16 Parity Games

Assumptions:

- arena is finite or countably infinite.
- the number of colors is finite (max color k).

Lemma 1 (Merging strategies) Given a parity game \mathcal{G} and a set of nodes $U \subseteq V$, s.t. for every $p \in U$, Player σ has a memoryless strategy $f_{\sigma, p}$ that wins from p, then there is a memoryless winning strategy f_{σ} that wins from all $p \in U$.

Proof:

- Index the positions in $V=\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$
- For $p_{i} \in V$, let $F_{i} \subseteq V$ be the set of positions that are reachable from p_{i} in plays that conform to $f_{p_{i}}$.
- Define $f_{\sigma}(q)=f_{\sigma, p_{i}}(q)$ for the smallest i such that $q \in F_{i}$.
- f is winning for Player 0 :
- Applying f_{σ} corresponds to applying $f_{\sigma, p_{i}}$ with weakly decreasing i.
- From some point onward, $i=i^{*}$ is constant.
- The play is won because $f_{\sigma, p_{i}{ }^{*}}$ is winning.

Theorem 1 Parity games are memoryless determined.

Proof:

Induction on k :

- $k=0: W_{0}=V, W_{1}=\emptyset$. Memoryless winning strategy: fix arbitrary order on $V . f_{0}(p)=\min \{q \mid(p, q) \in E\}$.
- $k+1$:
- If $k+1$, consider player $\sigma=0$, otherwise $\sigma=1$.
- Let $W_{1-\sigma}$ be the set of positions where Player $(1-\sigma)$ has a memoryless winning strategy. We show that Player σ has a memoryless winning strategy from $V \backslash W_{1-\sigma}$.
- Consider subgame \mathcal{G}^{\prime} :
* $V_{0}^{\prime}=V_{0} \backslash W_{1-\sigma} ;$
* $V_{1}^{\prime}=V_{1} \backslash W_{1-\sigma}$;
* $E^{\prime}=W \cap\left(V^{\prime} \times V^{\prime}\right)$;
* $c^{\prime}(p)=c(p)$ for all $p \in V^{\prime}$.
$-\mathcal{G}^{\prime}$ is still a game:
* for $p \in V_{\sigma}^{\prime}$, there is a $q \in V \backslash W_{1-\sigma}$ with $(p, q) \in E^{\prime}$, otherwise $p \in W_{1-\sigma}$;
* for $p \in V_{1-\sigma}^{\prime}$, for all $q \in V$ with $(p, q) \in E, q \in V \backslash W_{1-\sigma}$, hence there is a $q \in V^{\prime}$ with $(p, q) \in E$.
- Let $C_{i}^{\prime}=\left\{p \in V^{\prime} \mid c^{\prime}(p)=i\right\}$.
- Let $Y=\operatorname{Attr}_{\sigma}^{\prime}\left(C_{k+1}^{\prime}\right) .\left(\right.$ Attr $^{\prime}$: Attractor set on $\left.\mathcal{G}^{\prime}\right)$
- Let f_{A} be the attractor strategy on \mathcal{G}^{\prime} into C_{k+1}^{\prime}.
- Consider subgame $\mathcal{G}^{\prime \prime}$:
* $V_{0}^{\prime \prime}=V_{0}^{\prime} \backslash Y$;
* $V_{1}^{\prime \prime}=V_{1} \backslash Y$;
* $E^{\prime}=W \cap\left(V^{\prime \prime} \times V^{\prime \prime}\right)$;
* $C^{\prime \prime}: V^{\prime \prime} \rightarrow\{0, \ldots, k\} ; c^{\prime \prime}(p)=c^{\prime}(p)$ for all $p \in V^{\prime \prime}$.
$-\mathcal{G}^{\prime \prime}$ is still a game.
- Induction hypothesis: $\mathcal{G}^{\prime \prime}$ is memoryless determined.
- Also: $W_{1-\sigma}^{\prime \prime}=\emptyset$ (because $W_{1-\sigma}^{\prime \prime} \subseteq W_{1-\sigma}$: assume Player $(1-\sigma)$ had a winning strategy from some position in $V^{\prime \prime}$. Then this strategy would win in \mathcal{G}, too, since Player σ has no chance to leave $\mathcal{G}^{\prime \prime}$ other than to $W_{1-\sigma}$.)
- Hence, there is a winning memoryless winning strategy $f_{I H}$ for player σ from $V^{\prime \prime}$.
- We define:

$$
f_{\sigma}(p)= \begin{cases}f_{I H}(p) & \text { if } p \in V^{\prime \prime} ; \\ f_{A}(p) & \text { if } p \in Y \backslash C_{k+1}^{\prime} ; \\ \text { min. successor in } V \backslash W_{1-\sigma} & \text { if } p \in Y \cap C_{k+1}^{\prime} ; \\ \text { min. successor in } V & \text { otherwise }\end{cases}
$$

- f_{σ} is winning for Player σ on $V \backslash W_{1-\sigma}$.

Consider a play that conforms to f_{σ} :

* Case 1: Y is visited infinitely often.
\Rightarrow Player σ wins (inf. often even color $k+1$).
* Case 2: Eventually only positions in $V^{\prime \prime}$ are visited. \Rightarrow Since Player σ follows $f_{I H}$, Player σ wins.

