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Abstract. We present novel algorithms solving the satisfiability problem and the model checking
problem for Visibly Linear Dynamic Logic (VLDL) in asymptotically optimal time via a reduc-
tion to the emptiness problem for tree automata with Büchi acceptance. Since VLDL allows for
the specification of important properties of recursive systems, this reduction enables the efficient
analysis of such systems.
Furthermore, as the problem of tree automata emptiness is well-studied, this reduction enables
leveraging the mature algorithms and tools for that problem in order to solve the satisfiability
problem and the model checking problem for VLDL.

1 Introduction

Visibly Linear Dynamic Logic (VLDL) [23] is an expressive formalism for specifying properties of recursive
systems that allows for an intuitive and modular specification of an important subclass of context-free
properties. Although there exist tight bounds on the asymptotical complexity of the satisfiability- and
the model checking problem for VLDL properties [23], the upper bounds for both problems are witnessed
by algorithms that rely on an intricate reduction of the problems to the emptiness problem for visibly
pushdown automata [2], for which tool support is lacking.

We present novel reductions of the problems of VLDL satisfiability and VLDL model checking to
the emptiness problem for tree automata [20], yielding algorithms for both problems running in asymp-
totically optimal time. Moreover, as the emptiness problem for tree automata reduces to the problem
of solving two-player games with perfect information [16], which is of great importance in the fields of
program verification and program synthesis and enjoys mature tool support, the algorithms yielded by
our reductions allow us to leverage this tool support for solving the problems of VLDL satisfiability and
VLDL model checking.

VLDL is an extension of Linear Temporal Logic (LTL) [17], the de-facto standard for the specification
of properties of non-recursive systems. Although popular, it is lacking in expressivity, as it cannot even
express all ω-regular properties. The logic VLDL addresses this shortcoming by guarding the temporal
operators of LTL with visibly pushdown automata (VPAs) [2]. A VPA is a pushdown automaton that
operates over a predefined partition of an alphabet into calls, returns, and local actions, and has to push
(pop) a symbol onto (off) its stack whenever it reads a call (return). Upon processing local actions, the
automaton must not touch the stack.

Due to these restrictions, a VLDL formula can be compiled into an equivalent VPA over infinite
words of exponential size [23]. As a first step in this construction, the VLDL formula is translated
into a 1-AJA [5], an automaton without stack that is able to jump from a call to its matching return.
This automaton can then be transformed into a VPA of exponential size [5]. Since each visibly pushdown
automaton is a classical pushdown automaton, the emptiness problem for VPAs is decidable in polynomial
time [2]. The translation from 1-AJAs to VPAs, however, is quite involved, as it works for a far more
complex model than is needed for the translation of VLDL formulas into 1-AJAs, thus hampering efforts
towards an implementation of the translation from VLDL to VPAs. This effort is further encumbered by
the scant availability of emptiness checkers and model checkers for pushdown systems.

In this work, we introduce novel algorithms solving both the emptiness problem and the model check-
ing problem for VLDL formulas in asymptotically optimal time using a translation of VLDL formulas to
nondeterministic tree automata with Büchi acceptance. The technical core of this translation is formed
by an encoding of words over visibly pushdown alphabets into trees that is adapted from the encoding
of such words given by Alur and Madhusudan [2], as well as by a translation of the 1-AJAs constructed
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from VLDL formulas into tree automata using an adaptation of the breakpoint-construction by Miyano
and Hayashi [15] in order to remove alternation and obtain a nondeterministic automaton. Satisfiability
of a VLDL formula is then checked by checking the resulting tree automaton for emptiness. For model
checking a visibly pushdown system against a VLDL specification, we translate the negation of the spec-
ification as well as the visibly pushdown system into tree automata, which we intersect and check for
emptiness.

Thus, we reduce both the satisfiability- and the model checking problem for VLDL to the empti-
ness problem for nondeterministic tree automata with Büchi acceptance. Hence, we reduce the complex
formalism of VLDL to the simple model of nondeterministic tree automata. Moreover, since the prob-
lem of tree automata emptiness reduces to that of solving Büchi games, which is solvable efficiently [8,
7] and enjoys mature tool support [10, 11], our novel reductions enable an efficient implementation of
satisfiability checkers and model checkers for VLDL.

Related Work There exist a number of logics other than VLDL that capture the class of visibly pushdown
languages, most prominently VLTL [6], a fixed-point logic [5] and monadic second order logic augmented
with a binary matching predicate (MSOµ) [2]. We focus here on the logic VLDL, as it most naturally
extends the concepts used by LTL [17], the de-facto standard for the specification of non-recursive
properties.

Moreover, there exist tools for model checking recursive problems, e.g., Bebop [3, 4] and Moped [18,
19]. These tools are, however, no longer under active development, and have, to the best of our knowledge,
not found widespread adoption. In combination with the intricate translation of alternating automata
into VPAs, this motivates the development of the novel translation of VLDL formulas into tree automata
presented in this work.

A number of problems have been reduced to the emptiness problem for tree automata, as they are
a natural model for capturing the branching-time behavior of systems [16]. Moreover, the theory of tree
automata is well-studied, with its most famous result being equivalence of tree automata and monadic
second order logic of two successors [21, 24]. Finally, the emptiness problem for tree automata with Büchi
acceptance reduces to the problem of solving two-player Büchi games with perfect information [9]. Such
games can be solved efficiently [7] and, since Büchi games are a special case of the ubiquitous parity
games, there exists mature tool support for solving them [10, 11].

Our Contributions Firstly, in Section 3 we adapt the tree-encoding of words over visibly pushdown
alphabets first introduced by Alur and Madhusudan [2] and show that the resulting trees are recognizable
by a tree automaton with Büchi acceptance condition in Theorem 1.

Secondly, in Section 4, we show how to construct tree automata recognizing the encodings of all words
satisfying a given VLDL formula in Theorem 2. Moreover, we show that the resulting automaton is of
exponential size measured in the size of the original formula and we show that this translation yields an
asymptotically optimal algorithm for satisfiability checking of VLDL formulas.

Finally, in Section 5 we provide a translation of visibly pushdown systems into tree automata recogniz-
ing the encodings of all traces of the system. When combined with the previously presented translation of
VLDL formulas into tree automatas, we obtain an asymptotically optimal algorithm for model checking
visibly pushdown systems against VLDL specifications. This result is given in Theorem 3.

