### Automata, Games and Verification: Lecture 4

Date: May 15, 2008

**Theorem 1** For each Büchi automaton  $\mathcal{A}$  there exists a Büchi automaton  $\mathcal{A}'$  such that  $\mathcal{L}(\mathcal{A}') = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$ .

Helpful definitions:

- A level ranking is a function  $g: S \to \{0, \dots, 2 \cdot |S|\} \cup \{\bot\}$  such that if g(s) is odd, then  $s \notin F$ .
- Let  $\mathcal{R}$  be the set of all level rankings.
- A level ranking g' covers a level ranking g if, for all  $s, s' \in S$ , if  $g(s) \geq 0$  and  $(s, \sigma, s') \in T$ , then  $0 \leq g'(s') \leq g(s)$ .

#### **Proof:**

We define  $\mathcal{A}' = (S', I', T', F')$  with

- $S' = \mathcal{R} \times 2^S$ :
- $I' = \{ \langle g_0, \emptyset \rangle, \text{ where } g_0(s) = 2 \cdot |S| \text{ if } s \in I \text{ and } g_0(s) = \bot \text{ if } s \notin I;$
- $T = \{(\langle g, \emptyset \rangle, \sigma, \langle g', P' \rangle) \mid g' \text{ covers } g, \text{ and } P' = \{s' \in S \mid g'(s') \text{ is even }\}$   $\cup \{(\langle g, P \rangle, \sigma, \langle g', P' \rangle) \mid P \neq \emptyset, g' \text{ covers } g, \text{ and }$  $P' = \{s' \in S \mid (s, \sigma, s') \in T, s \in P, g'(s') \text{ is even }\};$
- $F = \mathcal{R} \times \{\emptyset\}.$

(Intuition:  $\mathcal{A}'$  guesses the level rankings for the run DAG. The P component tracks the states whose corresponding vertices in the run DAG have even ranks. Paths that traverse such vertices should eventually reach a vertex with odd rank. The acceptance condition ensures that all paths visit a vertex with odd rank infinitely often.)

$$\mathcal{L}(\mathcal{A}') \subseteq \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$$
:

- Let  $\alpha \in \mathcal{L}(\mathcal{A}')$  and let  $r' = (g_0, P_0), (g_1, P_1), \ldots$  be an accepting run of  $\mathcal{A}'$  on  $\alpha$ .
- Let G = (V, E) be the run DAG of A on  $\alpha$ .
- The function  $f: \langle s, l \rangle \mapsto q_l(s), s \in S_l, l \in \omega$  is a ranking for G:
  - if  $q_i(s)$  is odd then  $s \notin F$ ;
  - for all  $(\langle s, l \rangle, \langle s', l+1 \rangle) \in E$ ,  $g_{l+1}(s') \leq g_l(s)$ .
- f is an odd ranking:

- Assume otherwise. Then there exists a path  $\langle s_0, l_0 \rangle, \langle s_1, l_1 \rangle, \langle s_2, l_2 \rangle, \ldots$  in G such that for infinitely many  $i \in \omega$ ,  $f(\langle s_i, l_i \rangle)$  is even.
- Hence, there exists an index  $j \in \omega$ , such that  $f(\langle s_j, l_j \rangle)$  is even and, for all  $k \geq 0$ ,  $f(\langle s_{j+k}, l_{j+k} \rangle) = f(\langle s_j, l_j \rangle)$ .
- Since r' is accepting,  $P_{j'} = \emptyset$  for infinitely many j'. Let j' be the smallest such index  $\geq j$ .
- $-P_{j'+1+k} \neq \emptyset$  for all  $k \geq 0$ .
- Contradiction.
- Since there exists an odd ranking,  $\alpha \notin \mathcal{L}(\mathcal{A})$ .

## $\Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$ :

- Let  $\alpha \in \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$  and let G = (V, E) be the run DAG of  $\mathcal{A}$  on  $\alpha$ .
- There exists an odd ranking f on G.
- There is a run  $r' = (g_0, P_0), (g_1, P_1), \ldots$  of  $\mathcal{A}'$  on  $\alpha$ , where  $g_l(s) = \begin{cases} f(\langle s, l \rangle) & \text{if } s \in S_l; \\ \bot & \text{otherwise;} \end{cases}$   $P_0 = \emptyset,$   $P_{l+1} = \begin{cases} \{s \in S \mid g_{l+1}(s) \text{ is even } \} & \text{if } P_l = \emptyset, \\ \{s' \in S \mid \exists s \in S_l \cap P_l : (\langle s, l \rangle, \langle s', l+1 \rangle) \in E, g_{l+1}(s') \text{ is even} \} & \text{otherwise.} \end{cases}$
- r' is accepting. (Assume there is an index i such that  $P_j \neq \emptyset$  for all  $j \geq i$ . Then there exists a path in G that visits an even rank infinitely often.)
- Hence,  $\alpha \in \mathcal{L}(\mathcal{A}')$ .

