Automata, Games and Verification: Lecture 3

Definition 1 (Substrings) Let $\alpha \in \Sigma^{*}$. For two integers $n \leq m$ we define

$$
\alpha(n, m)=\alpha(n) \alpha(n+1) \ldots \alpha(m)
$$

Definition 2 (Limit) For $W \subseteq \Sigma^{*}$:

$$
\vec{W}=\left\{\alpha \in \Sigma^{\omega} \mid \text { there exist infinitely many } n \in \omega \text { s.t. } \alpha(0, n) \in W\right\} .
$$

Theorem 1 An ω-language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there is a regular language $W \subseteq \Sigma^{*}$ s.t. $L=\vec{W}$.

Proof:

Let L be the language of a deterministic Büchi automaton \mathcal{A}; let W be the regular language of \mathcal{A} as a deterministic finite-word automaton. We show that $L=\vec{W}$.

$$
\alpha \in L
$$

iff for the unique run r of \mathcal{A} on $\alpha, \operatorname{In}(r) \cap F \neq \emptyset$
iff $\alpha(0, n) \in W$ for infinitely many $n \in \omega$
iff $\alpha \in \vec{W}$.

5 Complementation

Theorem 2 For any deterministic Büchi automaton \mathcal{A}, there exists a Büchi automaton \mathcal{A}^{\prime} such that $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$.

Proof:

We construct \mathcal{A}^{\prime} as follows:

- $S^{\prime}=(S \times\{0\}) \cup((S \backslash F) \times\{1\})$.
- $I^{\prime}=I \times\{0\}$.
- $T^{\prime}=\left\{\left((s, 0), \sigma,\left(s^{\prime}, 0\right)\right) \mid\left(s, \sigma, s^{\prime}\right) \in T\right\} \cup\left\{\left((s, 0), \sigma,\left(s^{\prime}, 1\right)\right) \mid\left(s, \sigma, s^{\prime}\right) \in T\right\} \cup$ $\left\{((s, 1), \sigma,(s, 1)) \mid\left(s, \sigma, s^{\prime}\right) \in T, s^{\prime} \in S-F\right\}$.
- $F^{\prime}=(S-F) \times\{1\}$.
$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \subseteq \Sigma^{\omega}-\mathcal{L}(\mathcal{A}):$
- For $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$ we have an accepting run

$$
r^{\prime}:\left(s_{0}, 0\right)\left(s_{1}, 0\right) \ldots\left(s_{j}, 0\right)\left(s_{0}^{\prime}, 1\right)\left(s_{1}^{\prime}, 1\right) \ldots
$$

on \mathcal{A}^{\prime}.

- Hence,

$$
r: s_{0} s_{1} s_{2} \ldots s_{j} s_{0}^{\prime} s_{1}^{\prime} \ldots
$$

is the unique run on α in \mathcal{A}.

- Since $s_{0}^{\prime}, s_{1}^{\prime}, \ldots \in S \backslash F, \operatorname{In}(r) \subseteq S \backslash F$. Hence, r is not accepting and $\alpha \in \Sigma^{\omega}-\mathcal{L}(\mathcal{A})$
$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \supseteq \Sigma^{\omega}-\mathcal{L}(\mathcal{A}):$
- We assume $\alpha \notin \mathcal{L}(\mathcal{A})$. Since \mathcal{A} is deterministic and complete there exists a run

$$
r: s_{0} s_{1} s_{2} \ldots
$$

for α on \mathcal{A}, but $\operatorname{In}(r) \cap F=\emptyset$.

- Thus there exists a $k \in \omega$ such that $s_{j} \notin F$ for $j>k$.
- This gives us the run

$$
r^{\prime}:\left(s_{0}, 0\right)\left(s_{1}, 0\right) \ldots\left(s_{k}, 0\right)\left(s_{k+1}, 1\right)\left(s_{k+2}, 1\right) \ldots
$$

for α on \mathcal{A}^{\prime} with the property $\operatorname{In}\left(r^{\prime}\right) \subseteq((S-F) \times\{1\})=F^{\prime}$.

- Hence, r^{\prime} is accepting and $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

Example:

Reference: The following construction for the complementation of nondeterministic Büchi automata is taken from: Orna Kupferman and Moshe Y. Vardi, Weak alternating automata are not that weak. ACM Trans. Comput. Logic 2, 3 (Jul. 2001), 408-429.

Definition 3 Let $\mathcal{A}=(S, I, T, F)$ be a nondeterministic Büchi automaton. The run DAG of \mathcal{A} on a word $\alpha \in \Sigma^{\omega}$ is the directed acyclic graph $G=(V, E)$ where

- $V=\bigcup_{l \geq 0}\left(S_{l} \times\{l\}\right)$ where $S_{0}=I$ and $s_{l+1}=\bigcup_{s \in S_{l},\left(s, \alpha(l), s^{\prime}\right) \in T}\left\{s^{\prime}\right\}$
- $E=\left\{\left(\langle s, l\rangle,\left\langle s^{\prime}, l+1\right\rangle\right) \mid l \geq 0,\left(s, \alpha(l), s^{\prime}\right) \in T\right\}$

A path in a run DAG is accepting iff it visits F infinitely often. The automaton accepts α if some path is accepting.

Definition $4 A$ ranking for G is a function $f: V \rightarrow\{0, \ldots, 2 \cdot|S|\}$ such that

- for all $\langle s, l\rangle \in V$, if $f(\langle s, l\rangle)$ is odd then $s \notin F$;
- for all $\left(\langle s, l\rangle,\left\langle s^{\prime}, l^{\prime}\right\rangle\right) \in E, f\left(\left\langle s^{\prime}, l^{\prime}\right\rangle\right) \leq f(\langle s, l\rangle)$.

A ranking is odd iff for all paths $\left\langle s_{0}, l_{0}\right\rangle,\left\langle s_{1}, l_{1}\right\rangle,\left\langle s_{2}, l_{2}\right\rangle, \ldots$ in G, there is a $i \geq 0$ such that $f\left(\left\langle s_{i}, l_{i}\right\rangle\right)$ is odd and, for all $j \geq 0, f\left(\left\langle s_{i+j}, l_{i+j}\right\rangle\right)=f\left(\left\langle s_{i}, l_{i}\right\rangle\right)$.

Lemma 1 If there exists an odd ranking for G, then \mathcal{A} does not accept α.

Proof:

- In an odd ranking, every path eventually gets trapped in a some odd rank.
- If $f(\langle s, l\rangle)$ is odd, then $s \notin F$.
- Hence, every path visits F only finitely often.

Let G^{\prime} be a subgraph of G. We call a vertex $\langle s, l\rangle$

- safe in G^{\prime} if for all vertices $\left\langle s^{\prime}, l^{\prime}\right\rangle$ reachable from $\langle s, l\rangle, s^{\prime} \notin F$, and
- endangered in G^{\prime} if only finitely many vertices are reachable.

We define an infinite sequence $G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \ldots$ of DAGs inductively as follows:

- $G_{0}=G$
- $G_{2 i+1}=G_{2 i} \backslash\left\{\langle s, l\rangle \mid\langle s, l\rangle\right.$ is endangered in $\left.G_{2 i}\right\}$
- $G_{2 i+2}=G_{2 i+1} \backslash\left\{\langle s, l\rangle \mid\langle s, l\rangle\right.$ is safe in $\left.G_{2 i}\right\}$.

Lemma 2 If \mathcal{A} does not accept α, then the following holds: For every $i \geq 0$ there exists an l_{i} such that for all $j \geq l_{i}$ at most $|S|-i$ vertices of the form $\left\langle_{-}, j\right\rangle$ are in $G_{2 i}$.

