Automata, Games and Verification: Lecture 10

13 Games

Definition 1 A game arena is a triple $\mathcal{A} = (V_0, V_1, E)$, where

- V_0 and V_1 are disjoint sets of positions, called the positions of player 0 and 1,
- $E \subseteq V \times V$ for set $V = V_0 \uplus V_1$ of game positions,
- every position $p \in V$ has at least one outgoing edge $(p, p') \in E$.

Definition 2 A play is an infinite sequence $\pi = p_0 p_1 p_2 \ldots \in V^{\omega}$ such that $\forall i \in \omega . (p_i, p_{i+1}) \in E$.

Definition 3 A strategy for player σ is a function $f_{\sigma}: V^* \cdot V_{\sigma} \to V$ s.t. $(p, p') \in E$ whenever $f(u \cdot p) = p'$.

Definition 4 A play $\pi = p_0, p_1, \ldots$ conforms to strategy f_{σ} of player σ if $\forall i \in \omega$. if $p_i \in V_{\sigma}$ then $p_{i+1} = f_{\sigma}(p_0, \ldots, p_i)$.

Definition 5

- A reachability game $\mathcal{G} = (\mathcal{A}, R)$ consists of a game area and a winning set of positions $R \subseteq V$. Player 0 wins a play $\pi = p_0 p_1 \dots$ if $p_i \in R$ for some $i \in \omega$, otherwise Player 1 wins.
- A Büchi game $\mathcal{G} = (\mathcal{A}, F)$ consists of an arena \mathcal{A} and a set $F \subseteq V$. Player 0 wins a play π if $In(\pi) \cap F \neq \emptyset$, otherwise Player 1 wins.
- A Parity game $\mathcal{G} = (\mathcal{A}, c)$ consists of an arena \mathcal{A} and a coloring function $c : V \to \mathbb{N}$. Player 0 wins play π if max $\{c(q) \mid q \in In(\pi)\}$ is even, otherwise Player 1 wins.
- ...

Definition 6

- A strategy f_{σ} is p-winning for player σ and position p if all plays that conform to f_{σ} and that start in p are won by Player σ .
- The winning region for player σ is the set of positions

 $W_{\sigma} = \{ p \in V \mid \text{ there is a strategy } f_{\sigma} \text{ s.t. } f_{\sigma} \text{ is } p\text{-winning} \}.$

Definition 7 A game is determined if $V = W_0 \cup W_1$.

Definition 8

- A memoryless strategy for player σ is a function $f_{\sigma} : V_{\sigma} \to V$ which defines a strategy $f'_{\sigma}(u \cdot v) = f(v)$.
- A game is memoryless determined if for every position some player wins the game with memoryless strategy.

14 Solving Reachability Games

Example:

 $\Box = \text{Player } 0; \ \bigcirc = \text{Player } 1;$ $R = \{1, 4\}, W_0 = \{1, 2, 3, 4, 5, 6, 7, 9\}, W_1 = \{8, 10, 11, 12\}.$

Attractor Construction:

$$\begin{aligned} Attr^{0}_{\sigma}(X) &= \emptyset; \\ Attr^{i+1}_{\sigma}(X) &= Attr^{i}_{\sigma}(X) \\ & \cup \{ p \in V_{\sigma} \mid \exists p' \ . \ (p,p') \in E \land p' \in Attr^{i}_{\sigma}(X) \cup X \} \\ & \cup \{ p \in V_{1-\sigma} \mid \forall p' \ . \ (p,p') \in E \Rightarrow p' \in Attr^{i}_{\sigma}(X) \cup X \}; \\ Attr^{+}_{\sigma}(X) &= \bigcup_{i \in \omega} Attr^{i}_{\sigma}(X). \\ Attr_{\sigma}(X) &= Attr^{+}_{\sigma}(X) \cup X \end{aligned}$$

Theorem 1 Reachability games are memoryless determined.

Proof:

Let $q \in V$.