2 Preliminaries

In this section we introduce the basic notions used in the remainder of this work, namely (nondetermin-
istic) visibly pushdown automata and related concepts.

2.1 Visibly Pushdown Languages

A pushdown alphabet Σ̃ = (Σc, Σr, Σl) is a finite set Σ that is partitioned into calls Σc, returns Σr and
local actions Σl. We write w = w0 · · ·wn and α = α0α1α2 · · · for finite and infinite words, respectively,
and define the stack height reached by any automaton after reading w by sh(w) inductively as sh(ε) = 0,
sh(wc) = sh(w) + 1 for c ∈ Σc, sh(wr) = max{0, sh(w)− 1} for r ∈ Σr, and sh(wl) = sh(w) for l ∈ Σl.
Let α be a finite or infinite word. We say that a call αk ∈ Σc at some position k of α is matched if there
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exists a k′ > k such that αk′ ∈ Σr and sh(α0 · · ·αk−1) = sh(α0 · · ·αk′) and call the return at the smallest
such position k′ the matching return of c. Otherwise we call c an unmatched call. If αk is a matched call
with αk′ as its matching return, we call the infix αk+1 · · ·αk′−1 of α the nested infix of position k. A
word is well-matched if it does not contain a return that is not a matching return.

A visibly pushdown system (VPS) S = (Q, Σ̃, Γ,∆, qI) consists of a finite set Q of states, a pushdown

alphabet Σ̃, a stack alphabet Γ , which contains a stack-bottom marker ⊥, a transition relation ∆ ⊆
(Q×Σc×Q× (Γ \{⊥}))∪ (Q×Σr×Γ ×Q)∪ (Q×Σl×Q), and an initial state qI ∈ Q. A configuration
(q, γ) of S is a pair of a state q ∈ Q and a stack content γ ∈ Γc = (Γ \ {⊥})∗ · ⊥. The VPS S induces the
configuration graph GS = (Q× Γc, E) with E ⊆ ((Q× Γc)×Σ × (Q× Γc)) and ((q, γ), a, (q′, γ′)) ∈ E if
and only if either
– a ∈ Σc, (q, a, q′, A) ∈ ∆, and Aγ = γ′,
– a ∈ Σr, (q, a,⊥, q′) ∈ ∆, and γ = γ′ = ⊥,
– a ∈ Σr, (q, a,A, q′) ∈ ∆, A 6= ⊥, and γ = Aγ′, or
– a ∈ Σl, (q, a, q′) ∈ ∆, and γ = γ′.

For an edge e = ((q, γ), a, (q′, γ′)), we call a the label of e. A run π = (q0, γ0) · · · (qn, γn) of S on w =
w0 · · ·wn−1 ∈ Σ∗ is a sequence of configurations where q0 = qI and where ((qi, γi), wi, (qi+1, γi+1)) ∈ E
in GS for all i ∈ [0;n− 1]. Infinite runs of S on infinite words are defined similarly. We define traces(S)
as the set of all infinite words α for which there exists a run of S on α. Moreover, we define |S| = |Q|.

2.2 Visibly Linear Dynamic Logic

Let P be a finite set of atomic propositions and let Σ̃ = (Σc, Σr, Σl) be a partition of Σ = 2P . The
syntax of VLDL [23] is defined by the grammar ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈A〉ϕ | [A]ϕ, where p ∈ P
and A ranges over testing visibly pushdown automata (TVPA) over the fixed alphabet Σ̃. A TVPA

A = (Q, Σ̃, Γ,∆, qI , QF , t) consists of a VPS S = (Q, Σ̃, Γ,∆, qI), a set of final states QF ⊆ Q, and

a function t mapping states to VLDL formulas over Σ̃. We define |ϕ| as the sum of |cl(ϕ)| and the
sum of the numbers of states of the automata contained in ϕ, where cl(ϕ) is the set of all subformulas
of ϕ, including those contained as tests in automata and their subformulas. We require this relation
subformula-relation to be noncircular. A run of A on a finite word w is a run of the underlying VPS S
on w. Such a run is accepting if its final state is in QF .

Let ϕ be a VLDL formula, let α = α0α1α2 · · · ∈ Σω and let k ∈ N be a position in α. We define the
semantics of ϕ in the straightforward way for atomic propositions and Boolean connectives. Furthermore,
we define
– (α, k) |= 〈A〉ϕ if there exists k′ ≥ k s.t. (k, k′) ∈ RA(α) and (α, k′) |= ϕ,
– (α, k) |= [A ]ϕ if for all k′ ≥ k, (k, k′) ∈ RA(α) implies (α, k′) |= ϕ,

with

RA(α) := {(k, k′) ∈ N× N | ∃ acc. run (q0, σ0) · · · (qk′−k, σk′−k)

of A on αk · · ·αk′−1and ∀m ∈ [0; k′ − k]. (α, k′ + m) |= t(qm)} .

We write α |= ϕ as a shorthand for (α, 0) |= ϕ and say that α is a model of ϕ in this case. The language
of ϕ is defined as L(ϕ) = {α ∈ Σω | α |= ϕ}. If L(ϕ) 6= ∅, we say that ϕ is satisfiable.

2.3 Tree Automata

Let B = {0, 1} and let Σ be an alphabet. A Σ-tree t is a mapping t : B∗ → Σ. We call a finite word b ∈ B∗
a node and an infinite word β ∈ Bω a branch. Given a node b, we call the nodes b0 and b1 the left- and
right-hand children of b. Analogously, we call the trees rooted at the left- and right-hand children of b the
left- and right-hand subtrees of b, respectively. Moreover, b is the parent of both b0 and b1. We call the
node at address ε the root of t. We say that a branch β contains a node b if b is a prefix of β. Similarly,
as each node b is associated with the unique path from the root of the tree to b, we say that a node b′ is
on the path to b if b′ is a prefix of b. If t(b) = a, we say that b is labeled with a. Moreover, given a tree t
and a node b, we define the sub-tree t

∣∣
b

of t rooted at b by t
∣∣
b
(b′) = t(bb′).

