## Automata, Games and Verification: Lecture 2

## $3 \omega$-regular Languages

Definition 1 The $\omega$-regular expressions are defined as follows.

- If $R$ is an regular expression where $\epsilon \notin \mathcal{L}(R)$, then $R^{\omega}$ is an $\omega$-regular expression.
$\mathcal{L}\left(R^{\omega}\right)=\mathcal{L}(R)^{\omega}$
where $L^{\omega}=\left\{u_{0} u_{1} \ldots\left|u_{i} \in L,\left|u_{i}\right|>0\right.\right.$ for all $\left.i \in \omega\right\}$ for $L \subseteq \Sigma^{*}$.
- If $R$ is a regular expression and $U$ is an $\omega$-regular expression, then $R \cdot U$ is an $\omega$-regular expression.
$\mathcal{L}(R \cdot U)=\mathcal{L}(R) \cdot \mathcal{L}(U)$
where $L_{1} \cdot L_{2}=\left\{r \cdot u \mid r \in L_{1}, u \in L_{2}\right\}$ for $L_{1} \subseteq \Sigma^{*}, L_{2} \subseteq \Sigma^{\omega}$.
- If $U_{1}$ and $U_{2}$ are $\omega$-regular expressions, then $U_{1}+U_{2}$ is an $\omega$-regular expression. $\mathcal{L}\left(U_{1}+U_{2}\right)=\mathcal{L}\left(U_{1}\right) \cup \mathcal{L}\left(U_{2}\right)$.

Definition 2 An $\omega$-regular language is a finite union of $\omega$-languages of the form $U \cdot V^{\omega}$ where $U, V \subseteq \Sigma^{*}$ are regular languages.

Theorem 1 If $L_{1}$ and $L_{2}$ are Büchi recognizable, then so is $L_{1} \cup L_{2}$.

## Proof:

Let $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ be Büchi automata that recognize $L_{1}$ and $L_{2}$, respectively. We construct an automaton $\mathcal{A}^{\prime}$ for $L_{1} \cup L_{2}$ :

- $S^{\prime}=S_{1} \cup S_{2}$ (w.l.o.g. we assume $S_{1} \cap S_{2}=\emptyset$ );
- $I^{\prime}=I_{1} \cup I_{2}$;
- $T^{\prime}=T_{1} \cup T_{2}$;
- $F^{\prime}=F_{1} \cup F_{2}$.
$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}\left(\mathcal{A}_{2}\right)$ : For $\alpha \in \mathcal{L}\left(A^{\prime}\right)$, we have an accepting run $r=s_{0} s_{1} s_{2} \ldots$ of $\alpha$ in $\mathcal{A}^{\prime}$. If $s_{0} \in S_{1}$, then $r$ is an accepting run on $\mathcal{A}_{1}$, otherwise $s_{0} \in S_{2}$ and $r$ is an accepting run on $\mathcal{A}_{2}$.
$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \supseteq \mathcal{L}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}\left(\mathcal{A}_{2}\right)$ : For $i \in\{1,2\}$ and $\alpha \in \mathcal{L}\left(\mathcal{A}_{i}\right)$, there is an accepting run $r=s_{0} s_{1} s_{2} \ldots$ on $\mathcal{A}_{i}$. The run $r$ is accepting for $\alpha$ in $\mathcal{A}^{\prime}$.

Theorem 2 If $L_{1}$ and $L_{2}$ are Büchi recognizable, then so is $L_{1} \cap L_{2}$.

