Bernd Finkbeiner Sven Schewe

Automata, Games and Verification: Lecture 1

1 Motivation

We distinguish

• Transformational programs

• Reactive systems

- nonterminating behavior

- interaction (program vs. environment)

1.1 Problem 1: Verification

Example: Mutual execution with program TURN

local t: boolean where initially t = 0

 $P_0 :: \left[\begin{array}{cccc} \text{loop forever do} \\ 00 : \text{ noncritical;} \\ 01 : \text{ await } t = 0; \\ 10 : \text{ critical;} \\ 11 : t := 1; \end{array} \right] \right] \mid\mid P_1 :: \left[\begin{array}{cccc} \text{loop forever do} \\ 00 : \text{ noncritical;} \\ 01 : \text{ await } t = 1; \\ 10 : \text{ critical;} \\ 11 : t := 0; \end{array} \right] \right]$

TURN is a finite-state program with 32 states, which can be encoded as bit vectors $(b_1, b_2, b_3, b_4, b_5)$, with (b_1, b_2) for the location of P_0 , (b_3, b_4) for the location of P_1 , and b_5 for t.

Behavior: infinite sequence of states **Specification:** set of correct behaviors **Example:** specifications:

- Mutual execution: it is never the case that P_0 and P_1 are in their critical sections, i.e. the states 10100 and 10101 do not occur
- Accessibility: whenever P_i is in location 01 it will eventually reach location 10

The Verification Problem: Given a program P and a specification φ , decide whether P satisfies φ .

Underlying concept: Automata over infinite words (more generally: objects)

Solution:

- 1. Construct automaton that accepts all sequences that are
 - possible in P and
 - violate φ .
- 2. Check automaton for emptiness.

1.2 Problem 2: Synthesis

Example: Mutual execution by arbiter

local t, r_1, r_2 : boolean where initially $t = r_1 = r_2 = 0$

$$P_0 :: \begin{bmatrix} \text{loop forever do} \\ 00: r_0 := 1; \\ 01: \text{ await } t = 0; \\ 10: \text{ critical;} \\ 11: r_0 := 0; \end{bmatrix} \end{bmatrix} || P_1 :: \begin{bmatrix} \text{loop forever do} \\ 00: r_1 := 1; \\ 01: \text{ await } t = 1; \\ 10: \text{ critical;} \\ 11: r_1 := 0; \end{bmatrix} \end{bmatrix} || \text{ Arbiter:: } ?$$

The Synthesis Problem: Given a specification φ , decide if *there exists* a program P that satisfies φ . If yes: construct such a program.

Underlying concept: Infinite games.

Play of the game = infinite sequence of states. Player "system" wins the game if sequence satisfies φ for all possible behaviors of player "environment".

Solution:

- 1. Decide whether player "system" has a winning strategy.
- 2. If yes, construct a program that implements that strategy.

1.3 History

1960-1970 Fundamental results about $\omega\text{-automata}$ and games. Motivation: Logical decision problems, circuit design.

• J. Richard Büchi (1924-1984)

Swiss logician and mathematician; Ph.D. at ETH, then Purdue University, Lafayette, Indiana. Inventor of Büchi automata. Great influence on theoretical computer science, combinatorics, grapth theory.

• Robert McNaughton

taught philosophy; then switched to computer science in 1950s; emeritus at Harvard; McNaughton's theorem: each recognizable set of infinite words can be recognized by a deterministic ω -automaton.

• Michael Rabin (*1931, Breslau)

won Turing award together with Dana Scott for inventing nondeterministic machines; proved that second order theory of n successors is decidable; determinacy of parity games.

Since 1980: Revival of the theory in the setting of temporal logics

Motivation today:

- industrial use (especially finite-state verification "model checking")
- decidability of many problems with infinite structures
- bridge between logic and computer science

2 Büchi Automata

2.1 Basic Definitions

- The set of natural numbers $\{0, 1, 2, 3, \ldots\}$ is denoted by ω .
- An *alphabet* Σ is a finite set of symbols.
- An infinite sequence/string/word is a function from natural numbers to an alphabet: $\alpha: \omega \to \Sigma$

An infinite word is composed of its letters, so that in particular $\alpha = \alpha(0)\alpha(1)\alpha(2)\dots$

- The set of infinite words over alphabet Σ is denoted Σ^{ω} (finite words: Σ^*).
- An ω -language L is a subset of Σ^{ω} .

Example:

• \emptyset is the *empty* ω -language.

- $\{a^{\omega}\} = \{aaaa\ldots\};$
- $\{ba^{\omega}, aba^{\omega}, aaba^{\omega}, \ldots\}.$

Definition 1 A nondeterministic Büchi automaton \mathcal{A} over alphabet Σ is a tuple (S, I, T, F):

- S : a finite set of states
- $I \subseteq S$: a subset of initial states
- $T \subseteq S \times \Sigma \times S$: a set of transitions
- $F \subseteq S$: a subset of accepting/final states

Now we define how a Büchi automaton uses an infinite word as input. Notice that we do not refer to acceptance in this definition.

Definition 2 A run of a nondeterministic Büchi automaton \mathcal{A} on an infinite input word $\alpha = \sigma_0 \sigma_1 \sigma_2 \dots$ is an infinite sequence of states s_0, s_1, s_2, \dots such that the following hold:

- $s_0 \in I$
- for all $i \in \omega$, $(s_i, \sigma_i, s_{i+1}) \in T$

Example:

In the automaton shown the set of states are $S = \{A, B, C, D\}$, the initial set of states are $I = \{A\}$ (indicated with pointing arrow with no source), the transitions $T = \{(A, a, B), (B, a, C), (C, b, D), (D, b, A)\}$ are the remaining arrows in the diagram, and the set of accepting states is $F = \{D\}$ (double-lined state circle).

On input *aabbaabb*... the Büchi automaton shown has only the run: *ABCDABCDABCD*...

Determinism is a property of machines that can only react in a unique way to their input. The following definition makes this clear for Büchi automata. **Definition 3** A Büchi automaton \mathcal{A} is deterministic when T is a partial function (with respect to the next input letter and the current state):

 $\forall \sigma \in \Sigma, \forall s, s_0, s_1 \in S . (s, \sigma, s_0) \in T \text{ and } (s, \sigma, s_1) \in T \Rightarrow s_0 = s_1$ and I is a singleton.

(By Büchi automaton we usually mean nondeterministic Büchi automaton.)

Definition 4 The infinity set of an infinite word $\alpha \in \Sigma^{\omega}$ is the set $In(\alpha) = \{\sigma \in \Sigma \mid \forall i \exists j . j \ge i \text{ and } \alpha(j) = \sigma\}$

Definition 5 • A Büchi automaton \mathcal{A} accepts an infinite word α if:

- there is a run $r = s_0 s_1 s_2 \dots$ of α on \mathcal{A}
- -r is accepting: $In(r) \cap F \neq \emptyset$
- The language recognized by Büchi automaton \mathcal{A} is defined as follows: $\mathcal{L}(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \}$

Example: Automaton \mathcal{A} from previous example. $\mathcal{L}(\mathcal{A}) = \{aabbaabbaabb...\}.$

Comment: A deterministic Büchi automaton $\mathcal{A} = (S, I, T, F)$ defines a partial function¹ from Σ^{ω} to a set of runs $R \subseteq S^{\omega}$. **End Comment**

Definition 6 An ω -language L is Büchi recognizable if there is a Büchi automaton \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = L$.

Example: The singleton ω -language $L = \{\sigma\}$ with $\sigma = abaabaaaabaaaab...$ is not Büchi recognizable. (Note that all finite languages of finite words are NFA-recognizable. Analog result does not hold for Büchi-automata)

Proof:

- Suppose there is a Büchi automaton \mathcal{A} with $\mathcal{L}(\mathcal{A}) = L$.
- Let $r = s_0 s_1 \dots$ be an accepting run on σ .
- Since F is finite, there exists $k, k' \in \omega$ with k < k' and $s_k = s_{k'} \in F$.
- $r' = r_0 \dots r_{k'-1}(r_k \dots r_{k'-1})$ is an accepting run on $\sigma' = \sigma(0) \dots \sigma(k'-1)(\sigma(k) \dots \sigma(k'-1))^{\omega}.$
- Hence, $\sigma' \in \mathcal{L}(\mathcal{A})$. Contradiction.

Definition 7 A Büchi automaton is complete if its transition relation contains a function:

 $\forall s \in S\sigma \in \Sigma \exists s' \in S \,.\, (s,\sigma,s') \in T$

¹A partial function is a function that is not defined on all of the elements of its domain.

Theorem 1 For every Büchi automaton \mathcal{A} , there is a complete Büchi automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Proof:

We define \mathcal{A}' in terms of the components S, I, T, F of \mathcal{A} :

$$S' = S \cup \{f\} \quad f \text{ new}$$

$$I' = I$$

$$T' = T \cup \{(s, \sigma, f) \mid \not\exists s' . (s, \sigma, s') \in T\} \cup \{(f, \sigma, f) \mid \sigma \in \Sigma\}$$

$$F' = F$$

The runs of \mathcal{A}' are a superset of those of \mathcal{A} since we have added states and transistions. Furthermore, on any infinite input word α the accepting runs of \mathcal{A} and \mathcal{A}' correspond, because any run that reaches f stays in f, and since $f \notin F'$, such a run is not accepting.

Example: Completing the Büchi automaton from a previous example we obtain the following automaton:

Unless we specify otherwise, we will only consider complete automata when we prove results.

Comment: A complete deterministic Büchi automaton $\mathcal{A} = (S, I, T, F)$ may be viewed as a total function² from Σ^{ω} to S^{ω} . A complete (possibly nondeterministic) Büchi automaton can produce at least one run for every Σ^{ω} input word. **End Comment**

²A total function, in contrast to a partial one, is defined on its entire domain.