A tree automaton (with Büchi acceptance) T = (Q,Σ,∆, qI , QF ) consists of a finite set of states Q,
an alphabet Σ, a transition relation ∆ ⊆ Q×Σ ×Q×Q, an initial state qI ∈ Q, and a set of accepting
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states QF ⊆ Q. A run r of T on a Σ-tree t is a Q-tree with r(ε) = qI and (r(b), t(b), r(b0), r(b1)) ∈ ∆
for all b ∈ B∗. A branch of r is accepting if it contains infinitely many nodes b such that r(b) ∈ F . A
run is accepting if all of its branches are accepting, while an automaton T accepts a tree t if there exists
an accepting run of T on t. The language L(T) of T is defined as the set of all trees accepted by T. A
set of trees is regular if there exists a tree automaton recognizing it. We define |T| = |Q|. Tree automata
are closed under intersection via an adaptation of the construction for the intersection of automata on
words. Hence, for tree automata T1,T2 there exists a tree automaton T with |T| ∈ O(|T1||T2|) such
that L(T) = L(T1) ∩ L(T2).

3 Stack Trees

Alur and Madhusudan showed how to encode words over some visibly pushdown alphabet as a tree by
“folding away” the nested infixes of calls into subtrees, thus moving a call and its matching return next
to each other in the resulting tree [2]. In this section, we slightly adapt their encoding in order to simplify
our construction of tree automata later on in Section 4. In that section, we construct for each VLDL
formula ϕ a tree automaton that accepts precisely the encodings of words satisfying ϕ.

For the remainder of this work, we fix some pushdown alphabet Σ̃ = (Σc, Σr, Σl) as a partition of
some alphabet Σ. Let α ∈ Σω be an infinite word and define Σ⊥ = Σ ∪ {⊥}, where ⊥ is some fresh
symbol. Intuitively, every node in the resulting tree denotes either one position of α, or it is labeled with
the special symbol ⊥. For a given word α ∈ Σω, we define the function st mapping finite and infinite
words over Σ to infinite Σ⊥-trees in Figure 1. At every matched call, we encode its matched infix and
the suffix starting at and including its matched return in the right- and left-hand subtrees, respectively.
At an unmatched call, we encode the suffix of the word starting at the symbol succeeding the unmatched
call in the right-hand subtree. If the current letter is not a call, we encode the suffix starting at the
current letter’s successor in the left-hand subtree. All vertices not encoding a symbol of α are labeled
with ⊥.

st(cwrα) =

c

st(rα) st(w)

if c ∈ Σc and r
is matching
return of c

st(cα) =

c

st(ε) st(α)

if c ∈ Σc and c
is unmatched

st(xα) =

x

st(α) st(ε)

if x ∈ Σl ∪Σr st(ε) =
⊥

st(ε) st(ε)

Fig. 1. Definition of st : Σω ∪Σ∗ → TΣ⊥ .

A tree t is a stack tree if t = st(α) for some α ∈ Σω. We define the set of all stack trees over Σ
as st(Σω) = {t(α) | α ∈ Σω}.

Theorem 1. The set st(Σω) is regular.

Proof. We first introduce some notation. Let t be a Σ⊥-tree. We say that a node b is a matched call
if t(b) ∈ Σc and t(b0) ∈ Σr. Similarly, b0 is a matched return if we have t(b) ∈ Σc. If all calls and returns
in t are matched, we say that t is well-matched. Furthermore, we call a branch β finite in t if it eventually
only contains ⊥-labeled vertices. Otherwise, we call β infinite in t. Finally, we call a tree finite if all of
its branches are finite.

We claim that a Σ⊥-tree t is a stack tree if and only if t(ε) 6= ⊥, if there exists a single branch that
is infinite in t, and if the following properties hold true for all b ∈ B∗:
1. If t(b) = ⊥, then t(b0) = t(b1) = ⊥,
2. if t(b) ∈ Σc and b is matched, then t

∣∣
b1

is finite and well-matched,

3. if t(b) ∈ Σc and b is unmatched, then t(b0) = ⊥ and t
∣∣
b1

contains no unmatched returns, and
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4. if t(b) ∈ Σl ∪Σr, then t(b1) = ⊥.
Note that each of these properties can be checked by a tree automaton. As tree automata are closed

under intersection, there also exists a single tree automaton that checks all of the above properties.
It remains to show that the conditions above indeed characterize stack trees, i.e., that a Σ⊥-tree is

a stack tree if and only if it satisfies the conditions above. First note that for all α ∈ Σω, the tree st(α)
clearly satisfies the above conditions. Hence, we now show that for each tree t satisfying these conditions
there exists a word α ∈ Σω such that t = st(α). We construct such a word via a preorder traversal of t
that visits right-hand children before left-hand ones.

We first show how to encode finite-trees, as such trees encode nested infixes of matched calls. Let t
be a finite Σ⊥-tree satisfying conditions 1 through 4 and let height(t) be the minimal k such that for
all nodes b with |b| ≥ k we have t(b) = ⊥ and. We construct a word w ∈ Σ∗ such that t = st(w) by
induction over height(t). If height(t) = 0, then t(b) = ⊥ for all b ∈ B∗ due to Condition 1 and thus,
t = st(ε). If, however, height(t) > 0, then first note that t(ε) /∈ Σr, since ε would be an unmatched
return in that case. Thus, first assume t(ε) = l ∈ Σl. Then t(1) = ⊥ and t′ = t

∣∣
0

is a well-matched Σ⊥-
tree with height(t′) < height(t). Hence, there exists a word w′ ∈ Σ∗ such that st(w′) = t′. Thus,
we pick w = lw′ and obtain t = st(w). Now assume t(ε) = c ∈ Σc. As every call in t is matched, we
obtain t(0) = r ∈ Σr and thus, t

∣∣
01

(b) = ⊥ for all b ∈ B∗, while there exist words w1 and w00 such

that st(w1) = t
∣∣
1

and st(w00) = t
∣∣
00

due to the induction hypothesis and due to the second condition
given above. Hence, we pick w = cw1rw00 and obtain t = st(w).

t(ε)

β

t

t(ε)

⊥

st(wi) = t[bi−1 ← t⊥]

→

t(ε)

t(bi−1)

⊥ t
∣∣
bis

st(wi+1) = t[bi ← t⊥]

→ · · ·

Fig. 2. Construction of the st(wi). We have β = b0b1b2 · · · and use the shorthands bi = b0 · · · bi, and bis =
b0 · · · bi−1(1− bi).

