18 Complementation of Parity Tree Automata

Reference: W. Thomas: Languages, Automata and Logic, Handbook of formal languages, Volume 3.

Theorem 1 For each parity tree automaton \mathcal{A} over Σ there is a parity tree automaton \mathcal{A}' with $\mathcal{L}(\mathcal{A}') = T_{\Sigma} - \mathcal{L}(\mathcal{A})$.

Proof:

- \mathcal{A} does not accept some tree t iff Player 1 has a winning memoryless strategy f in $\mathcal{G}_{\mathcal{A},t}$ from (ε, s_0)
- Strategy

$$f: \{0,1\}^* \times M \to \{0,1\}^* \times S$$

can be represented as

$$f': \{0,1\}^* \times M \to \{0,1\}$$

(where $f(u,(q,\sigma,q_0',q_1')) = (u \cdot i,q_i')$ iff $f'(u,\tau) = i$).

• f' is isomorphic to

$$g:\{0,1\}^*\to (M\to\{0,1\})$$

 $(M \to \{0,1\})$ is the finite "local strategy")

• Hence, \mathcal{A} does not accept t iff

(1) there is a
$$(M \to \{0, 1\})$$
-tree v such that
(2) for all $i_0, i_1, i_2, \ldots \in \{0, 1\}^{\omega}$
(3) for all $\tau_0, \tau_1, \ldots \in M^{\omega}$
(4) if

- for all j ,

 $\tau_j = (q, a, q'_0, q'_1)$
 $\Rightarrow a = t(i_0, i_1, \ldots, i_j)$ and

 $-i_0 i_1 \ldots = v(\varepsilon)(\tau_0)v(i_0)(\tau_1)\ldots$

then the generated state sequence $q_0q_1 \dots$ with $q_0 = s_0$, $(q_j, a, q'_0, q'_1) = \tau_j$, $q_{j+1} = q_{v(i_1, \dots, i_j)(\tau_j)}$ violates c.

Date: July 17, 2008

• Condition (4) is a property of words over

$$\Sigma' = \underbrace{(M \to \{0,1\})}_{t} \times \underbrace{\Sigma}_{t} \times \underbrace{M}_{\tau} \times \underbrace{\{0,1\}}_{i}$$

and can be checked by a parity word automaton $A_4 = (S_4, \{s_4\}, T_4, c_4)$:

```
-S_{4} = S \cup \{\bot\};
-S_{4} = S_{0};
-T_{4} = \{(q, (f, a, (q, a, q'_{0}, q'_{1}), i), q'_{i}) \mid q \in S, f : M \to \{0, 1\},
(q, a, q'_{0}, q'_{1}) \in M, i = f(q, a, q'_{0}, q'_{1})\}
\cup \{(q, (f, a, (q, a', q'_{0}, q'_{1}), i), \bot) \mid a \neq a' \text{ or } i \neq f(q, a', q'_{0}, q'_{1})\}
\cup \{(\bot, a, \bot) \mid a \in \Sigma'\};
-c_{4}(q) = c(q) + 1 \text{ for } q \in S;
-c_{4}(\bot) = 0.
```

- Condition (3) is a property of words $(M \to \{0,1\}) \times \Sigma \times \{0,1\}$ which results from (4) by universal quantification (= complement; project; complement) \Rightarrow there is a deterministic parity word automaton \mathcal{A}_3 that checks (3).
- Condition (2) defines a property of $(M \to \{0,1\}) \times \Sigma$ -trees. It can be checked by a tree automaton $\mathcal{A}_2 = (S_2, s_2, M_2, c_2)$, simulating \mathcal{A}_3 along each path:

$$-S_2 = S_3;$$

$$-S_2 = S_3;$$

$$-M_2 = \{(q, (f, a), q'_0, q'_1) \mid (q, (f, a, 0), q'_0) \in T_3, (q, (f, a, 1), q'_1) \in T_3\};$$

$$-c_2 = c_1.$$

• Condition (1) is a property on Σ -trees: Use nondeterminism to guess $M \to \{0,1\}$ label: $\mathcal{A}_1 = (S_1, s_1, M_1, c_1)$, where

$$-S_1 = S_2;$$

$$-s_1 = s_2;$$

$$- M_1 = \{ (q, a, q'_0, q'_1) \mid \exists f : M \to \{0, 1\}. (q, (f, a), q'_0, q'_1) \in M_2 \};$$

$$-c_1=c_2.$$

19 Monadic Second-Order Theory of Two Successors (S2S)

Syntax:

- first-order variable set $V_1 = \{x_0, x_1, \ldots\}$
- second-order variable set $V_2 = \{X_0, X_1, \ldots\}$
- Terms t:

$$t ::= \epsilon \mid x \mid t0 \mid t1$$

• Formulas φ :

$$\varphi ::= t \in X \mid t_1 = t_2 \mid \neg \varphi \mid \varphi_0 \lor \varphi_1 \mid \exists x. \varphi \mid \exists X. \varphi$$

Semantics:

- first-order valuation $\sigma_1: V_1 \to \mathbb{B}^*$
- second-order valuation $\sigma_2: V_2 \to 2^{\mathbb{B}^*}$

Semantics of terms:

- $\llbracket \epsilon \rrbracket = \epsilon$
- $\bullet \ \llbracket x \rrbracket_{\sigma_1} = \sigma_1(x)$
- $[t0]_{\sigma_1} = [t]_{\sigma_1} 0$
- $[t1]_{\sigma_1} = [t]_{\sigma_1} 1$

Semantics of formulas:

- $\sigma_1, \sigma_2 \models t \in X \text{ iff } \llbracket t \rrbracket_{\sigma_1} \in \sigma_2(X)$
- $\sigma_1, \sigma_2 \models t_1 = t_2 \text{ iff } \llbracket t_1 \rrbracket_{\sigma_1} = \llbracket t_2 \rrbracket_{\sigma_1}$
- $\sigma_1, \sigma_2 \models \neg \varphi \text{ iff } \sigma_1, \sigma_2 \not\models \varphi$
- $\sigma_1, \sigma_2 \models \varphi_0 \lor \varphi_1$ iff $\sigma_1, \sigma_2 \models \varphi_0$ or $\sigma_1, \sigma_2 \models \varphi_1$
- $\sigma_1, \sigma_2 \models \exists x_i. \varphi \text{ iff there is a } a \in \mathbb{B}^* \text{ s.t.}$

$$\sigma'_1(y) = \begin{cases} \sigma_1(y) & \text{if } x \neq y, \\ a & \text{otherwise;} \end{cases}$$

and $\sigma_1', \sigma_2 \models \varphi$

• $\sigma_1, \sigma_2 \models \exists X_i.\varphi$ iff there is a $A \subseteq \mathbb{B}^*$ s.t.

$$\sigma_2'(Y) = \begin{cases} \sigma_2(Y) & \text{if } X \neq Y \\ A & \text{otherwise;} \end{cases}$$

and $\sigma_1, \sigma_2' \models \varphi$

Examples:

• "node x is a prefix of node y"

$$x \leqslant y \quad \Leftrightarrow \quad \forall X.((y \in X \land \forall z(z0 \in X \Rightarrow z \in X) \land \forall z.(z1 \in X \Rightarrow z \in X)) \Rightarrow x \in X)$$

• "X is linearly ordered by \leq "

Chain(X)
$$\Leftrightarrow \forall x. \forall y. ((x \in X \land y \in X) \Rightarrow (x \leqslant y \lor y \leqslant x))$$

• "X is a path"

$$\begin{array}{lll} \operatorname{Path}(X) & \Leftrightarrow & \operatorname{Chain}(X) \wedge \neg \exists Y. \ (X \subseteq Y \wedge X \neq Y \wedge \operatorname{Chain}(Y)) \\ X \subseteq Y & \Leftrightarrow & \forall z. (z \in X \Rightarrow z \in Y) \\ X = Y & \Leftrightarrow & X \subseteq Y \wedge Y \subseteq X \end{array}$$

Theorem 2 For each Muller tree automaton $\mathcal{A} = (S, s_0, M, \mathcal{F})$ over $\Sigma = 2^{V_2}$ there is a S2S formula φ over V_2 s.t. $t \in \mathcal{L}(\mathcal{A})$ iff $\sigma_2 \models \varphi$ where $\sigma_2(P) = \{q \in \{0, 1\}^* \mid P \in t(q)\}$.

Theorem 3 For every S2S formula φ over V_1, V_2 there is a Muller tree automaton \mathcal{A} over $\Sigma = 2^{V_1 \cup V_2}$ such that $t \in \mathcal{L}(\mathcal{A})$ iff $\sigma_1, \sigma_2 \models \varphi$ where

$$\sigma_1(x) = q \text{ iff } x \in t(q);
\sigma_2(X) = \{q \in \{0, 1\}^* \mid X \in t(q)\}.$$

Theorem 4 S2S is decidable.

SnS is the monadic second order theory of n successors.

Theorem 5 SnS is decidable.

20 Synthesis

The Synthesis Problem: Let i be a Boolean input variable, and O be a set of Boolean output variables. Given an LTL specification φ over $O \cup \{i\}$, decide if there exists an implementation that satisfies φ for all possible inputs.

Construction:

