Automata, Games and Verification: Lecture 11

16 Parity Games

Assumptions:

- arena is finite or countably infinite.
- the number of colors is finite (max color k).

Lemma 1 (Merging strategies) Given a parity game \mathcal{G} and a set of nodes $U \subseteq V$, s.t. for every $p \in U$, Player σ has a memoryless strategy $f_{\sigma,p}$ that wins from p, then there is a memoryless winning strategy f_{σ} that wins from all $p \in U$.

Proof:

- Index the positions in $V = \{p_0, p_1, p_2, \ldots\}$
- For $p_i \in V$, let $F_i \subseteq V$ be the set of positions that are reachable from p_i in plays that conform to f_{p_i} .
- Define $f_{\sigma}(q) = f_{\sigma,p_i}(q)$ for the smallest *i* such that $q \in F_i$.
- f is winning for Player 0:
 - Applying f_{σ} corresponds to applying f_{σ,p_i} with weakly decreasing *i*.
 - From some point onward, $i = i^*$ is constant.
 - The play is won because $f_{\sigma,p_{i^*}}$ is winning.

Theorem 1 Parity games are memoryless determined.

Proof:

Induction on k:

- k = 0: $W_0 = V, W_1 = \emptyset$. Memoryless winning strategy: fix arbitrary order on $V. f_0(p) = \min\{q \mid (p,q) \in E\}.$
- *k* + 1:
 - If k + 1, consider player $\sigma = 0$, otherwise $\sigma = 1$.
 - Let $W_{1-\sigma}$ be the set of positions where Player (1σ) has a memoryless winning strategy. We show that Player σ has a memoryless winning strategy from $V \smallsetminus W_{1-\sigma}$.
 - Consider subgame \mathcal{G}' :

- $\begin{array}{l} * \ V'_0 = V_0 \smallsetminus W_{1-\sigma}; \\ * \ V'_1 = V_1 \smallsetminus W_{1-\sigma}; \\ * \ E' = W \cap (V' \times V'); \\ * \ c'(p) = c(p) \text{ for all } p \in V'. \\ \ \mathcal{G}' \text{ is still a game:} \\ * \ \text{for } p \in V'_{\sigma}, \text{ there is a } q \in V \smallsetminus W_{1-\sigma} \text{ with } (p,q) \in E', \text{ otherwise} \\ p \in W_{1-\sigma}; \\ * \ \text{for } p \in V'_{1-\sigma}, \text{ for all } q \in V \text{ with } (p,q) \in E, q \in V \smallsetminus W_{1-\sigma}, \text{ hence there} \\ \text{ is a } q \in V' \text{ with } (p,q) \in E. \\ \text{ Let } C'_i = \{p \in V' \mid c'(p) = i\}. \end{array}$
- Let $Y = Attr'_{\sigma}(C'_{k+1})$. (Attr': Attractor set on \mathcal{G}')
- Let f_A be the attractor strategy on \mathcal{G}' into C'_{k+1} .
- Consider subgame \mathcal{G}'' :
 - * $V_0'' = V_0' \smallsetminus Y;$ * $V_1'' = V_1 \smallsetminus Y;$
 - $* E' = W \cap (V'' \times V'');$
 - * $C'': V'' \to \{0, ..., k\}; c''(p) = c'(p)$ for all $p \in V''$.
- \mathcal{G}'' is still a game.
- Induction hypothesis: \mathcal{G}'' is memoryless determined.
- Also: $W_{1-\sigma}'' = \emptyset$ (because $W_{1-\sigma}' \subseteq W_{1-\sigma}$: assume Player $(1-\sigma)$ had a winning strategy from some position in V''. Then this strategy would win in \mathcal{G} , too, since Player σ has no chance to leave \mathcal{G}'' other than to $W_{1-\sigma}$.)
- Hence, there is a winning memoryless winning strategy f_{IH} for player σ from V''.
- We define:

$$f_{\sigma}(p) = \begin{cases} f_{IH}(p) & \text{if } p \in V''; \\ f_{A}(p) & \text{if } p \in Y \smallsetminus C'_{k+1}; \\ \text{min. successor in } V \smallsetminus W_{1-\sigma} & \text{if } p \in Y \cap C'_{k+1}; \\ \text{min. successor in } V & \text{otherwise.} \end{cases}$$

- f_{σ} is winning for Player σ on $V \smallsetminus W_{1-\sigma}$. Consider a play that conforms to f_{σ} :
 - * Case 1: Y is visited infinitely often.
 - \Rightarrow Player σ wins (inf. often even color k + 1).
 - * Case 2: Eventually only positions in V'' are visited. \Rightarrow Since Player σ follows f_{IH} , Player σ wins.

