CTL* synthesis via LTL synthesis

Roderick Bloem ${ }^{1}$, Sven Schewe ${ }^{2}$, Ayrat Khalimov ${ }^{1}$

in the next 30 minutes

- LTL/CTL* synthesis problem
- Why reduce CTL* synthesis to LTL synthesis?
- unrealizable specifications
- Reduction
- annotating trees with strategies
- Conclusion

LTL/CTL* synthesis problem by example

Specification:

- LTL formula: $\boldsymbol{G}(r \rightarrow \boldsymbol{F} g)$
- Inputs: r, outputs: g

Find a state machine with such inputs/outputs whose all executions satisfy the formula.

An example solution

Another solution

LTL/CTL* synthesis problem by example

Specification:

- CTL* formula: $\boldsymbol{A G}(r \rightarrow \boldsymbol{F} g) \wedge \boldsymbol{A} \boldsymbol{G} \boldsymbol{E} \boldsymbol{F} \neg g$
- Inputs: r, outputs: g

Find a state machine with such inputs/outputs whose all executions satisfy the formula.

An example solution

why reduce CTL* synth. to LTL synthesis?

1. Handle unrealizable CTL* efficiently
2. Avoid building specialized CTL* synthesizers

- re-use state-of-the-art LTL synthesizers

unrealizable specifications: LTL

[$\Phi_{L T L}, I, O$, type $]$ is unrealizable \Leftrightarrow $\left[\neg \Phi_{L T L}, O, I, \neg t y p e\right]$ is realizable

Example:

- $g \leftrightarrow \mathbf{X} r, I=\{r\}, O=\{g\}$ is unrealizable.
- $\neg(g \leftrightarrow \mathbf{X} r), I=\{g\}, O=\{r\}$ is realizable: output the negated first value of g.

unrealizable specifications: CTL*

$\left[\Phi_{C T L^{*}}, I, O\right.$, type $]$ is unrealizable \Leftrightarrow
$\left[\neg \Phi_{C T L^{*}}, O, I, \neg\right.$ type $]$ is realizable

Counterexample:

- $\mathbf{A G} o, I=\{i\}, O=\{o\}$ is realizable: always output o.
- $\mathbf{E F}_{\neg 0,} I=\{o\}, O=\{i\}$ is realizable:

steps in standard LTL/CTL* synthesis

our reduction

CTL* formula

$\square \approx \operatorname{ExP}$ require system to resolve nondeterminism

$\boldsymbol{\Phi}_{\boldsymbol{C T L}}{ }^{*}$ is realizable \Leftrightarrow

 $\Phi_{L T L}$ is realizable

automata for CTL*

- $\operatorname{EGEX}(g \wedge \mathbf{X}(g \wedge \mathbf{F} \neg g))$
- $p_{E X} \equiv \mathbf{E X}(g \wedge \mathbf{X}(g \wedge \mathbf{F} \neg g))$
- $p_{E G} \equiv \mathbf{E G} p_{E X}$

model checking EGEX $(g \wedge X(g \wedge \mathbf{F} \neg g))$

- $p_{E X} \equiv \mathbf{E X}(g \wedge \mathbf{X}(g \wedge \mathbf{F} \neg g))$
- $p_{E G} \equiv \mathbf{E G} p_{E X}$

annotated model

Every state is additionally labeled with:

- subformulas \rightarrow \{true, false $\}$
- $Q \rightarrow Q \times$ Direction

annotated tree

$$
\begin{gathered}
q_{3} \mapsto\left(q_{3}, \bar{r}\right) \\
q_{2} \mapsto\left(q_{3}, \bar{r}\right) \\
q_{1} \mapsto\left(q_{2}, r\right) \\
q_{0} \mapsto\left(q_{1}, r\right) \\
q_{0}^{\prime} \mapsto\left(q_{0}^{\prime}, r\right) \\
p_{\mathrm{EX}} \\
q_{2} \mapsto\left(q_{3}, r\right) \\
q_{1} \mapsto\left(q_{2}, r\right) \\
q_{0} \mapsto\left(q_{1}, r\right) \\
q_{0}^{\prime} \mapsto\left(q_{0}^{\prime}, r\right) \\
p_{\mathrm{EX}}
\end{gathered}
$$

core ideas of reduction

- "merging" paths are equivalent
- max $|Q|$ non-equiv paths can pass through a node
- Assign a number $1 \ldots \max |Q|$ to each witness of $p_{E X}$
- the whole witness is encoded by this number
- require the witness to satisfy the LTL formula of $p_{E X}$
- use the same number for equiv paths

newly annotated tree

$$
\begin{aligned}
v_{E X} & =3 \\
d_{3} & \mapsto r \\
d_{2} & \mapsto r \\
d_{1} & \mapsto r \\
d_{4}^{+} & \mapsto r
\end{aligned}
$$

$$
\begin{aligned}
v_{E X} & =2 \\
d_{2} & \mapsto r \\
d_{1} & \mapsto r \\
d_{4} & \mapsto r
\end{aligned}
$$

- require the witness to satisfy the LTL formula of $p_{E X}$ - use the same number for equiv paths

$$
\begin{gathered}
v_{E X}=1 \\
d_{1} \mapsto r \\
d_{4} \mapsto r
\end{gathered}
$$

$$
\begin{aligned}
& v_{E X}=1, d_{1} \mapsto r \\
& v_{E Q}=4, d_{4} \mapsto r
\end{aligned}
$$

LTL formula

- For each subformula $E \varphi$:

$$
\begin{equation*}
\bigwedge_{i \in\{\mathbf{1} \ldots|\mathbf{Q}|\}} \mathbf{G}\left[v_{E \varphi}=i \rightarrow\left(\mathbf{G} d_{i} \rightarrow \varphi^{\prime}\right)\right] \tag{1}
\end{equation*}
$$

- For each subformula $A \varphi$:

$$
\begin{equation*}
\mathbf{G}\left[p_{A \varphi} \rightarrow \varphi^{\prime}\right] \tag{2}
\end{equation*}
$$

- The LTL formula is

$$
\bigwedge_{E \varphi} E q .1 \wedge \bigwedge_{A \varphi} E q .2
$$

our result

- For each subformula $E \varphi$:

$$
\bigwedge_{i \in\{1 \ldots|Q|\}} \mathbf{G}\left[v_{E \varphi}=i \rightarrow\left(\mathbf{G} d_{i} \rightarrow \varphi^{\prime}\right)\right]
$$

- For each subformula $A \varphi$:

$$
\mathbf{G}\left[p_{A \varphi} \rightarrow \varphi^{\prime}\right]
$$

- The LTL formula is

$$
\bigwedge_{\mathbf{E} \varphi} E q .1 \wedge \bigwedge_{A \varphi} E q .2
$$

- $\Phi_{L T L}$ is realizable $\Leftrightarrow \Phi_{C T L^{*}}$ is realizable
- The complexity stays in 2EXP
- The system can get larger!

example: $\operatorname{EX}(g \wedge X(g \wedge X \neg g))$

$$
v \neq 0 \wedge \bigwedge_{i \in\{1, \ldots, 5\}} \mathbf{G}\left[v=i \rightarrow\left(\mathbf{G} d_{i} \rightarrow \mathbf{X}(g \wedge \mathbf{X}(g \wedge \mathbf{X} \neg g))\right)\right]
$$

a smallest system satisfying $\Phi_{C T L *}$

a smallest system satisfying $\Phi_{L T L}$

conclusion

We reduced CTL* synthesis to LTL synthesis without incurring a blow up.

Now we can use the reduction to handle unrealizable CTL* specifications and to re-use LTL synthesizers.

