A class of control certificates to ensure Reach-While-Stay for Switched Systems

Hadi Ravanbakhsh and Sriram Sankaranarayanan Presented by Sergio Mover

University of Colorado Boulder

Synthesis

Synthesis

Synthesis

Contribution

- Synthesis of switching controller.
- Plant Model: Switched System.
- Specification: Reach-While-Stay.
- Methodology: Lyapunov-like Control Certificates.

Use CEGIS procedure to synthesize.

Extend to Temporal

Properties.

Switched Plant Model

Choosing Control Modes

Idea #1: Sample control values.

- Idea #2: Combine "useful" primitive feedback laws.
 - Eg., robotic vehicles.

Reach-While-Stay (RWS) Property

 $S \ \mathcal{U} \ G$

Initialized RWS $I \Rightarrow S \mathcal{U} G$

Problem Statement

- Inputs:
 - Switched Plant Model
 - (Initialized) RWS Property

- Output:
 - Control Law: $\mathbf{x} \rightarrow \{1, \dots, m\}$
 - Minimum Dwell Time Estimate.

Control Certificates

Control Lyapunov Function

- Lyapunov function: V(x)
- V(x) is positive definite.
- A control input chosen s.t. derivative is negative definite.

$$(\forall x \neq x^*) \ (\exists u \in U) \ V'(x) = \nabla_x V(x) \cdot f(x, u) < 0$$

[Artstein; Sontag; ...]

Control Lyapunov Function: Interpretation

Control Lyapunov Function: Interpretation

Control Lyapunov Function: Interpretation

Control Certificates for RWS

[Dimitrova+Majumdar]

Find function V

 $S \ \mathcal{U} \ \overline{G}$

Control Certificates for RWS

[Dimitrova+Majumdar]

Find function V

 $S \ \mathcal{U} \ G$

Control Certificates for RWS

[Dimitrova+Majumdar]

Find function V

2. Flow can be made to point inwards

 $S \ \mathcal{U} \ G$

Control Certificates

$$\begin{pmatrix} \mathbf{x} \in int(S) \setminus G \implies (\exists q) \dot{V}_q(\mathbf{x}) < -\epsilon \\ \mathbf{x} \in F_1 \setminus G \implies (\exists q) \left(\begin{array}{c} \dot{V}_q(\mathbf{x}) < -\epsilon & \bigwedge_{p \in F_1^{=}} \dot{p}_q(\mathbf{x}) < -\epsilon \end{array} \right) \\ \vdots \\ \mathbf{x} \in F_{l_k} \setminus G \implies (\exists q) \left(\begin{array}{c} \dot{V}_q(\mathbf{x}) < -\epsilon & \bigwedge_{p \in F_{l_k}^{=}} \dot{p}_q(\mathbf{x}) < -\epsilon \end{array} \right) \end{cases}$$

$$\begin{array}{c} \textbf{Control Certificates} \\ \hline \text{"Can always choose a} \\ \text{mode q to decrease V"} \\ \textbf{G} \\ \textbf{G}$$

Synthesizing Control Certificates

• Fix a template (Ansatz) with unknown coefficients. $V(x_1, x_2): c_0 + c_1x_1 + c_2x_2 + c_3x_1x_2 + c_4x_1^2 + c_5x_2^2$

• Enforce CLF constraints on the unknown form.

$$(\exists \mathbf{c}) (\forall \mathbf{x}) (\exists q \in \{1, \dots, k\}) \cdots$$

Synthesizing Control Certificates

• Fix a template (Ansatz) with unknown coefficients. $V(x_1, x_2): c_0 + c_1x_1 + c_2x_2 + c_3x_1x_2 + c_4x_1^2 + c_5x_2^2$

• Enforce CLF constraints on the unknown form.

Counterexample Guided Inductive Synthesis.

