
CTL* synthesis via
LTL synthesis

Roderick Bloem1, Sven Schewe2, Ayrat Khalimov1

Rigorous Systems Engineering

1 1 2

in the next 30 minutes

• LTL/CTL* synthesis problem

• Why reduce CTL* synthesis to LTL synthesis?

- unrealizable specifications

• Reduction

- annotating trees with strategies

• Conclusion

2

LTL/CTL* synthesis problem by example

Specification:

• LTL formula: 𝑮(𝑟 → 𝑭 𝑔)

• Inputs: 𝑟, outputs: 𝑔

Find a state machine with such inputs/outputs
whose all executions satisfy the formula.

3

¬𝑔

𝑟

𝑔 ¬𝑟

𝑟 ¬𝑟

An example solution

¬𝑔

𝑟

𝑔 ¬𝑟

1

Another solution

LTL/CTL* synthesis problem by example

Specification:

• CTL* formula: 𝑨𝑮 𝑟 → 𝑭 𝑔 ∧ 𝑨𝑮𝑬𝑭¬𝑔

• Inputs: 𝑟, outputs: 𝑔

Find a state machine with such inputs/outputs
whose all executions satisfy the formula.

4

¬𝑔

𝑟

𝑔 ¬𝑟

𝑟 ¬𝑟

An example solution

¬𝑔

𝑟

𝑔 ¬𝑟

1

Another solution

why reduce CTL* synth. to LTL synthesis?

1. Handle unrealizable CTL* efficiently

2. Avoid building specialized CTL* synthesizers

- re-use state-of-the-art LTL synthesizers

5

unrealizable specifications: LTL

[Φ𝐿𝑇𝐿, 𝐼, 𝑂, 𝑡𝑦𝑝𝑒] is unrealizable

[¬Φ𝐿𝑇𝐿, 𝑂, 𝐼, ¬𝑡𝑦𝑝𝑒] is realizable

Example:

• 𝑔 ↔ 𝐗𝑟, 𝐼 = 𝑟 , 𝑂 = 𝑔 is unrealizable.

• ¬(𝑔 ↔ 𝐗𝑟), 𝐼 = 𝑔 , 𝑂 = 𝑟 is realizable:

output the negated first value of 𝑔.

 6

unrealizable specifications: CTL*

[Φ𝐶𝑇𝐿∗ , 𝐼, 𝑂, 𝑡𝑦𝑝𝑒] is unrealizable

[¬Φ𝐶𝑇𝐿∗ , 𝑂, 𝐼, ¬𝑡𝑦𝑝𝑒] is realizable

Counterexample:

• 𝐀𝐆𝑜, 𝐼 = 𝑖 , 𝑂 = 𝑜 is realizable:

 always output 𝑜.

• 𝐄𝐅¬𝑜, 𝐼 = {𝑜}, 𝑂 = {𝑖} is realizable:

7

steps in standard LTL/CTL* synthesis

8

CTL* formula

alternating
automaton

universal
automaton

check
non-emptiness

nondet transitions --- formulas 𝐄𝜑
universal transitions --- formulas 𝐀𝜑

require system to resolve nondeterminism

LTL formula

system or
“unrealisable”

EXP

(EXP)

cannot negate CTL*

cannot negate

negation is EXPensive

negation
is cheap

our reduction

9

CTL* formula

universal
automaton

check
non-emptiness

LTL formula

system or
“unrealisable”

(EXP)

≈EXP require system to resolve nondeterminism

≈EXP

𝜱𝑪𝑻𝑳∗ is realizable ⇔
𝜱𝑳𝑻𝑳 is realizable

the total blow-up
is as before: EXP

system size can grow

negation
is cheap

automata for CTL*

• 𝐄𝐆 𝐄𝐗 𝑔 ∧ 𝐗 𝑔 ∧ 𝐅 ¬𝑔

• 𝑝𝐸𝑋 ≡ 𝐄𝐗 𝑔 ∧ 𝐗 𝑔 ∧ 𝐅 ¬𝑔

• 𝑝𝐸𝐺 ≡ 𝐄𝐆𝑝𝐸𝑋

10

NBW for 𝐆pEX

NBW for 𝐗(𝒈 ∧ ⋯)

model checking 𝐄𝐆 𝐄𝐗 𝑔 ∧ 𝐗 𝑔 ∧ 𝐅 ¬𝑔

• 𝑝𝐸𝑋 ≡ 𝐄𝐗 𝑔 ∧ 𝐗 𝑔 ∧ 𝐅 ¬𝑔

• 𝑝𝐸𝐺 ≡ 𝐄𝐆𝑝𝐸𝑋

11

𝒑𝑬𝑮 𝒑𝑬𝑿

𝒒𝟎
′ ↦ (𝒒𝟎

′ , 𝒓)