17 Tree Automata

Binary Tree: $T=\{0,1\}^{*}$.
Notation: T_{Σ} : set of all binary Σ-trees
Definition 1 A tree automaton (over binary Σ-trees) is a tuple $\mathcal{A}=\left(S, s_{0}, M, \varphi\right)$:

- S: finite set of states
- $s_{0} \in S$
- $M=S \times \Sigma \times S \times S$
- φ : acceptance condition (Büchi, parity, ...)

Definition $2 A$ run of a tree automaton \mathcal{A} on a Σ-tree v is a S-tree (T, r), s.t.

- $r(\epsilon)=s_{0}$
- $(r(q), v(q), r(q 0), r(q 1)) \in M$ for all $q \in\{0,1\}^{*}$

Definition 3 A run is accepting if every branch is accepting (by φ). A Σ-tree is accepted if there exists an accepting run.
$\mathcal{L}(A):=$ set of accepted Σ-trees.
Example: $\{a, b\}$-trees with infinitely many $b s$ on each path.
$\mathcal{A}=\left(S, s_{0}, M, c\right) ; \Sigma=\{a, b\} ;$
$S=\left\{q_{a}, q_{b}\right\} ; s_{0}=q_{a} ;$
$M=\left\{\left(q_{a}, a, q_{a}, q_{a}\right),\left(q_{b}, a, q_{a}, q_{a}\right),\left(q_{a}, b, q_{b}, q_{b}\right),\left(q_{a}, a, q_{b}, q_{b}\right), \ldots\right\} ;$
Büchi $F=\left\{q_{b}\right\}$.
Σ-tree:

run:

Theorem 2 A parity tree automaton $\mathcal{A}=\left(S, s_{0}, M, c\right)$ accepts an input tree t iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A}, t}=\left(V_{0}, V_{1}, E, c^{\prime}\right)$ from position $\left(\varepsilon, s_{0}\right)$.

- $V_{0}=\left\{(w, q) \mid w \in\{0,1\}^{*}, q \in S\right\} ;$
- $V_{1}=\left\{(w, \tau) \mid w \in\{0,1\}^{*}, \tau \in M\right\} ;$
- $E=\left\{((w, q),(w, \tau)) \mid \tau=\left(q, t(w), q_{0}^{\prime}, q_{1}^{\prime}\right), \tau \in M\right\}$
$\cup\left\{\left((w, \tau),\left(w^{\prime}, q^{\prime}\right)\right) \mid \tau=\left(q, \sigma, q_{0}^{\prime}, q_{1}^{\prime}\right)\right.$ and
$\left(\left(w^{\prime}=w 0\right.\right.$ and $\left.q^{\prime}=q_{0}^{\prime}\right)$ or $\left(w^{\prime}=w 1\right.$ and $\left.\left.\left.q^{\prime}=q_{1}^{\prime}\right)\right)\right\} ;$
- $c^{\prime}(w, q)=c(q)$ if $q \in S$;
- $c^{\prime}(w, \tau)=0$ if $\tau \in M$.

Example:

Proof:

- Given an accepting run r construct a winning strategy f_{0} :

$$
f_{0}(w, q)=(w,(r(w), t(w), r(w 0), r(w 1))
$$

- Given a memoryless winning strategy f_{0} construct an accepting run $r(\varepsilon)=s_{0}$ $\forall w \in\{0,1\}^{*}$
$-r(w 0)=q$ where $f_{0}(w, r(w))=(w,(-,-, q,-))$
$-r(w 1)=q$ where $f_{0}(w, r(w))=(w,(-,-,-, q))$

Lemma 2 For each parity tree automaton \mathcal{A} over Σ-trees there exists a parity tree automaton \mathcal{A}^{\prime} over $\{1\}$-trees, such that $\mathcal{L}(\mathcal{A})=\emptyset$ iff $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\emptyset$.

Proof:

- $S^{\prime}=S$;
- $s_{0}^{\prime}=s_{0}$;
- $M^{\prime}=\left\{\left(q, 1, q_{0} . q_{1}\right) \mid\left(q, \sigma, q_{0}, q_{1}\right) \in M, \sigma \in \Sigma\right\}$
- $c^{\prime}=c$

Theorem 3 The language of a parity tree automaton $\mathcal{A}=\left(S, s_{0}, M, c\right)$ is non-empty iff Player 0 wins the parity game $\mathcal{G}_{\mathcal{A}, t}=\left(V_{0}, V_{1}, E, c^{\prime}\right)$ from position s_{0}.

- $V_{0}=S$;
- $V_{1}=M$;
- $E=\left\{(q, \tau) \mid \tau=\left(q, 1, q_{0}^{\prime}, q_{1}^{\prime}\right), \tau \in M\right\}$ $\cup\left\{\left(\tau, q^{\prime}\right) \mid \tau=\left(q, 1, q_{0}^{\prime}, q_{1}^{\prime}\right)\right.$ and

$$
\left.\left(q^{\prime}=q_{0}^{\prime} \text { or } q^{\prime}=q_{1}^{\prime}\right)\right\} ;
$$

- $c^{\prime}(q)=c(q)$ for $q \in S$;
- $c(\tau)=0$ for $\tau \in M$.