17 Tree Automata

Binary Tree: $T = \{0, 1\}^*$. Notation: T_{Σ} : set of all binary Σ -trees

Definition 1 A tree automaton (over binary Σ -trees) is a tuple $\mathcal{A} = (S, s_0, M, \varphi)$:

- S: finite set of states
- $s_0 \in S$
- $\bullet \ M = S \times \Sigma \times S \times S$
- φ : acceptance condition (Büchi, parity, ...)

Definition 2 A run of a tree automaton \mathcal{A} on a Σ -tree v is a S-tree (T, r), s.t.

- $r(\epsilon) = s_0$
- $(r(q), v(q), r(q0), r(q1)) \in M$ for all $q \in \{0, 1\}^*$

Definition 3 A run is accepting if every branch is accepting (by φ). A Σ -tree is accepted if there exists an accepting run. $\mathcal{L}(A) := set of accepted \Sigma$ -trees.

Example: $\{a, b\}$ -trees with infinitely many b on each path.

 $\mathcal{A} = (S, s_0, M, c); \Sigma = \{a, b\};$ $S = \{q_a, q_b\}; s_0 = q_a;$ $M = \{(q_a, a, q_a, q_a), (q_b, a, q_a, q_a), (q_a, b, q_b, q_b), (q_a, a, q_b, q_b), \ldots\};$ $Büchi F = \{q_b\}.$

 $\Sigma\text{-tree:}$

Theorem 2 A parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ accepts an input tree t iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A},t} = (V_0, V_1, E, c')$ from position (ε, s_0) .

- $V_0 = \{(w,q) \mid w \in \{0,1\}^*, q \in S\};$
- $V_1 = \{(w, \tau) \mid w \in \{0, 1\}^*, \tau \in M\};$
- $E = \{((w,q), (w,\tau)) \mid \tau = (q, t(w), q'_0, q'_1), \tau \in M\}$ $\cup \{((w,\tau), (w',q')) \mid \tau = (q, \sigma, q'_0, q'_1) \text{ and}$ $((w' = w0 \text{ and } q' = q'_0) \text{ or } (w' = w1 \text{ and } q' = q'_1))\};$

•
$$c'(w,q) = c(q)$$
 if $q \in S$;

•
$$c'(w,\tau) = 0$$
 if $\tau \in M$.

Example:

run:

Proof:

• Given an accepting run r construct a winning strategy f_0 :

$$f_0(w,q) = (w, (r(w), t(w), r(w0), r(w1))$$

- Given a memoryless winning strategy f_0 construct an accepting run $r(\varepsilon) = s_0$ $\forall w \in \{0, 1\}^*$
 - $r(w0) = q \text{ where } f_0(w, r(w)) = (w, (_, _, q, _))$ - $r(w1) = q \text{ where } f_0(w, r(w)) = (w, (_, _, -, q))$

Lemma 2 For each parity tree automaton \mathcal{A} over Σ -trees there exists a parity tree automaton \mathcal{A}' over $\{1\}$ -trees, such that $\mathcal{L}(\mathcal{A}) = \emptyset$ iff $\mathcal{L}(\mathcal{A}') = \emptyset$.

Proof:

- S' = S;
- $s'_0 = s_0;$
- $M' = \{(q, 1, q_0.q_1) \mid (q, \sigma, q_0, q_1) \in M, \sigma \in \Sigma\}$
- c' = c

Theorem 3 The language of a parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ is non-empty iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A},t} = (V_0, V_1, E, c')$ from position s_0 .

- $V_0 = S;$
- $V_1 = M;$
- $E = \{(q, \tau) \mid \tau = (q, 1, q'_0, q'_1), \tau \in M\}$ $\cup \{(\tau, q') \mid \tau = (q, 1, q'_0, q'_1) \text{ and }$ $(q' = q'_0 \text{ or } q' = q'_1)\};$
- c'(q) = c(q) for $q \in S$;
- $c(\tau) = 0$ for $\tau \in M$.