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18 Complementation of Parity Tree Automata

Reference: W. Thomas: Languages, Automata and Logic, Handbook of formal lan-
guages, Volume 3.

Theorem 1 For each parity tree automaton A over X there is a parity tree automaton

A with L(A') = Ts — L(A).
Proof:

e A does not accept some tree t iff Player 1 has a winning memoryless strategy
fin G4, from (g, sg)

e Strategy
f:{0,1}* x M — {0,1}* x S

can be represented as

F1{0,1} x M — {0,1}

(where f(u,(q,0,9,q1)) = (u-1,q) iff f'(u,7)=1).

e [’ is isomorphic to

g:{0,1}* - (M — {0,1})
(M — {0, 1} is the finite “local strategy”)
e Hence, A does not accept t iff

(1) there is a (M — {0, 1})-tree v such that
(2) for all io,’il, ig, BRNS {0, 1}w
(3) for all 7o, 7y,... € M¥

(4) if
— for all j,
7 = (4,0, 40, 1)
= a = t(io,il, R ,ij) and
- ioil L. = U(S)(TQ)U(io)(Tl) NN

then the generated state sequence qoq; . ..
with qo = So, (QJa a, Q(,)7 Qi) = Tj,
dj+1 = Qu(iy,....i;)(7;)
violates c.



e Condition (4) is a property of words over

r_
Y =(WM-—={0,1}) x ¥ x M x{0,1}

v t T i

and can be checked by a parity word automaton Ay = (Sy, {s4}, T4, ¢4):
— S4 = S0;
- Ti=A{(q,(f,a,(q, 0,9, ¢1),7).¢) | ¢ € S, f : M — {0,1},
(Qa a, Q(/)a qg) € Mv.l. = f(Q7 a, Q67 (]1)}
U {(a,(f,a, (¢, 0,45, 41),%), L) [ a# a or i # f(q,d',q5,0)}
U {(Lal)laeX}
— ¢4(q) = c(q) + 1 for g € S;
- C4(J_) =0.
e Condition (3) is a property of words (M — {0,1}) x ¥ x {0, 1} which results
from (4) by universal quantification (= complement; project; complement) =
there is a deterministic parity word automaton Az that checks (3).

e Condition (2) defines a property of (M — {0,1}) x X-trees. It can be checked
by a tree automaton Ay = (Ss, $2, Ma, ¢3), simulating A3 along each path:

— So = S3;
— S2 = 833
— My ={(q,(f,a),q40,41) | (¢, (f,a,0),q)) € T3, (q, (f,a,1),q}) € T5};
— Co = (Cq.

e Condition (1) is a property on Y-trees: Use nondeterminism to guess M —
{0,1} label: A; = (51, s1, M1, 1), where

— 51 = 5y;
— 517 825
- Ml = {(qaa'a Q67qi) | Elf M — {07 1}(q7 (f7 a)aQéaqi) € MQ}a
— C1 = Co.

19 Monadic Second-Order Theory of Two Successors

(S28)
Syntax:

e first-order variable set V; = {zg,z1,...}
e second-order variable set Vo = { Xy, X1,...}

e Terms t:

to=el|xz|t0]tl



Formulas ¢:

pu=teX |ti=ta| |V |Trp|IXp

Semantics:

first-order valuation o; : V| — B*

second-order valuation o, : Vo — 2B

Semantics of terms:

[ =e

[+1,, = o1(2)
[t0],, = [t],,0
[t1],, = [1],,1

Semantics of formulas:

® 01,09 ): te X iff [[t]]al € UQ(X)
® 01,09 ): tl = t2 iff [[tl]]ol = [[tQ]]O_l
® 01,09 ): % iffO'l,O'Q l;éﬁp
® 01,09 = wo Vo iff 01,00 = o or 01,00 = o1
e 01,09 | Jz;.p iff there is a a € B* s.t.
! o Ol(y) lfl’ # Y,
71(y) = { a otherwise;
and 0,09 =
e 01,09 | 3X,.¢ iff there is a A C B* s.t.
, oY) HX #Y
75 (Y) = { A otherwise;
and 01,0, = ¢
Examples:
e “node z is a prefix of node y”
<y © VX (yeXAVz:0e X =2 X)AVe(zle X =2z X)) =2 € X)
e “X is linearly ordered by <”

Chain(X) & VaVy.((zeXAyeX)=(r<yVy<ux))



e “X is a path”

Path(X) < Chain(X)A-3Y. (X CY AX #Y A Chain(Y))
XCY & Va(zeX=2z€Y)
X=Y & XCYAYCX

Theorem 2 For each Muller tree automaton A = (S, sq, M, F) over 3 = 2"2 there is a
528 formula ¢ over Vy s.t. t € L(A) iff oo = ¢ where o2(P) ={q € {0,1}" | P €t(q)}.

Theorem 3 For every S25 formula ¢ over Vi, Vs, there is a Muller tree automaton A
over ¥ = 2192 gych that t € L(A) iff 01,09 = ¢ where

o1(x) = qiff z € t(q);
o2(X) = {ge{0,1}" | X et(q)}.

Theorem 4 525 is decidable.
SnS is the monadic second order theory of n successors.

Theorem 5 SnS is decidable.

20 Synthesis

The Synthesis Problem: Let i be a Boolean input variable, and O be a set of Boolean
output variables. Given an LTL specification ¢ over O U {i}, decide if there exists an
implementation that satisfies ¢ for all possible inputs.

Construction:

LTL specification

!

Alternating Biichi word automaton A,

|

Nondeterministic Biichi word automaton A:O

|

Deterministic parity word automaton Ag

|

Deterministic parity tree automaton A7
|
Empty?
Yes: ¢ not realizable No: ¢ realizable
winning strategy
in emptiness game
defines implementation.