## Proof:

We construct an automaton $\mathcal{A}^{\prime}$ from $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ :

- $S^{\prime}=S_{1} \times S_{2} \times\{1,2\}$
- $I^{\prime}=I_{1} \times I_{2} \times\{1\}$
- $T^{\prime}=\left\{\left(\left(s_{1}, s_{2}, 1\right), \sigma,\left(s_{1}^{\prime}, s_{2}^{\prime}, 1\right)\right) \mid\left(s_{1}, \sigma, s_{1}^{\prime}\right) \in T_{1},\left(s_{2}, \sigma, s_{2}^{\prime}\right) \in T_{2}, s_{1} \notin F_{1}\right\}$ $\cup\left\{\left(\left(s_{1}, s_{2}, 1\right), \sigma,\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right)\right) \mid\left(s_{1}, \sigma, s_{1}^{\prime}\right) \in T_{1},\left(s_{2}, \sigma, s_{2}^{\prime}\right) \in T_{2}, s_{1} \in F_{1}\right\}$
$\cup\left\{\left(\left(s_{1}, s_{2}, 2\right), \sigma,\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right)\right) \mid\left(s_{1}, \sigma, s_{1}^{\prime}\right) \in T_{1},\left(s_{2}, \sigma, s_{2}^{\prime}\right) \in T_{2}, s_{2} \notin F_{2}\right\}$
$\cup\left\{\left(\left(s_{1}, s_{2}, 2\right), \sigma,\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right)\right) \mid\left(s_{1}, \sigma, s_{1}^{\prime}\right) \in T_{1},\left(s_{2}, \sigma, s_{2}^{\prime}\right) \in T_{2}, s_{2} \in F_{2}\right\}$
- $F^{\prime}=\left\{\left(s_{1}, s_{2}, 2\right) \mid s_{1} \in S_{1}, s_{2} \in F_{2}\right\}$
$\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right):$
- $r^{\prime}=\left(s_{1}^{0}, s_{2}^{0}, t^{0}\right)\left(s_{1}^{1}, s_{2}^{1}, t^{1}\right) \ldots$ is a run of $\mathcal{A}^{\prime}$ on input word $\sigma$ iff $r_{1}=s_{1}^{0} s_{1}^{1} \ldots$ is a run of $\mathcal{A}_{1}$ on $\sigma$ and $r_{2}=s_{2}^{0} s_{2}^{1} \ldots$ is a run of $\mathcal{A}_{2}$ on $\sigma$.
- $r$ is accepting iff $r_{1}$ is accepting and $r_{2}$ is accepting.

Theorem 3 If $L_{1}$ is a regular language and $L_{2}$ is Büchi recognizable, then $L_{1} \cdot L_{2}$ is Büchi-recognizable.

## Proof:

Let $\mathcal{A}_{1}$ be a finite-word automaton that recognizes $L_{1}$ and $\mathcal{A}_{2}$ be a Büchi automaton that recognizes $L_{2}$. We construct:

- $S^{\prime}=S_{1} \cup S_{2}$ (w.l.o.g. we assume $S_{1} \cap S_{2}=\emptyset$;
- $I^{\prime}= \begin{cases}I_{1} & \text { if } I_{1} \cap F_{1}=\emptyset \\ I_{1} \cup I_{2} & \text { otherwise; }\end{cases}$
- $T^{\prime}=T_{1} \cup T_{2} \cup\left\{\left(s, \sigma, s^{\prime}\right) \mid(s, \sigma, f) \in T_{1}, f \in F_{1}, s^{\prime} \in I_{2}\right\} ;$
- $F^{\prime}=F_{2}$.

Theorem 4 If $L$ is a regular language then $L^{\omega}$ is Büchi recognizable.

## Proof:

Let $\mathcal{A}$ be a finite word automaton; let w.l.o.g. $\epsilon \notin \mathcal{L}(\mathcal{A})$.