Proof:

Proof by induction on i :

- $i=0$: In G, for every l, there are at most $|S|$ vertices of the form $\langle-, l\rangle$.
- $i \rightarrow i+1$:
- Case $G_{2 i}$ is finite: then $G_{2(i+1)}$ is empty.
- Case $G_{2 i}$ is infinite:
* There must exist a safe vertex $\langle s, l\rangle$ in $G_{2 i+1}$. (Otherwise, we can construct a path in G with infinitely many visits to F).
* We choose $l_{i+1}=l$.
* We prove that for all $j \geq l$, there are at most $|S|-(i+1)$ vertices of the form $\langle-, j\rangle$ in $G_{2 i+2}$.
- Since $\langle s, l\rangle \in G_{2 i+1}$, it is not endangered in $G_{2 i}$.
- Hence, there are infinitely many vertices reachable from $\langle s, l\rangle$ in $G_{2 i}$.
- By König's Lemma, there exists an infinite path $p=\langle s, l\rangle,\left\langle s_{1}, l+\right.$ $1\rangle,\langle s, l+2\rangle, \ldots$ in $G_{2 i}$.
- No vertex on p is endangered (there is an infinite path). Therefore, p is in $G_{2 i+1}$.
- All vertices on p are safe ($\langle s, l\rangle$ is safe) in $G_{2 i+1}$. Therefore, none of the vertices on p are in $G_{2 i+2}$.
- Hence, for all $j \geq l$, the number of vertices of the form $\left\langle_{-}, l\right\rangle$ is strictly smaller than their number in $G_{2 i}$.

Lemma 3 If \mathcal{A} does not accept α, then there exists an odd ranking for G.

Proof:

- We define $f(\langle s, l\rangle)=2 i$ if $\langle s, l\rangle$ is endangered in $G_{2 i}$ and
- $f(\langle s, l\rangle)=2 i+1$ if $\langle s, l\rangle$ is safe in $G_{2 i}$.
- f is a ranking:
- by Lemma $2, G_{j}$ is empty for $j>2 \cdot|S|$. Hence, $f: V \rightarrow\{0, \ldots, 2 \cdot|S|\}$.
- if $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is a successor of $\langle s, l\rangle$, then $f\left(\left\langle s^{\prime}, l^{\prime}\right\rangle\right) \leq f(\langle s, l\rangle)$
* Let $j:=f(\langle s, l\rangle)$.
* Case j is even: vertex $\langle s, l\rangle$ is endangered in G_{j}; hence either $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is not in G_{j}, and therefore $f(\langle s, l\rangle)<j$; or $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is in G_{j} and endangered; hence, $f(\langle s, l\rangle)=j$.
* Case j is odd: vertex $\langle s, l\rangle$ is safe in G_{j}; hence either $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is not in G_{j}, and therefore $f(\langle s, l\rangle)<j$; or $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is in G_{j} and safe; hence, $f(\langle s, l\rangle)=j$.
- f is an odd ranking:
* For every path $\left\langle s_{0}, l_{0}\right\rangle,\left\langle s_{1}, l_{1}\right\rangle,\left\langle s_{2}, l_{2}\right\rangle, \ldots$ in G there exists an $i \geq 0$ such that for all $j \geq 0, f\left(\left\langle s_{i+j}, l_{i+j}\right\rangle\right)=f\left(\left\langle s_{i}, l_{i}\right\rangle\right)$.
* Suppose that $k:=f\left(\left\langle s_{i}, l_{i}\right\rangle\right)$ is even. Thus, $\left\langle s_{i}, l_{i}\right\rangle$ is endangered in G_{k}.
* Since $f\left(\left\langle s_{i+j}, l_{i+j}\right\rangle\right)=k$ for all $j \geq 0$, all $\left\langle s_{i+j}, l_{i+j}\right\rangle$ are in G_{k}.
* This contradicts that $\left\langle s_{i}, l_{i}\right\rangle$ is endangered in G_{k}.