Now let t be a tree that satisfies conditions 1 through 4 with t(ε) 6= ⊥ and let β = b0b1b2 · · · be the
single infinite branch of t. As a shorthand, let bi = b0 · · · bi and let ta be the unique Σ⊥-tree with ta(ε) = a
and ta(b) = ⊥ for all b ∈ B+. Moreover, if t and t′ are Σ⊥-trees and b ∈ B∗, we define t[b← t′] such that
t[b ← t′](b′) = t′(b′′) if b′ = bb′′ for some b′′ ∈ B∗, and t[b ← t′] = t(b) otherwise. Intuitively, we replace
the subtree of t anchored at b by the tree t′. We construct a series of words w0, w1, w2, · · · ∈ Σ∗ such
that for each wi,
1. wi is a strict prefix of wi+1

2. st(wi) = t[bi−1 ← t⊥], and
3. st(wi · a) = t[bi−1 ← ta], where a = t(bi−1).

We illustrate this construction in Figure 2. Due to the first condition, the limit of the wi for i → ∞ is
an ω-word α, which, due to the second condition, satisfies st(α) = t. The final condition allows us to
construct the wi inductively by collecting the labels of the nodes along the infinite path β of t: Upon
encountering a matched return r we are able to append r to the wi constructed so far and and ensure
that the resulting wi+1 indeed satisfies the second condition.

Formally, we first pick w0 = ε, which obviously satisfies the above requirements. Now let i ∈ N such
that wi is defined and satisfies the above requirements. In order to construct wi+1, let a = t(bi−1).
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If a ∈ Σc and bi−1 is matched, then the subtree rooted at bi−11 is finite and well-matched due to
Condition 2, hence there exists a word w ∈ Σ∗ such that st(w) = t

∣∣
bi−11

as shown above. Thus, it is
easy to verify that wi+1 = wiaw satisfies the requirements above. In particular the third requirement is
satisfied due to bi = 0, t(bi) ∈ Σr, and due to the fact that w is well-matched, i.e., it does not contain
unmatched calls.

If a ∈ Σl ∪ Σr, however, then wi+1 = wia clearly satisfies the conditions above. In particular, the
third condition is satisfied due to bi−1 being part of the unique infinite branch β. Hence, t(bi) ∈ Σr can
only hold true if there exists no unmatched call on the path to bi. Thus, the third condition is indeed
satisfied. ut

From the proof of Theorem 1 we furthermore obtain that for each α ∈ Σω, there exists exactly one
branch β = b0b1b2 · · · such that st(α)(b0 · · · bi−1) 6= ⊥ for each i ∈ N. We call β the cardinal branch
of st(α) and we call the positions of the symbols encoded along β the cardinal positions of α.

We give an example of st(α) for α = lclrcl · · · over the alphabet Σ̃ = (Σc, Σr, Σl) = ({c}, {r}, {l}) in
Figure 3. The positions 0, 1, 3, 4 are cardinal positions, if we assume the second c in α to be unmatched.
Recall that we defined sh(w) to be the stack height reached by any visibly pushdown automaton after
processing w ∈ Σ∗. In general, Löding et al. [14] defined the steps of a word α = α0α1α2 · · · as those
positions of α that reach a lower bound on the stack height reached during processing the remainder of
the word, i.e., steps(α) = {k | ∀k′ ≥ k. sh(α0 · · ·αk) ≤ sh(α0 · · ·αk′}. A position k is a cardinal position
of α if and only if it is either a steps, or if αk is the matching return of some call occurring at a step.

l

c ⊥

r l

c ⊥ ⊥ ⊥

⊥ l

Fig. 3. Encoding of α = lclrcl · · · , where the second occurrence of c is an unmatched call. The cardinal branch
of st(α) is marked in red.

4 Reducing VLDL Satisfiability to Tree Automata Emptiness

In this section we reduce the problem of VLDL satisfiability to the emptiness problem for tree automata.
The former problem is formulated as follows: “Given some VLDL formula ϕ, is ϕ satisfiable?” We
formalize the reduction of this problem to the emptiness problem for tree automata as follows:

Theorem 2. For every VLDL formula ϕ there exists an effectively constructible tree automaton T such
that L(T) = st(L(ϕ)) with |T| ∈ O(2|ϕ|).

Due to Theorem 2, we obtain an algorithm that checks VLDL formulas for satisfiability by first trans-
forming a given formula ϕ into the tree automata T recognizing st(L(ϕ)) and subsequently checking L(T)
for emptiness. Since tree automata can be checked for emptiness in polynomial time [12, 7], this algorithm
runs in exponential time in |ϕ|. As the problem of deciding VLDL satisfiability is ExpTime-hard [23],
the obtained algorithm is asymptotically optimal.

We split the proof of Theorem 2 into two parts: First, we transform a given VLDL formula into an
equivalent so-called 1-AJA [5] of polynomial size. A 1-AJA is an alternating finite-state automaton on
words that is able to “jump” from calls to their matching return, skipping the nested infix. We describe
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this construction in the proof of Lemma 1. In a second step, we transform the obtained 1-AJA into a
tree automaton of exponential size that recognizes the stack trees of words recognized by the 1-AJA. We
define this construction in Lemma 3.

Let us first define the above mentioned 1-AJA [5]. First, let Dirs = {→,y}. In general, we use  
to indicate an arbitrary member of Dirs. Moreover, for a finite set Q and  ∈ Dirs, let Comms (Q) =
{ } × Q × Q, let Comms(Q) = Comms→(Q) ∪ Commsy(Q), and let B+(Comms(Q)) be the set of
positive Boolean formulas over Comms(Q). Note that B+(Comms(Q)) does not include the shorthands

true nor false. A 1-AJA (with Büchi acceptance) A = (Q, Σ̃, δ, qI , QF ) consists of a finite set of states Q,

a visibly pushdown alphabet Σ̃, a transition function δ : Q × Σ → B+(Comms(Q)), an initial state
qI ∈ Q, and a set of accepting states QF ⊆ Q. We define |A| = |Q|.