- Step 1: Ensure that all initial states have no incoming transitions. We modify $\mathcal{A}$ as follows:
$-S^{\prime}=S \cup\left\{s_{\text {new }}\right\} ;$
$-I^{\prime}=\left\{s_{\text {new }}\right\} ;$
- $T^{\prime}=T \cup\left\{\left(s_{\text {new }}, \sigma, s^{\prime}\right) \mid\left(s, \sigma, s^{\prime}\right) \in T\right.$ for some $\left.s \in I\right\} ;$
$-F^{\prime}=F$.
This modification does not affect the language of $\mathcal{A}$.
- Step 2: Add loop:
$-S^{\prime \prime}=S^{\prime} ; I^{\prime \prime}=I^{\prime} ;$
$-T^{\prime \prime}=T^{\prime} \cup\left\{\left(s, \sigma, s_{\text {new }} \mid\left(s, \sigma, s^{\prime}\right) \in T^{\prime}\right.\right.$ and $\left.s^{\prime} \in F^{\prime}\right\} ;$
- $F^{\prime \prime}=I^{\prime}$.
$\mathcal{L}\left(\mathcal{A}^{\prime \prime}\right) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)^{\omega}:$
- Assume $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime \prime}\right)$ and $s_{0} s_{1} s_{2} \ldots$ is an accepting run for $\alpha$ in $\mathcal{A}^{\prime \prime}$.
- Hence, $s_{i}=s_{\text {new }} \in F^{\prime \prime}=I^{\prime}$ for infinitely many indices $i: i_{0}, i_{1}, i_{2}, \ldots$.
- This provides a series of runs in $\mathcal{A}^{\prime}$ :
- run $s_{0} s_{1} \ldots s_{i_{1}-1} s$ on $w_{1}=\alpha(0) \alpha(1) \ldots \alpha\left(i_{1}-1\right)$ for some $s \in F^{\prime}$;
$-\operatorname{run} s_{i_{1}} s_{i_{1}+1} \ldots s_{i_{2}-1} s$ on $w_{2}=\alpha\left(i_{1}\right) \alpha\left(i_{1}+1\right) \ldots \alpha\left(i_{2}-1\right)$ for some $s \in F^{\prime}$;
- ...
- This yields $w_{k} \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$ for every $k \geq 1$.
- Hence, $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)^{\omega}$.
$\mathcal{L}\left(\mathcal{A}^{\prime \prime}\right) \supseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)^{\omega}:$
- Let $\alpha=w_{1} w_{2} w_{3} \in \Sigma^{\omega}$ such that $w_{k} \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$ for all $k \geq 1$.
- For each $k$, we choose an accepting run $s_{0}^{k} s_{1}^{k} s_{2}^{k} \ldots s_{n_{k}}^{k}$ of $\mathcal{A}^{\prime}$ on $w_{k}$.
- Hence, $s_{0}^{k} \in I^{\prime}$ and $s_{n_{k}}^{k} \in F^{\prime}$ for all $k \geq 1$.
- Thus,

$$
s_{0}^{1} \ldots s_{n_{1}-1}^{1} s_{0}^{2} \ldots s_{n_{2}-1}^{2} s_{0}^{3} \ldots s_{n_{3}-1}^{3} \ldots
$$

is an accepting run on $\alpha$ in $\mathcal{A}^{\prime \prime}$.

- Hence, $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime \prime}\right)$.

Theorem 5 (Büchi's Characterization Theorem (1962)) An w-language is Büchi recognizable iff it is $\omega$-regular.

## Proof:

" $\Leftarrow$ " follows from previous constructions.
$" \Rightarrow$ ": Given a Büchi automaton $\mathcal{A}$, we consider for each pair $s, s^{\prime} \in S$ the regular language

$$
W_{s, s^{\prime}}=\left\{u \in \Sigma^{*} \mid \text { finite-word automaton }\left(S,\{s\}, T,\left\{s^{\prime}\right\}\right) \text { accepts } u\right\}
$$

Claim: $\mathcal{L}(\mathcal{A})=\bigcup_{s \in I, s^{\prime} \in F} W_{s, s^{\prime}} \cdot W_{s^{\prime}, s^{\prime}}{ }^{\omega}$.