𝒑𝑬𝑿

𝒒𝟎
′ ↦ (𝒒𝟎

′ , 𝒓)

𝒒𝟎 ↦ (𝒒𝟏, 𝒓) 𝒒𝟏 ↦ (𝒒𝟐, 𝒓)

𝒒𝟐 ↦ (𝒒𝟑, 𝒓) 𝒒𝟑 ↦ (𝒒𝟒, 𝒓)
𝒒𝟒 ↦ (𝒒𝟒, 𝒓)

annotated model

12

Every state is additionally labeled with:

• 𝑠𝑢𝑏𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

• 𝑄 → 𝑄 × 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

annotated tree

13

blue and pink paths
are equivalent:

they merge into one

how many
different paths

can pass a node?

|𝑸|: the number of
the nondet states!

core ideas of reduction

14

• “merging” paths are equivalent

- max |𝑄| non-equiv paths can pass through a node

• Assign a number 1…𝑚𝑎𝑥 |𝑄| to each witness of 𝑝𝐸𝑋

- the whole witness is encoded by this number

- require the witness to satisfy the LTL formula of 𝑝𝐸𝑋

- use the same number for equiv paths

newly annotated tree

15

𝑝𝐸𝑋, 𝑝𝐸𝐺

𝑝𝐸𝑋

𝑝𝐸𝑋

𝑝𝐸𝑋

𝑝𝐸𝑋
𝑣𝐸𝑄 = 4, 𝑑4 ↦ 𝑟

𝑝𝐸𝑋
𝑑4 ↦ 𝑟

𝑝𝐸𝑋
𝑑4 ↦ 𝑟

𝑝𝐸𝑋
𝑑4 ↦ 𝑟

𝑣𝐸𝑋 = 1, 𝑑1 ↦ 𝑟
𝑣𝐸𝑄 = 4, 𝑑4 ↦ 𝑟

𝑝𝐸𝑋
𝑑1 ↦ 𝑟
𝑑4 ↦ 𝑟

𝑝𝐸𝑋
𝑑1 ↦ 𝑟
𝑑4 ↦ 𝑟

𝑝𝐸𝑋
𝑑1 ↦ 𝑟
𝑑4 ↦ 𝑟

𝑣𝐸𝑋 = 1
𝑑1 ↦ 𝑟
𝑑4 ↦ 𝑟

𝑣𝐸𝑋 = 2
𝑑2 ↦ 𝑟
𝑑1 ↦ 𝑟
𝑑4 ↦ 𝑟

𝑝𝐸𝑋
𝑑2 ↦ 𝑟
𝑑1 ↦ 𝑟
𝑑4 ↦ 𝑟

𝑣𝐸𝑋 = 3
𝑑3 ↦ 𝑟
𝑑2 ↦ 𝑟
𝑑1 ↦ 𝑟
𝑑4 ↦ 𝑟

LTL formula

• For each subformula 𝐸𝜑:

 𝐆[𝑣𝐸𝜑 = 𝑖 → 𝐆𝑑𝑖 → 𝜑
′]

𝒊∈{𝟏… 𝑸 }

• For each subformula 𝐴𝜑:
𝐆[𝑝𝐴𝜑 → 𝜑

′]

• The LTL formula is

 𝐸𝑞. 1

𝐄𝜑

 ∧ 𝐸𝑞. 2

𝐴𝜑

16

(1)

(2)

our result

• Φ𝐿𝑇𝐿 is realizable Φ𝐶𝑇𝐿∗ is realizable

• The complexity stays in 2EXP

• The system can get larger!
17

example: 𝐄𝐗 𝑔 ∧ 𝐗 𝑔 ∧ 𝐗¬𝑔

𝑣 ≠ 0 ∧ 𝐆[𝑣 = 𝑖 → 𝐆𝑑𝑖 → 𝐗 𝑔 ∧ 𝐗 𝑔 ∧ 𝐗¬𝑔]

𝑖∈{1,…,5}

18

a smallest system satisfying Φ𝐶𝑇𝐿∗

a smallest system satisfying Φ𝐿𝑇𝐿

conclusion

We reduced CTL* synthesis to LTL synthesis
without incurring a blow up.

Now we can use the reduction to handle
unrealizable CTL* specifications and to re-use LTL
synthesizers.

19

