18 Complementation of Parity Tree Automata

Reference: W. Thomas: Languages, Automata and Logic, Handbook of formal languages, Volume 3.

Theorem 1 For each parity tree automaton \mathcal{A} over Σ there is a parity tree automaton \mathcal{A}^{\prime} with $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=T_{\Sigma}-\mathcal{L}(\mathcal{A})$.

Proof:

- \mathcal{A} does not accept some tree t iff Player 1 has a winning memoryless strategy f in $\mathcal{G}_{\mathcal{A}, t}$ from $\left(\varepsilon, s_{0}\right)$
- Strategy

$$
f:\{0,1\}^{*} \times M \rightarrow\{0,1\}^{*} \times S
$$

can be represented as

$$
f^{\prime}:\{0,1\}^{*} \times M \rightarrow\{0,1\}
$$

(where $f\left(u,\left(q, \sigma, q_{0}^{\prime}, q_{1}^{\prime}\right)\right)=\left(u \cdot i, q_{i}^{\prime}\right)$ iff $\left.f^{\prime}(u, \tau)=i\right)$.

- f^{\prime} is isomorphic to

$$
g:\{0,1\}^{*} \rightarrow(M \rightarrow\{0,1\})
$$

$(M \rightarrow\{0,1\}$ is the finite "local strategy")

- Hence, \mathcal{A} does not accept t iff
(1) there is a $(M \rightarrow\{0,1\})$-tree v such that
(2) for all $i_{0}, i_{1}, i_{2}, \ldots \in\{0,1\}^{\omega}$
(3) for all $\tau_{0}, \tau_{1}, \ldots \in M^{\omega}$
(4) if
- for all j, $\tau_{j}=\left(q, a, q_{0}^{\prime}, q_{1}^{\prime}\right)$
$\Rightarrow a=t\left(i_{0}, i_{1}, \ldots, i_{j}\right)$ and
$-i_{0} i_{1} \ldots=v(\varepsilon)\left(\tau_{0}\right) v\left(i_{0}\right)\left(\tau_{1}\right) \ldots$
then the generated state sequence $q_{0} q_{1} \ldots$
with $q_{0}=s_{0},\left(q_{j}, a, q_{0}^{\prime}, q_{1}^{\prime}\right)=\tau_{j}$,
$q_{j+1}=q_{v\left(i_{1}, \ldots, i_{j}\right)\left(\tau_{j}\right)}$
violates c.
- Condition (4) is a property of words over

$$
\Sigma^{\prime}=\underbrace{(M \rightarrow\{0,1\})}_{v} \times \underbrace{\Sigma}_{t} \times \underbrace{M}_{\tau} \times \underbrace{\{0,1\}}_{i}
$$

and can be checked by a parity word automaton $\mathcal{A}_{4}=\left(S_{4},\left\{s_{4}\right\}, T_{4}, c_{4}\right)$:

$$
\begin{aligned}
- & S_{4}= \\
- & S \cup\{\perp\} \\
- & s_{4}= \\
- & s_{0} ; \\
- & T_{4}= \\
& \left\{\left(q,\left(f, a,\left(q, a, q_{0}^{\prime}, q_{1}^{\prime}\right), i\right), q_{i}^{\prime}\right) \mid q \in S, f: M \rightarrow\{0,1\}\right. \\
& \left.\quad\left(q, a, q_{0}^{\prime}, q_{1}^{\prime}\right) \in M, i=f\left(q, a, q_{0}^{\prime}, q_{1}^{\prime}\right)\right\} \\
& \cup\left\{\left(q,\left(f, a,\left(q, a^{\prime}, q_{0}^{\prime}, q_{1}^{\prime}\right), i\right), \perp\right) \mid a \neq a^{\prime} \text { or } i \neq f\left(q, a^{\prime}, q_{0}^{\prime}, q_{1}^{\prime}\right)\right\} \\
& \cup\left\{(\perp, a, \perp) \mid a \in \Sigma^{\prime}\right\} \\
- & c_{4}(q)=c(q)+1 \text { for } q \in S \\
- & c_{4}(\perp)=0
\end{aligned}
$$