- 1. If $p \in Attr_0(R)$, then $p \in W_0$, with memoryless strategy f_0 :
 - Fix an arbitrary total ordering on V.
 - for $p \in V_0$ we define $f_0(q)$:
 - if $p \in Attr_0^i(R)$ for some smallest i > 0, choose the minimal $p' \in Attr_0^{i-1}(R) \cup R$.
 - otherwise, choose the minimal $p' \in V$ such that $(p, p') \in E$.
 - Hence, if $p \in Attr_0^i(R)$ for some *i*, then any play that conforms to f_0 reaches *R* in at most *i* steps.
- 2. If $p \notin Attr_0(R)$, then $p \in W_1$ with memoryless strategy f_1 :
 - for $p \in V_1$ we define $f_1(q)$:
 - if $p \in V_1 \setminus Attr_0(R)$, pick minimal $p' \in V \setminus Attr_0(R)$ such that $(p, p') \in E$. Such a p' must exist, since otherwise $p \in Attr_0(R)$.
 - otherwise, pick minimal $p' \in V$ such that $(p, p') \in E$.
 - Hence, if $p \in V \setminus Attr_0(R)$, then any play that conforms to f_1 never visits $Attr_0(R)$ and hence never R.

15 Solving Büchi Games

Recurrence Construction:

 $\begin{aligned} &Recur_{\sigma}^{0} = F;\\ &Recur_{\sigma}^{i+1} = F \cap Attr_{\sigma}^{+}(Recur_{\sigma}^{i});\\ &Recur_{\sigma} = \bigcap_{i \in \omega} Recur_{\sigma}^{i}. \end{aligned}$

Theorem 2 Büchi games are memoryless determined.

Proof:

- If $p \in Attr_0(Recur_0)$, then $p \in W_0$, with memoryless strategy f_0 :
 - Fix an arbitrary total ordering on V.
 - for $p \in V_0$ we define $f_0(q)$:
 - * if $p \in Attr_0(Recur_0)$, choose
 - the minimal $p' \in Recur_0$, if $(p, p') \in E$ exists,
 - the minimal $p' \in Attr_0^i(Recur_0)$ for minimal *i* such that $(p, p') \in E$ exists, otherwise.

* if $p \notin Attr_0(Recur_0)$, choose minimal $p' \in V$ with $(p, p') \in E$.

- If $p \notin Attr_0(Recur_0)$, then $p \in W_1$ with memoryless strategy f_1 : we define memoryless strategies f_1^i such that if a play starts in $p \in V \setminus Attr_0^+(Recur_0^i)$ and conforms to f_1^i , then there are at most *i* further visits to *F* (not counting a possible visit in the first position).
 - $-f_1^0(p)$: choose minimal $p' \in V$ such that $(p, p') \in E$ and $p' \in V \setminus Attr_0(F)$. - if $p \in V \smallsetminus Attr_0^+(Recur_0^i), f_1^{i+1}(p) = f_1^i(p);$

 - if $p \notin V \smallsetminus Attr_0^+(Recur_0^i)$, i.e., if $p \in Attr_0^+(Recur_0^i) \smallsetminus Attr_0^+(Recur_0^{i+1})$, then for $f_1^{i+1}(p)$ choose minimal p' such that $(p, p') \in E$ and $p' \in Attr_0^+(Recur_0^i) \setminus C_0^{i+1}(p)$ $Attr_0^+(Recur_0^{i+1}).$
- Induction on *i*:
 - -i = 0: Player 1 can avoid $Attr_0(F)$ and hence F;
 - -i+1:
 - * case 1: play never reaches F;
 - * case 2: play reaches $p' \in F \smallsetminus Recur_0^{i+1} = F \smallsetminus Attr_0^+(Recur_0^i) \subseteq$ $V \setminus Attr_0^+(Recur_0^i)$; by induction hypothesis, at most *i* further visits to F, not counting the visit in p', hence a total of at most i + 1 visits from p.