# 6 Muller Automata

**Definition 1** A (nondeterministic) Muller automaton  $\mathcal{A}$  over alphabet  $\Sigma$  is a tuple (S, I, T, F):

- $\bullet$  S, I, T: defined as before
- $\mathcal{F} \subseteq 2^S$ : set of accepting subsets, called the table.

**Definition 2** A run r of a Muller automaton is accepting iff  $In(r) \in F$ 

### Example:



• for 
$$\mathcal{F} = \{\{q\}\}: \mathcal{L}(\mathcal{A}) = (a \cup b)^* b^{\omega}$$

• for 
$$\mathcal{F} = \{ \{q\}, \{p, q\} \} : \mathcal{L}(\mathcal{A}) = (a^*b)^{\omega}$$

**Theorem 2** For every (deterministic) Büchi automaton  $\mathcal{A}$ , there is (deterministic) Muller automaton  $\mathcal{A}'$ , such that  $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$ .

**Proof:** 

$$S' = S, I' = I, T' = T$$

$$\mathcal{F}' = \{Q \subseteq S \mid Q \cap F \neq \emptyset\}$$

**Theorem 3** For every nondeterministic Muller automaton  $\mathcal{A}$  there is a nondeterministic Büchi automaton  $\mathcal{A}'$  such that  $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$ .

**Proof:** 

• 
$$\mathcal{F} = \{F_1, \ldots, F_n\}$$

• 
$$S' = S \cup \bigcup_{i=1}^n \{i\} \times F_i \times 2^{F_i}$$

• 
$$I' = I$$

• 
$$T' = T$$
  
 $\cup \{(s, \sigma, (i, s', \emptyset)) | 1 \le i \le n, (s, \sigma, s') \in T, s' \in F_i\}$   
 $\cup \{((i, s, R), \sigma, (i', s', R')) | 1 \le i \le n, s, s' \in F_i, R, R' \subseteq F_i,$   
 $(s, \sigma, s') \in T, R' = R \cup \{s\} \text{ if } R \ne F_i \text{ and } R' = \emptyset \text{ if } R = F_i\}$ 

• 
$$F' = \bigcup_{i=1}^n \{i\} \times F_i \times \{F_i\}$$

Boolean language operations: complementation, union, intersection.

**Theorem 4** The languages recognizable by deterministic Muller automata are closed under boolean operations.

**Proof:** 

• 
$$\mathcal{L}(\mathcal{A}') = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$$
:  
-  $S' = S, I' = I, T' = T, \mathcal{F}' = 2^{S} \setminus \mathcal{F}$ 

• 
$$\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$$
:  
-  $S' = S_1 \times S_2, I' = I_1 \times I_2,$   
-  $T' = \{((s_1, s_2), \sigma, (s'_1, s'_2)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2\}$   
-  $\mathcal{F}' = \{\{(p_1, q_1), \dots, (p_n, q_n)\} \mid \{p_1, \dots, p_n\} \in \mathcal{F}_1, \{q_1, \dots, q_n\} \in \mathcal{F}_2\}$ 

• 
$$\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2) = \Sigma^{\omega} \setminus ((\Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A}_1)) \cap (\Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A}_2))).$$

**Theorem 5** A language  $\mathcal{L}$  is recognizable by a deterministic Muller automaton iff  $\mathcal{L}$  is a boolean combination of languages  $\overrightarrow{W}$  where  $W \subseteq \Sigma^*$  is regular.

### **Proof:**

 $(\Leftarrow)$ 

- ullet If W is regular, then  $\overrightarrow{W}$  is recognizable by a deterministic Büchi automaton;
- hence,  $\overrightarrow{W}$  is recognizable by a deterministic Muller automaton;
- $\bullet$  hence, the boolean combination  ${\mathcal L}$  is recognizable by a deterministic Muller automaton.
- $(\Rightarrow)$  left as an exercise.