\}$
- $F^{\prime}=\bigcup_{i=1}^{n}\{i\} \times F_{i} \times\left\{F_{i}\right\}$

Boolean language operations: complementation, union, intersection.
Theorem 4 The languages recognizable by deterministic Muller automata are closed under boolean operations.

Proof:

- $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$:
$-S^{\prime}=S, I^{\prime}=I, T^{\prime}=T, \mathcal{F}^{\prime}=2^{S} \backslash \mathcal{F}$
- $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right)$:
$-S^{\prime}=S_{1} \times S_{2}, I^{\prime}=I_{1} \times I_{2}$,
$-T^{\prime}=\left\{\left(\left(s_{1}, s_{2}\right), \sigma,\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right) \mid\left(s_{1}, \sigma, s_{1}^{\prime}\right) \in T_{1},\left(s_{2}, \sigma, s_{2}^{\prime}\right) \in T_{2}\right\}$
$-\mathcal{F}^{\prime}=\left\{\left\{\left(p_{1}, q_{1}\right), \ldots,\left(p_{n}, q_{n}\right)\right\} \mid\left\{p_{1}, \ldots, p_{n}\right\} \in \mathcal{F}_{1},\left\{q_{1}, \ldots, q_{n}\right\} \in \mathcal{F}_{2}\right\}$
- $\mathcal{L}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}\left(\mathcal{A}_{2}\right)=\Sigma^{\omega} \backslash\left(\left(\Sigma^{\omega} \backslash \mathcal{L}\left(\mathcal{A}_{1}\right)\right) \cap\left(\Sigma^{\omega} \backslash \mathcal{L}\left(\mathcal{A}_{2}\right)\right)\right)$.

Theorem 5 A language \mathcal{L} is recognizable by a deterministic Muller automaton iff \mathcal{L} is a boolean combination of languages \vec{W} where $W \subseteq \Sigma^{*}$ is regular.

Proof:

(\Leftarrow)

- If W is regular, then \vec{W} is recognizable by a deterministic Büchi automaton;
- hence, \vec{W} is recognizable by a deterministic Muller automaton;
- hence, the boolean combination \mathcal{L} is recognizable by a deterministic Muller automaton.
(\Rightarrow) left as an exercise.