Intuitively, when the automaton is in state q at position i of the word α = α0α1α2 · · · , it guesses
a set of commands C ⊆ Comms(Q) such that C |= δ(q, αi). It then spawns one copy of itself for each
command ( , q→, qy) ∈ C and executes the command with that copy. If  =y and if αi is a matched
call, the copy jumps to the position of the matching return of αi and transitions to state qy. Otherwise,
i.e., if  =→, or if αi is not a matched call, the automaton advances to position i + 1 and transitions
to state q→. We say that A takes a jumping (direct) transition in the former (latter) case. All copies
of A proceed in parallel. A single copy of A accepts if it visits accepting states infinitely often, while the
1-AJA accepts α if all of its copies accept.

Formally, a run of A on an infinite word α = α0α1α2 · · · is an infinite directed acyclic graph R = (V,E)
with V ⊆ N × Q, where vI = (0, qI) ∈ V and all v ∈ V are reachable from vI . We call vI the initial
vertex of R and say that a vertex (i, q) ∈ V is on level i of R. We require that for each (i, q) ∈ V ,
there exists some C ⊆ Comms(Q) such that C |= δ(αi, q) and such that ((i, q), (i′, q′)) ∈ E if and only
if (i′, q′) = app(i, c) for some c ∈ C. To this end, the command-application function app is defined as
app(i, ( , q→, qy)) = (j, qy) if  =y and αi is a matched call with αj as its matching return, and
app(i, ( , q→, qy)) = (i + 1, q→) otherwise. We say that a vertex (i, q) is accepting if q is accepting.
Furthermore, a run R is accepting if each vertex in R has at least one successor and if all infinite paths
through R starting in vI contain infinitely many accepting vertices.

Note that, in contrast to the classical definition of runs of alternating automata without jumping
capability, an edge in the run of a 1-AJA does not characterize an advance by a single symbol. Instead,
there exists “long” edges that characterize the automaton “jumping over” a nested infix. Thus, there may
exist positions k such that a run of a 1-AJA on a word does not contain any vertices of the form (k, q),
since all copies of the automaton jump over position k. The cardinal positions of a word α, however,
serve as synchronization points of a run on α, as no copy of the automaton is able to jump over the
cardinal points.

Lemma 1. For every VLDL formula ϕ there exists an effectively constructible 1-AJA A with L(A) =
L(ϕ) and with |A| ∈ O(p(|ϕ|)) for some polynomial p.

Proof. In earlier work, we constructed a 1-AJA with a more complicated condition from a given VLDL
formula by induction over its structure [23]. This more complicated condition allowed for a complemen-
tation without a state-space-blowup in the construction of an automaton equivalent to ϕ = ¬ϕ′. As we
are now aiming for a 1-AJA with a simpler acceptance condition, namely a Büchi-condition, we adapt
this previous construction.

In order to prevent the costly complementation of 1-AJA, we require ϕ to be in negation normal form
(NNF), i.e., we assume that negations only occur directly preceding atomic propositions. Should this not
be the case, we can easily transform ϕ into NNF by “pushing down” negations along the syntax tree,
using De Morgan’s law and the duality ¬〈A〉ϕ = [A]¬ϕ. Note that this latter duality does not require
complementation of A, hence it is applicable in constant time. We then construct Aϕ inductively over
the structure of ϕ.

If ϕ = p, ϕ = ¬p, or ϕ = ϕ1 ◦ ϕ2 for ◦ ∈ {∨,∧}, we trivially obtain Aϕ, with |Ap| = |A¬p| = 2
and |Aϕ1◦ϕ2 | ∈ O(|Aϕ1 | + |Aϕ2 |) due to closure of 1-AJA under these operations [5]. If ϕ = 〈A〉ϕ′, we
follow the same intuition as in the previous construction [23], i.e., we construct the 1-AJA Aϕ such that
a single copy jumps along the cardinal positions of the input-word and spawns copies at every matched
call in order to verify that the jumps taken correctly summarize finite runs of A on the nested infix.
Additionally, Aϕ spawns copies verifying that the tests annotating the states along the simulated run
hold true. Finally, Aϕ nondeterministically decides to transition into Aϕ′ . The complete construction
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for this case can be found in the full version of our previous work [23], which can be adapted to use a
Büchi-condition by making none of the states simulating A accepting in Aϕ, thus forcing the simulated
run to eventually transition into Aϕ′ .

If ϕ = [A ]ϕ′, we obtain an automaton equivalent to ϕ via a dual construction to the one described

above for the case ϕ = 〈A〉ϕ′. Again, let A = (QA, Σ̃, ΓA, ∆A, qAI , Q
A
F , t

A). By induction, we obtain

the 1-AJAs A′ = (Q′, Σ̃, δ′, q′I , Q
′
F ) equivalent to ϕ′ and, for each test ϕi occurring in A, let Ai =

(Qi, Σ̃, δi, qiI , Q
i
F ) be the 1-AJA equivalent to ¬ϕi. Recall that we first transform ¬ϕi into negation

normal form by “pushing down” the negation to only occur in front of atomic propositions.
We now construct a 1-AJA Aϕ equivalent to ϕ. This construction is dual to our previous one for the

case ϕ = 〈A〉ϕ′ [23]. Intuitively, we simulate all runs of A on the input word by spawning copies of the
main automaton that jump along the cardinal positions of the processed input word. Every time a call c
is processed, we have to consider both cases of it being matched or unmatched. If c is matched, for each
state q ∈ QA, we nondeterministically guess whether or not the automaton A can be in state q at the
next step, or whether all run infixes starting in the current state lead to some state other than q. If c is
unmatched, however, we treat c similarly to a local action and additionally denote that no unmatched
return may be read anymore, since doing so would contradict c being unmatched. Note that, since
1-AJA process the matching return of a call after a jump instead of processing the symbol following it,
we introduce waiting states that are used to delay execution for a single step.

Formally, we define the set of states Q = Qϕ ∪ {>} ∪ Q′ ∪
⋃
ϕi∈range(tA)Q

i, where Qϕ = {q, qwait |
q ∈ (QA × {0, 1}) ∪ (QA × QA × Γ )} and where the state > is used as an accepting sink. The states
from QA × {0, 1} are used to simulate the original automaton before (QA × {0}) and after (QA × {1})
processing at least one unmatched call.

