
Bernd Finkbeiner Date: July 10, 2008
Sven Schewe

Automata, Games and Verification: Lecture 11

16 Parity Games

Assumptions:

• arena is finite or countably infinite.

• the number of colors is finite (max color k).

Lemma 1 (Merging strategies) Given a parity game G and a set of nodes U ⊆ V ,
s.t. for every p ∈ U , Player σ has a memoryless strategy fσ,p that wins from p, then there
is a memoryless winning strategy fσ that wins from all p ∈ U .

Proof:

• Index the positions in V = {p0, p1, p2, . . .}

• For pi ∈ V , let Fi ⊆ V be the set of positions that are reachable from pi in
plays that conform to fpi

.

• Define fσ(q) = fσ,pi
(q) for the smallest i such that q ∈ Fi.

• f is winning for Player 0:

– Applying fσ corresponds to applying fσ,pi
with weakly decreasing i.

– From some point onward, i = i∗ is constant.

– The play is won because fσ,pi∗
is winning.

Theorem 1 Parity games are memoryless determined.

Proof:

Induction on k:

• k = 0: W0 = V, W1 = ∅. Memoryless winning strategy: fix arbitrary order on
V . f0(p) = min{q | (p, q) ∈ E}.

• k + 1:

– If k + 1, consider player σ = 0, otherwise σ = 1.

– Let W1−σ be the set of positions where Player (1 − σ) has a memory-
less winning strategy. We show that Player σ has a memoryless winning
strategy from V r W1−σ.

– Consider subgame G′:

∗ V ′
0 = V0 r W1−σ;

∗ V ′
1 = V1 r W1−σ;

∗ E ′ = W ∩ (V ′ × V ′);

∗ c′(p) = c(p) for all p ∈ V ′.

– G′ is still a game:

∗ for p ∈ V ′
σ, there is a q ∈ V r W1−σ with (p, q) ∈ E ′, otherwise

p ∈ W1−σ;

∗ for p ∈ V ′
1−σ, for all q ∈ V with (p, q) ∈ E, q ∈ V r W1−σ, hence there

is a q ∈ V ′ with (p, q) ∈ E.

– Let C ′
i = {p ∈ V ′ | c′(p) = i}.

– Let Y = Attr ′

σ(C ′
k+1). (Attr ′: Attractor set on G′)

– Let fA be the attractor strategy on G′ into C ′
k+1.

– Consider subgame G′′:

∗ V ′′
0 = V ′

0 r Y ;

∗ V ′′
1 = V1 r Y ;

∗ E ′ = W ∩ (V ′′ × V ′′);

∗ C ′′ : V ′′ → {0, . . . , k}; c′′(p) = c′(p) for all p ∈ V ′′.

– G′′ is still a game.

– Induction hypothesis: G′′ is memoryless determined.

– Also: W ′′
1−σ = ∅ (because W ′′

1−σ ⊆ W1−σ: assume Player (1 − σ) had a
winning strategy from some position in V ′′. Then this strategy would win
in G, too, since Player σ has no chance to leave G′′ other than to W1−σ.)

– Hence, there is a winning memoryless winning strategy fIH for player σ

from V ′′.

– We define:

fσ(p) =

fIH (p) if p ∈ V ′′;
fA(p) if p ∈ Y r C ′

k+1;
min. successor in V r W1−σ if p ∈ Y ∩ C ′

k+1;
min. successor in V otherwise.

– fσ is winning for Player σ on V r W1−σ.
Consider a play that conforms to fσ:

∗ Case 1: Y is visited infinitely often.
⇒ Player σ wins (inf. often even color k + 1).

∗ Case 2: Eventually only positions in V ′′ are visited.
⇒ Since Player σ follows fIH , Player σ wins.

17 Tree Automata

Binary Tree: T = {0, 1}∗.
Notation: TΣ : set of all binary Σ-trees

Definition 1 A tree automaton (over binary Σ-trees) is a tuple A = (S, s0, M, ϕ):

• S: finite set of states

• s0 ∈ S

• M = S × Σ × S × S

• ϕ: acceptance condition (Büchi, parity, . . .)

Definition 2 A run of a tree automaton A on a Σ-tree v is a S-tree (T, r), s.t.

• r(ǫ) = s0

• (r(q), v(q), r(q0), r(q1)) ∈ M for all q ∈ {0, 1}∗

Definition 3 A run is accepting if every branch is accepting (by ϕ). A Σ-tree is accepted
if there exists an accepting run.
L(A) := set of accepted Σ-trees.

Example: {a, b}-trees with infinitely many bs on each path.

A = (S, s0, M, c); Σ = {a, b};
S = {qa, qb}; s0 = qa;
M = {(qa, a, qa, qa), (qb, a, qa, qa), (qa, b, qb, qb), (qa, a, qb, qb), . . .};
Büchi F = {qb}.

Σ-tree:

. . .

a

a b

a b a b

run:

qa

qa qa

qa qa qb qb

qa qa qb qb qa qa qb qb

. . .

Theorem 2 A parity tree automaton A = (S, s0, M, c) accepts an input tree t iff Player 0
wins the parity game GA,t = (V0, V1, E, c′) from position (ε, s0).

• V0 = {(w, q) | w ∈ {0, 1}∗, q ∈ S};

• V1 = {(w, τ) | w ∈ {0, 1}∗, τ ∈ M};

• E = {((w, q), (w, τ)) | τ = (q, t(w), q′0, q
′
1), τ ∈ M}

∪ {((w, τ), (w′, q′)) | τ = (q, σ, q′0, q
′
1) and

((w′ = w0 and q′ = q′0) or (w′ = w1 and q′ = q′1))};

• c′(w, q) = c(q) if q ∈ S;

• c′(w, τ) = 0 if τ ∈ M .

Example:

ε, qa

ε, (qa, a, qa, qa) ε, (qa, a, qb, qb)

. . .

Proof:

• Given an accepting run r construct a winning strategy f0:

f0(w, q) = (w, (r(w), t(w), r(w0), r(w1))

• Given a memoryless winning strategy f0 construct an accepting run r(ε) = s0

∀w ∈ {0, 1}∗

– r(w0) = q where f0(w, r(w)) = (w, (, , q,))

– r(w1) = q where f0(w, r(w)) = (w, (, , , q))

Lemma 2 For each parity tree automaton A over Σ-trees there exists a parity tree au-
tomaton A′ over {1}-trees, such that L(A) = ∅ iff L(A′) = ∅.

Proof:

• S ′ = S;

• s′0 = s0;

• M ′ = {(q, 1, q0.q1) | (q, σ, q0, q1) ∈ M, σ ∈ Σ}

• c′ = c

Theorem 3 The language of a parity tree automaton A = (S, s0, M, c) is non-empty iff
Player 0 wins the parity game GA,t = (V0, V1, E, c′) from position s0.

• V0 = S;

• V1 = M ;

• E = {(q, τ) | τ = (q, 1, q′0, q
′
1), τ ∈ M}

∪ {(τ, q′) | τ = (q, 1, q′0, q
′
1) and

(q′ = q′0 or q′ = q′1)};

• c′(q) = c(q) for q ∈ S;

• c(τ) = 0 for τ ∈ M .