$$
\mathcal{L}(\mathcal{A}) \subseteq \bigcup_{s \in I, s^{\prime} \in F} W_{s, s^{\prime}} \cdot W_{s^{\prime}, s^{\prime}}{ }^{\omega}:
$$

- Let $\alpha \in \mathcal{L}(\mathcal{A})$.
- Then there is an accepting run $r$ for $\alpha$ on $\mathcal{A}$, which begins at some $s \in I$ and visits some $s^{\prime} \in F$ infinitely often:

$$
r: s \xrightarrow{\alpha_{0}} s^{\prime} \xrightarrow{\alpha_{1}} s^{\prime} \xrightarrow{\alpha_{2}} s^{\prime} \xrightarrow{\alpha_{3}} s^{\prime} \xrightarrow{\alpha_{4}} s^{\prime} \rightarrow \ldots,
$$

where $\alpha=\alpha_{0} \cdot \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4} \cdot \ldots$..
(Notation:
$s_{0} \xrightarrow{\sigma_{0} \sigma_{1}, \ldots \sigma_{k}} s_{k+1}$ : there exist $s_{1}, \ldots s_{k}$ s.t. $\left(s_{i}, \sigma_{i}, s_{i+1}\right) \in$ for all $0 \leq i \leq k$.)

- Hence, $\alpha_{0} \in W_{s, s^{\prime}}$ and $\alpha_{k} \in W_{s^{\prime}, s^{\prime}}$ for $k>0$ and thus $\alpha \in W_{s, s^{\prime}} \cdot W_{s^{\prime}, s^{\prime}}{ }^{\omega}$ for some $s \in I, s^{\prime} \in F$.

$$
\mathcal{L}(\mathcal{A}) \supseteq \bigcup_{s \in I, s^{\prime} \in F} W_{s, s^{\prime}} \cdot W_{s^{\prime}, s^{\prime}} \text { : }
$$

- Let $\alpha=\alpha_{0} \cdot \alpha_{1} \cdot \alpha_{2} \cdot \ldots$ with $\alpha_{0} \in W_{s, s^{\prime}}$ and $\alpha_{k} \in W_{s^{\prime}, s^{\prime}}$ for some $s \in I, s^{\prime} \in F$.
- Then the run

$$
r: s \xrightarrow{\alpha_{0}} s^{\prime} \xrightarrow{\alpha_{1}} s^{\prime} \xrightarrow{\alpha_{2}} s^{\prime} \xrightarrow{\alpha_{3}} s^{\prime} \xrightarrow{\alpha_{4}} s^{\prime} \rightarrow
$$

exists and is accepting since $s^{\prime} \in F$.

- It follows that $\alpha \in \mathcal{L}(\mathcal{A})$.


## 4 Deterministic Büchi Automata

Theorem 6 The language $L=\left\{\alpha \in \Sigma^{\omega} \mid \operatorname{In}(\alpha)=\{b\}\right\}$ over $\Sigma=\{a, b\}$ is not recognizable by a deterministic Büchi automaton.

## Proof:

- Assume that $L$ is recognized by the deterministic Büchi automaton $\mathcal{A}$.
- Since $b^{\omega} \in L$, there is a run $r_{0}=s_{0,0} s_{0,1} s_{0,2}, \ldots$ with $s_{0, n_{0}} \in F$ for some $n_{0} \in \omega$.
- Similarly, $b^{n_{0}} a b^{\omega} \in L$ and there must be a run $r_{1}=s_{0,0} s_{0,1} s_{0,2} \ldots s_{0, n_{0}} s_{1} s_{1,0} s_{1,1} s_{1,2} \ldots$ with $s_{1, n_{1}} \in F$
- Repeating this argument, there is a word $b^{n_{0}} a b^{n_{1}} a b^{n_{2}} a \ldots$ accepted by $\mathcal{A}$.
- This contradicts $L=\mathcal{L}(\mathcal{A})$.