For the sake of readability, we define the transition function for the different components of the
automaton separately. Moreover, we write (→, q) and (→a, q) as shorthands for (→, q,>) and (→a

,>, q). As > is used as a sink, we clearly have δsink (>, a) = (→,>) for all a ∈ Σ. Furthermore, we
define δwait(qwait , a) = q for all a ∈ Σ.

When encountering a final state of A, we model acceptance of the prefix processed so far by spawning
a copy that moves to the initial state of A′. To achieve a uniform presentation, we define the auxiliary
formula χf (q, a) = δ′(q′I , a) if q ∈ QA

F and χf (q, a) = (→, acc) otherwise.
Moreover, we need notation to denote transitions into the automata Ai implementing the negated

tests of A. Note that, in order to handle the test labeling the initial state of A correctly, we only enter
the automaton implementing the negation of a test upon leaving the respective state. Hence, we move to
the successors of the initial state of Ai instead of moving to the initla state itself. To this end, we define
the auxiliary formula θaq = δi(qiI , a), where t(q) = ϕi.

Upon reading a local action, we have to spawn a copy to continue in the automaton A′ if we are
currently in a final state, as well as copies to track all possible continuations of the subsequent run. If
the test tA(q) is violated, however, we verify that this is indeed the case by moving to the automaton
implementing ¬tA(q). Hence we have

δmain((q, b), l) =
[
χf (q, l) ∧

∧
(q,l,q′)∈∆

(→, (q′, b))
]
∨ θlq for l ∈ Σl, b ∈ {0, 1}

Upon reading a call, the constructed 1-AJA has to consider both the case that the call is matched as
well as that it is unmatched. In the former case, for all transitions (q, c, q′, A) ∈ ∆ and all states q′′ ∈ Q,
the automaton either spawns a copy that verifies that it is impossible to go from q′ to q′′ by popping A
off the stack in the final transition, or it continues at the matching return in state q′′. In the latter case
it ignores the effects on the stack and denotes that it may not read any returns from this point onwards
by setting the binary flag in its state to 1. Similarly to the previous case, we can instead verify that t(q)
is violated by moving to the automaton implementing ¬t(q).

δmain((q, b), c) =
[
χf (q) ∧

∧
(q,c,q′,A)∈∆,q′′∈Q

[
(→, (q′, q′′, A)) ∨ (y, (q′′, b)wait)

]
∧∧

(q,c,q′,A)∈∆
(→, (q′, 1))

]
∨ θcq for c ∈ Σc, b ∈ {0, 1}

The main automaton may only handle returns as long as it has not skipped any calls. If it encounters
a return after having guessed that a call is unmatched, it moves to the accepting sink in order to be able
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to continue the simulation of all remaining runs.

δmain((q, 0), r) =
[
χf (q, r) ∧

∧
(q,r,⊥,q′)∈∆

(→, (q′, 0))
]
∨ θrq for r ∈ Σr

δmain((q, 1), r) = (→,>) for r ∈ Σr

The transition function δmain determines the behavior of the main automaton. It remains to define
the behavior of the copies of the automaton verifying the inability of the automaton to move to some
particular state upon reading a matching return. These behave similarly to the main automaton on
reading local actions and calls. The main difference in handling calls is that these automata do not
need to guess whether or not a call is matched: Since they are only spawned on reading supposedly
matched calls and terminate their run upon reading the matching return, all calls they encounter can
be assumed to be matched as well. Additionally, they never transition to the automaton A′, but merely
to the automaton implementing the negation of the test of the current state upon having verified their
guess. If instead they moved, say, to the accepting sink >, there would indeed be a possibility to move
to the chosen state upon popping the given stack symbol, which would contradict the nondeterministic
guess made upon reading the matching call.

δver ((q, q′, A), l) =
[∧

(q,l,q′′)∈∆
(→, (q′′, q′, A))

]
∨ θlq if l ∈ Σl

δver ((q, q′, A), c) =
[∧

(q,c,q′′,A′)∈∆,q′′′∈Q
(→, (q′′, q′′′, A′)) ∨ (y, (q′′′, q′, A)wait)

]
∨ θcq if c ∈ Σc

δver ((q, q′, A), r) = θrq if r ∈ Σr, (q, r, A, q′) ∈ ∆
δver ((q, q′, A), r) = (→, rej ) if r ∈ Σr, (q, r, A, q′) 6∈ ∆

We then define the complete transition function δ of Aϕ as the union of the previously defined partial
transition functions. Since their domains are pairwise disjoint, this union is well-defined.

δ = δsink ∪ δwait ∪ δ′ ∪
⋃

ϕi∈range(t)
δi ∪ δmain ∪ δver

Finally, we make all states obtained by the translation of A accepting. Thus, the simulations of all
runs of A are accepting, which lets the complete automaton Aϕ track all prefixes of the processed word
that are accepted by A. The 1-AJA

Aϕ = (Q, Σ̃, δ, (qAI , 0), QF ∪Q′F ∪
⋃

ϕi∈range(tA)
QiF )

then recognizes the language of ϕ = 〈A〉ϕ′, where QF = (QA × {0, 1}) ∪ (QA ×QA × Γ ) ∪ {>}. ut

Having given a translation of VLDL formulas into 1-AJAs, we now show how to transform a given
1-AJA A into a tree automaton recognizing the stack trees of words recognized by A. To this end, consider
a run R of a 1-AJA A on some word α ∈ Σω, as illustrated on the left-hand side of Figure 4. As argued
above, the cardinal positions of the processed word serve as synchroniziation points in the run of A on α:
If i is a cardinal position of α, then there exist no positions j, j′ ∈ N with j < i < j′ such that R contains
an edge from level j to level j′. In other words, each infinite path starting in the initial vertex vI of R
contains a vertex on level i for each cardinal position i of α. Hence, we are able to decide whether or
not R is accepting by considering finite paths of R starting and ending in levels i and i′, respectively,
where i and i′ are cardinal positions of α.

More formally, we demonstrate that the breakpoint construction of Miyano and Hayashi [15] can be
adapted to 1-AJAs. To this end, let R = (V,E) and let Vi be the vertices occurring in R on level i,
i.e., Vi = {(i, q) ∈ V | q ∈ Q}. A breakpoint sequence over R is an infinite sequence of cardinal positions
0 = i0 < i1 < i2 · · · of α such that all finite paths in R starting on level ij and ending on level ij+1

contain at least one accepting vertex. Each cardinal position ij in a breakpoint sequence is called a
breakpoint.

