CTL* synthesis via LTL synthesis

Roderick Bloem¹, Sven Schewe², <u>Ayrat Khalimov¹</u>

in the next 30 minutes

- LTL/CTL* synthesis problem
- Why reduce CTL* synthesis to LTL synthesis?
 - unrealizable specifications
- Reduction
 - annotating trees with strategies
- Conclusion

LTL/CTL* synthesis problem by example

Specification:

- LTL formula: $G(r \rightarrow Fg)$
- Inputs: *r*, outputs: *g*

Find a state machine with such inputs/outputs whose all executions satisfy the formula.

LTL/CTL* synthesis problem by example

Specification:

- CTL* formula: $AG(r \rightarrow F g) \land AGEF \neg g$
- Inputs: r, outputs: g

Find a state machine with such inputs/outputs whose all executions satisfy the formula.

why reduce CTL* synth. to LTL synthesis?

- 1. Handle unrealizable CTL* *efficiently*
- 2. Avoid building specialized CTL* synthesizers
 - re-use state-of-the-art LTL synthesizers

unrealizable specifications: LTL

$$[\Phi_{LTL}, I, O, type] \text{ is unrealizable } \Leftrightarrow$$
$$[\neg \Phi_{LTL}, O, I, \neg type] \text{ is realizable}$$

Example:

- $g \leftrightarrow \mathbf{X}r$, $I = \{r\}, O = \{g\}$ is unrealizable.
- $\neg(g \leftrightarrow \mathbf{X}r), I = \{g\}, O = \{r\}$ is realizable: output the negated first value of g.

unrealizable specifications: CTL*

$$[\Phi_{CTL^*}, I, O, type]$$
 is unrealizable \Leftrightarrow
 $[\neg \Phi_{CTL^*}, O, I, \neg type]$ is realizable

Counterexample:

- AGo, I = {i}, O = {o} is realizable:
 always output o.
- **EF** $\neg o, I = \{o\}, O = \{i\}$ is realizable:

steps in standard LTL/CTL* synthesis

our reduction

automata for CTL*

- EG EX $(g \land \mathbf{X}(g \land \mathbf{F} \neg g))$
- $p_{EX} \equiv \mathbf{EX}(g \wedge \mathbf{X}(g \wedge \mathbf{F} \neg g))$
- $p_{EG} \equiv \mathbf{E}\mathbf{G}p_{EX}$

NBW for $\boldsymbol{G}\boldsymbol{p}_{EX}$

NBW for $\mathbf{X}(\boldsymbol{g} \land \cdots)$

• $p_{EG} \equiv \mathbf{E}\mathbf{G}p_{EX}$

annotated model

Every state is additionally labeled with:

- $subformulas \rightarrow \{true, false\}$
- $Q \rightarrow Q \times Direction$

annotated tree

core ideas of reduction

- "merging" paths are *equivalent*
 - max |Q| non-equiv paths can pass through a node
- Assign a number $1 \dots max |Q|$ to each witness of p_{EX}
 - the whole witness is encoded by this number
 - require the witness to satisfy the LTL formula of p_{EX}
 - use the *same* number for equiv paths

newly annotated tree

LTL formula

• For each subformula $E\varphi$:

$$\bigwedge_{i \in \{1 \dots |Q|\}} \mathbf{G} [v_{E\varphi} = i \rightarrow (\mathbf{G}d_i \rightarrow \varphi')]$$
(1)

- For each subformula $A\varphi$: $\mathbf{G}[p_{A\varphi} \rightarrow \varphi']$ (2)
- The LTL formula is

$$\bigwedge_{\mathbf{E}\varphi} Eq. 1 \wedge \bigwedge_{A\varphi} Eq. 2$$

our result

- For each subformula $E\varphi$: $\bigwedge_{i \in \{1 \dots |Q|\}} \mathbf{G}[v_{E\varphi} = i \rightarrow (\mathbf{G}d_i \rightarrow \varphi')]$
- For each subformula $A\varphi$: **G**[$p_{A\varphi} \rightarrow \varphi'$]
- The LTL formula is

$$\bigwedge_{\mathbf{E}\varphi} Eq. 1 \wedge \bigwedge_{A\varphi} Eq. 2$$

- Φ_{LTL} is realizable $\Leftrightarrow \Phi_{CTL^*}$ is realizable
- The complexity stays in 2EXP
- The system can get larger!

example: $\mathbf{EX}(g \land \mathbf{X}(g \land \mathbf{X} \neg g))$

$$v \neq 0 \land \bigwedge_{i \in \{1, \dots, 5\}} \mathbf{G} [v = i \rightarrow (\mathbf{G}d_i \rightarrow \mathbf{X}(g \land \mathbf{X} \neg g)))]$$

a smallest system satisfying Φ_{LTL}

a smallest system satisfying $\, \Phi_{{\it CTL}*} \,$

conclusion

We reduced CTL* synthesis to LTL synthesis without incurring a blow up.

Now we can use the reduction to handle unrealizable CTL* specifications and to re-use LTL synthesizers.