- Condition (3) is a property of words $(M \rightarrow\{0,1\}) \times \Sigma \times\{0,1\}$ which results from (4) by universal quantification ($=$ complement; project; complement) \Rightarrow there is a deterministic parity word automaton \mathcal{A}_{3} that checks (3).
- Condition (2) defines a property of $(M \rightarrow\{0,1\}) \times \Sigma$-trees. It can be checked by a tree automaton $\mathcal{A}_{2}=\left(S_{2}, s_{2}, M_{2}, c_{2}\right)$, simulating \mathcal{A}_{3} along each path:
$-S_{2}=S_{3} ;$
$-s_{2}=s_{3} ;$
- $M_{2}=\left\{\left(q,(f, a), q_{0}^{\prime}, q_{1}^{\prime}\right) \mid\left(q,(f, a, 0), q_{0}^{\prime}\right) \in T_{3},\left(q,(f, a, 1), q_{1}^{\prime}\right) \in T_{3}\right\} ;$
$-c_{2}=c_{1}$.
- Condition (1) is a property on Σ-trees: Use nondeterminism to guess $M \rightarrow$ $\{0,1\}$ label: $\mathcal{A}_{1}=\left(S_{1}, s_{1}, M_{1}, c_{1}\right)$, where
$-S_{1}=S_{2}$;
$-s_{1}=s_{2}$;
$-M_{1}=\left\{\left(q, a, q_{0}^{\prime}, q_{1}^{\prime}\right) \mid \exists f: M \rightarrow\{0,1\} .\left(q,(f, a), q_{0}^{\prime}, q_{1}^{\prime}\right) \in M_{2}\right\} ;$
$-c_{1}=c_{2}$.

19 Monadic Second-Order Theory of Two Successors (S2S)

Syntax:

- first-order variable set $V_{1}=\left\{x_{0}, x_{1}, \ldots\right\}$
- second-order variable set $V_{2}=\left\{X_{0}, X_{1}, \ldots\right\}$
- Terms t :

$$
t::=\epsilon|x| t 0 \mid t 1
$$

- Formulas φ :

$$
\varphi::=t \in X\left|t_{1}=t_{2}\right| \neg \varphi\left|\varphi_{0} \vee \varphi_{1}\right| \exists x . \varphi \mid \exists X . \varphi
$$

Semantics:

- first-order valuation $\sigma_{1}: V_{1} \rightarrow \mathbb{B}^{*}$
- second-order valuation $\sigma_{2}: V_{2} \rightarrow 2^{\mathbb{B}^{*}}$

Semantics of terms:

- $\llbracket \epsilon \rrbracket=\epsilon$
- $\llbracket x \rrbracket_{\sigma_{1}}=\sigma_{1}(x)$
- $\llbracket t 0 \rrbracket_{\sigma_{1}}=\llbracket t \rrbracket_{\sigma_{1}} 0$
- $\llbracket t 1 \rrbracket_{\sigma_{1}}=\llbracket t \rrbracket_{\sigma_{1}} 1$

Semantics of formulas:

- $\sigma_{1}, \sigma_{2} \models t \in X$ iff $\llbracket t \rrbracket_{\sigma_{1}} \in \sigma_{2}(X)$
- $\sigma_{1}, \sigma_{2} \models t_{1}=t_{2}$ iff $\llbracket t_{1} \rrbracket_{\sigma_{1}}=\llbracket t_{2} \rrbracket_{\sigma_{1}}$
- $\sigma_{1}, \sigma_{2} \models \neg \varphi$ iff $\sigma_{1}, \sigma_{2} \not \models \varphi$
- $\sigma_{1}, \sigma_{2} \models \varphi_{0} \vee \varphi_{1}$ iff $\sigma_{1}, \sigma_{2} \models \varphi_{0}$ or $\sigma_{1}, \sigma_{2} \models \varphi_{1}$
- $\sigma_{1}, \sigma_{2} \models \exists x_{i} . \varphi$ iff there is a $a \in \mathbb{B}^{*}$ s.t.