Lemma 2. Let R be a run of a 1-AJA. The run R is accepting if and only if there exists a breakpoint
sequence over R.
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Proof. First assume that there exists a breakpoint sequence 0 = i0, i1, i2, . . . over R. Then R is clearly
accepting, as each infinite path π starting in vI is of the form π = v0π0v1π1v2π2 · · · , where each vjπjvj+1

is a path from level ij to level ij+1, hence vjπjvj+1 contains at least one accepting vertex. Thus, π is
accepting.

For the other direction, assume that R is accepting. We show the existence of a breakpoint sequence
inductively and begin by defining i0 = 0. Now let i0, . . . , ij be a finite prefix of a breakpoint sequence
and assume towards a contradiction that no cardinal position ij+1 exists such that i0, . . . , ij , ij+1 is a
prefix of a breakpoint sequence. Then, for each cardinal position k, there exists a path from some vertex
on level ij to some vertex on level k that does not contain an accepting vertex. Hence, there also exists
an infinite path starting on level ij that does not contain an accepting vertex, which contradicts R
being accepting. Thus, there exists a cardinal position ij+1 such that i0, . . . , ij , ij+1 is a prefix of some
breakpoint sequence. Hence, there exists a breakpoint sequence over R. ut

Given some 1-AJA A, we now construct a tree automaton that verifies that the input tree is indeed
a stack tree and, if this is the case, simulates a run of A on the word represented by the input tree by
keeping track of the set of states at each level. Moreover, it verifies the existence of a breakpoint sequence,
visiting an accepting state on the cardinal branch of the processed tree every time the corresponding
symbol is at a cardinal position of the input word that can continue the prefix of the breakpoint sequence
constructed so far. In order to do so, we adapt the breakpoint construction by Miyano and Hayashi [15].
The key insight of this construction is that, given some breakpoint i, the vertices of any level j > i can
be partitioned into two sets Aj and Nj . The set Aj contains those states such that each finite path from
some vertex on level i to some vertex on level j visits at least one accepting state, while Nj contains
the remaining vertices on level j. We illustrate this partitioning on the left-hand side of Figure 4. If the
set Nj is empty, then j continues the breakpoint sequence constructed so far. We adapt this technique
in order to translate 1-AJA into tree automata by keeping track of the sets Ai and Ni along the cardinal
branch of the stack tree. Upon encountering a matched call at position i, the tree automaton guesses
the sets Aj and Nj reached at the next cardinal position j and verifies this guess when processing the
nested infix of position i.

A
(q6, 3)

N

A→

Ay

(q7, 3)

(q1, 1)(q0, 0) (q1, 1)

(q2, 1) (q3, 2)

(q4, 2)

(q5, 3)

(q6, 3)

(q7, 3)

α = l c l r

l
({q0}, ∅)

c
({q2},
{q1}) ⊥

q⊥

r
({q6},
{q5, q7}) l

({q4, q3}, ∅,
{q7}, {q6})

Fig. 4. Encoding of a run of a 1-AJA (left) into a run of a tree automaton (right). The states q1 and q7 are
accepting. The positions 0, 1, and 3 are cardinal positions of α. Note N = N→ = Ny.

Lemma 3. For every 1-AJA A there exists an effectively constructible tree automaton T with L(T) =
st(L(A)) and |T| ∈ O(2|ϕ|).

Proof. We construct a tree automaton T′ such that L(T′) ∩ st(Σω) = st(L(A)). Recall that, due to
Theorem 1, we obtain a tree automaton TΣ with L(TΣ) = st(Σω). By intersecting T′ with TΣ we
subsequently obtain T with the properties stated above.

We have explained the behavior of the automaton T′ along the cardinal branch above. It remains
to take into account the effect of nested infixes on the states reached by A at cardinal positions. To
this end, we note that each state reached at a cardinal position is either reached by taking a jumping
transition from the previous cardinal position, or by taking a direct transition from the directly preceding
position, i.e., from the last position of the nested infix. Thus, when reading a matched call at position i,
the automaton T guesses sets A→, N→ ⊆ Q that are reached eventually by copies of the automaton
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that process the nested infix w of position i. It then assumes that these states are indeed reached by
processing w and verifies that guess while processing st(w), i.e., the right-hand subtree of the matched
call. We show an example of this encoding of a run of A as a run of T′ on the right-hand side of Figure 4.

We use two kinds of states in order to implement this idea. States of the form (A,N), where A
and N partition a nonempty subset of Q are used along the cardinal branch of the processed stack tree,
implementing the breakpoint construction. Furthermore, we use states of the form ((A,N), (AG, NG)),
where (A,N) as well as (AG, NG) are partitions of nonempty subsets of Q, to verify guesses about the
effects of processing nested infixes. Moreover, we use a sink-state q⊥ in order to process subtrees labelled
exclusively with ⊥.

Let 1-AJA A = (Q, Σ̃, δ, qI , QF ). In order to define T′ concisely, we introduce some notation. First,
let QF = Q\QF . Moreover, given some set C ⊆ Comms(Q), we extract the direct- and jump-target-states
QC = {q | ( ′, q→, qy) ∈ C} for  ∈ Dirs. Furthermore, given some nonempty set B = {ϕ0, . . . , ϕn}
of Boolean formulas over Comms(Q), we write C |= B if C is a minimal model of B, i.e., if C = ∪ni=0Ci
with Ci |= ϕi.