Program Sketching [Solar-Lezama + Others]

```
int search(int [] a, int n, int s){
//@pre:...
      if (n <= ??) { return 0; }
      for i = 0 to ??
            if (a[i] == ??){
return 1;
             }
      end
                                  Find appropriate
      return ??;
                                program expressions.
//@post:...
```

CEGIS Approach

Constraints to be solved:

Iterative Procedure:

- Finite set $Y_i : \{y_{1,...,y_k}\}$
- Instantiate the \forall Quantifier

$(\exists c) (\forall y) \psi(c, y)$

1. Check SATisfiability of the formula:

 $\psi(c, y_1) \wedge \psi(c, y_2) \wedge \cdots \wedge \psi(c, y_k)$

$(\exists c) (\forall y) \psi(c, y)$

1. Check SATisfiability of the formula:

 $\psi(c, y_1) \wedge \psi(c, y_2) \wedge \cdots \wedge \psi(c, y_k)$

UNSAT, Failure

SAT, C_k

UNSAT,

Failure

1. Check SATisfiability of the formula: $\psi(c, y_1) \land \psi(c, y_2) \land \cdots \land \psi(c, y_k)$

1. Check SATisfiability of the formula: $\psi(c, y_1) \land \psi(c, y_2) \land \cdots \land \psi(c, y_k)$

SAT, c_k

2. Check UNSATisfiability of $\neg \psi(c_k,y)$

UNSAT, Failure

1. Check SATisfiability of the formula: $\psi(c, y_1) \land \psi(c, y_2) \land \cdots \land \psi(c, y_k)$

SAT, c_k

2. Check UNSATisfiability of $\neg \psi(c_k,y)$

UNSAT, Failure

UNSAT, Success

Applying CEGIS to Control Certificates

$$(\forall \mathbf{x}) \begin{cases} \mathbf{x} \in int(S) \setminus G \implies (\exists q) \dot{V}_q(\mathbf{x}) < -\epsilon \\ \mathbf{x} \in F_1 \setminus G \implies (\exists q) \left(\begin{array}{c} \dot{V}_q(\mathbf{x}) < -\epsilon & \bigwedge_{p \in F_1^{=}} \dot{p}_q(\mathbf{x}) < -\epsilon \end{array} \right) \\ \vdots \\ \mathbf{x} \in F_{l_k} \setminus G \implies (\exists q) \left(\begin{array}{c} \dot{V}_q(\mathbf{x}) < -\epsilon & \bigwedge_{p \in F_{l_k}^{=}} \dot{p}_q(\mathbf{x}) < -\epsilon \end{array} \right) \end{cases}$$

x instantiated => Linear arithmetic formula in coefficients of V
 V instantiated => Nonlinear formula in x

Integrating SMT solvers

Improvement: use LMI solvers See our CDC'15 paper.

Further Contributions

Exponential barrier condition

- Extracting a control law: control code synthesis.
 - Guaranteeing minimum dwell time (compactness of S, G).
- Control certificates for initialized RWS problems.
- Combining RWS specifications to solve more complex problems.

Example: Nilsson and Ozay

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -x_2 - 1.5x_1 - 0.5x_1^3 \\ x_1 \end{bmatrix} + B_q,$$
$$B_{q1} = \begin{bmatrix} 0 \\ -x_2^2 + 2 \end{bmatrix}, B_{q2} = \begin{bmatrix} 0 \\ -x_2 \end{bmatrix}, B_{q3} = \begin{bmatrix} 2 \\ 10 \end{bmatrix}.$$

$$egin{aligned} V(x_1,x_2):& 37.782349x_1^2-2.009762x_1x_2\ &+ 60.190607x_1+4.415093x_2^2-\ &16.960145x_2+37.411604\,. \end{aligned}$$

Example: Nilsson and Ozay (Continued)

Example: Unicycle Path Planning

Reach red goal set while avoiding blue obstacles.

Model: Nonlinear unicycle. Discretized steering.

Partition state-space into 53 polyhedra.

117 different RWS problems.

Comparison with SCOTS

State Variables in Plant Model

[Zamani et al.]

Problem		Parameters		SCOTS		CEGIS
ID	n	η	au	itr	Time	Time
1	2	0.16^{2}	0.12	18	0	3
2	2	0.01^{2}	1.0	106	1	39
3	3	$0.2^2 \times 0.1$	0.3	404	989	1484
4	4	0.03×0.1^{3}	0.005	48	- 304	3
5	4	$0.1^2 \times 0.05^2$	0.3	TO		5296
5	4	$0.1^2 \times 0.05^2$	0.3	TO		529

Timeout = 10 hours

Conclusions

✓ Control certificate approach can synthesize:

- Simple and easy to implement control laws.
- Minimum dwell time guarantees.

✓ Restriction to polynomial certificates.

- Incomplete.
- Workaround: partition original control problem into smaller sub-problems.

✓Adds value to other existing approaches.

Thank You

This work was funded in part by NSF under award numbers SHF 1527075 and CPS 1646556.