$$
\sigma_{1}^{\prime}(y)= \begin{cases}\sigma_{1}(y) & \text { if } x \neq y \\ a & \text { otherwise }\end{cases}
$$

and $\sigma_{1}^{\prime}, \sigma_{2} \models \varphi$

- $\sigma_{1}, \sigma_{2} \models \exists X_{i} . \varphi$ iff there is a $A \subseteq \mathbb{B}^{*}$ s.t.

$$
\sigma_{2}^{\prime}(Y)= \begin{cases}\sigma_{2}(Y) & \text { if } X \neq Y \\ A & \text { otherwise }\end{cases}
$$

and $\sigma_{1}, \sigma_{2}^{\prime} \models \varphi$

Examples:

- "node x is a prefix of node y "

$$
x \leqslant y \quad \Leftrightarrow \quad \forall X .((y \in X \wedge \forall z(z 0 \in X \Rightarrow z \in X) \wedge \forall z \cdot(z 1 \in X \Rightarrow z \in X)) \Rightarrow x \in X)
$$

- " X is linearly ordered by \leqslant "

$$
\operatorname{Chain}(X) \Leftrightarrow \forall x \cdot \forall y \cdot((x \in X \wedge y \in X) \Rightarrow(x \leqslant y \vee y \leqslant x))
$$

- " X is a path"

$$
\begin{aligned}
\operatorname{Path}(X) & \Leftrightarrow \quad \operatorname{Chain}(X) \wedge \neg \exists Y .(X \subseteq Y \wedge X \neq Y \wedge \text { Chain }(Y)) \\
X \subseteq Y & \Leftrightarrow \quad \forall z \cdot(z \in X \Rightarrow z \in Y) \\
X=Y & \Leftrightarrow \quad X \subseteq Y \wedge Y \subseteq X
\end{aligned}
$$

Theorem 2 For each Muller tree automaton $\mathcal{A}=\left(S, s_{0}, M, \mathcal{F}\right)$ over $\Sigma=2^{V_{2}}$ there is a S2S formula φ over V_{2} s.t. $t \in \mathcal{L}(\mathcal{A})$ iff $\sigma_{2} \models \varphi$ where $\sigma_{2}(P)=\left\{q \in\{0,1\}^{*} \mid P \in t(q)\right\}$.

Theorem 3 For every S2S formula φ over V_{1}, V_{2} there is a Muller tree automaton \mathcal{A} over $\Sigma=2^{V_{1} \cup V_{2}}$ such that $t \in \mathcal{L}(\mathcal{A})$ iff $\sigma_{1}, \sigma_{2} \models \varphi$ where

$$
\begin{aligned}
\sigma_{1}(x) & =q \text { iff } x \in t(q) \\
\sigma_{2}(X) & =\left\{q \in\{0,1\}^{*} \mid X \in t(q)\right\} .
\end{aligned}
$$

Theorem 4 S2S is decidable.
SnS is the monadic second order theory of n successors.
Theorem 5 SnS is decidable.

20 Synthesis

The Synthesis Problem: Let i be a Boolean input variable, and O be a set of Boolean output variables. Given an LTL specification φ over $O \cup\{i\}$, decide if there exists an implementation that satisfies φ for all possible inputs.

Construction:

LTL specification φ
 \downarrow

Alternating Büchi word automaton \mathcal{A}_{φ} \downarrow
Nondeterministic Büchi word automaton $\mathcal{A}_{\varphi}^{\prime}$
\downarrow
Deterministic parity word automaton $\mathcal{A}_{\varphi}^{\prime \prime}$
\downarrow
Deterministic parity tree automaton $\mathcal{A}_{\varphi}^{\prime \prime \prime}$
\downarrow
Empty?
Yes: φ not realizable
No: φ realizable winning strategy
in emptiness game
defines implementation.