Formally, we define the tree automaton T′ = (Q′, Σ,∆, q′I , Q
′
F ), where Q′ = (2Q)2∪ ((2Q)2× (2Q)2)∪

{q⊥}, q′I = ({qI}, ∅), if qI ∈ F and q′I = (∅, {qI}) otherwise, Q′F = (2Q × {∅}) ∪ ((2Q)2 × (2Q)2) ∪ {q⊥},
and the transition relation ∆ defined as the smallest relation that satisfies all of the following conditions:

Local Actions and Returns Let x ∈ Σl ∪ Σr, let S be a nonempty subset of Q, and let (A,N)
be a partition of S. Moreover, let CA, CN ⊆ Comms(Q) such that CA |= {δ(q, x) | q ∈ A} and
such that CN |= {δ(q, x) | q ∈ N}. Since A cannot take jumping transitions upon processing local
actions or returns, we define N ′ = QCN

→ \ F and A′ = (QCN
→ ∩ F ) ∪ (QCA

→ \ N ′), thus updating
the partitions A and N as described above. Note that the successor of a state in A may be in the
subset N ′ if the same state is a successor of a state in N . Moreover, it is easy to verify that (A′, N ′)
indeed are a partition of some set S′ ⊆ Q. Let (AG, NG) be a partition of some SG ⊆ Q. We
require (((A,N), (AG, NG)), x, ((A′, N ′), (AG, NG)), q⊥) ∈ ∆. Furthermore, if N 6= ∅, we require
((A,N), x, (A′, N ′), q⊥) ∈ ∆.

Unmatched Calls Let c ∈ Σc, let S be a nonempty subset of Q, and let (A,N) be a partition of S.
Moreover, let CA, CN ⊆ Comms(Q) such that CA |= {δ(q, x) | q ∈ A} and such that CN |=
{δ(q, x) | q ∈ N}. In this case, we guess that the currently processed call is unmatched. Thus,
similarly to the previous case, A can only take direct transitions. Define N ′ = QCN

→ \ F and A′ =
(QCN
→ ∩ F ) ∪ (QCA

→ \ N ′). We require ((A,N), c, q⊥, (A
′, N ′)) ∈ ∆. We do, however, not require a

transition processing unmatched calls when verifying some guess along a nested infix, as unmatched
calls cannot occur in nested infixes.

Matched Calls Let c ∈ Σc let S ⊆ Q be nonempty, and let (A,N) be a partition of S. Moreover,
let C A , C

 
N ⊆ Comms (Q) for  ∈ Dirs such that (C→A ∪ Cy

A ) |= {δ(q, x) | q ∈ A} and such that
(C→N ∪Cy

N ) |= {δ(q, x) | q ∈ N}. We follow the same idea as in the previous two cases and first define

the sets of states reached by A at the first position of the nested infix. To this end, let N ′→ = Q
C→N→ \F

and let A′→ = (Q
C→A→ \N ′→) ∪ (Q

C→N→ ∩ F ). Moreover, we define the partition of states reached by A

at the matching return of the current letter by taking a jumping transition as N ′y = (Q
Cy

Ny \ F )

and A′y = (Q
Cy

Ay \ N ′y) ∪ (Q
Cy

Ny ∩ F ). Finally, we guess that A finishes processing the nested infix
with the partition (AG, NG) of some nonempty SG ⊆ Q. Thus, we require ((A,N,A′G, N

′
G), c, (A′y ∪

AG, N
′
y ∪ NG, A′G, N ′G), (A′→, N

′
→, AG, NG)) ∈ ∆ for arbitrary nonempty S′G ⊆ Q where (A′G, N

′
G)

is a partition of S′G. Moreover, if N 6= ∅, we require ((A,N), c, (A′y, N
′
y), (A′→, N

′
→, AG, NG)) ∈ ∆.

Breakpoint Let x ∈ Σ, let S ⊆ Q be nonempty, and let A = S∩F and N = S\F . If ((A,N), x, q′0, q
′
1) ∈

∆, we require ((S, ∅), x, q′0, q′1) ∈ ∆.
Verified Guess Let S ⊆ Q be nonempty and let (A,N) be a partition of S. We require ((A,N,A,N),⊥, q⊥, q⊥) ∈

∆.
Sink We require (q⊥,⊥, q⊥, q⊥) ∈ ∆.

Let α be some word accepted by A and let t = st(α). Then one can easily construct a run of T′ on t
from a run of A on α as indicated in Figure 4. In fact, if there exists an accepting run of A on α, then
there also exists an accepting run of T′ on t, due to the implementation of the breakpoint construction
and due to Lemma 2. Conversely, if T′ accepts a stack tree t = st(α) for some word α ∈ Σω, say with
the accepting run R′, then it is possible to reconstruct an accepting run R of A on α from R′ via a
preorder-traversal of R′ that traverses the right-hand children of vertices first. Again, due to Lemma 2,
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the run R is accepting if and only if R′ is accepting. Hence, by intersecting T′ with the automaton TΣ
recognizing st(Σω) we obtain the automaton T recognizing st(L(A)). As |T′| ∈ O(2|A|), and since TΣ is
of fixed size, we obtain |T| ∈ O(2|A|). ut

The proof of Theorem 2 follows from Lemma 1 and Lemma 3: Given a VLDL formula ϕ, we first
construct the 1-AJA A with L(A) = L(ϕ) as demonstrated in the proof of Lemma 1. The automaton A
is of size polynomial in |ϕ|. We then construct the tree automaton T with L(T) = st(L(A)) as shown
in the proof of Lemma 3. The automaton T recognizes st(L(A)) = st(L(ϕ)) and is of size exponential
in |A|, i.e., of size exponential in |ϕ|.

5 Reducing VLDL Model Checking to Tree Automata Emptiness

In the previous section we have reduced the problem of VLDL satisfiability checking to the emptiness
problem for tree automata. We now consider the problem of VLDL model checking, which is formulated
as follows: “Given a VPS S and a VLDL formula ϕ, does traces(S) ⊆ L(ϕ) hold true?” We now show
that this problem can be reduced to the emptiness problem for tree automata similarly to the reduction
of the satisfiability problem for VLDL to the same problem.

Theorem 3. Let S be a VPS and let ϕ be a VLDL formula. There exists an effectively constructible
tree automaton T such that L(T) = ∅ if and only if traces(S) ⊆ L(ϕ) with |T| ∈ O(2|ϕ|p(|S|)) for some
polynomial p.

Proof. Recall that traces(S) ⊆ L(ϕ) if and only if traces(S) ∩ L(¬ϕ) = ∅. Moreover, recall that we can
effectively construct a tree automaton T¬ϕ such that L(T¬ϕ) = st(L(¬ϕ)) due to Theorem 2. We now
construct a tree automaton TS recognizing st(traces(S)). By intersecting TS and T¬ϕ we subsequently
obtain the tree automaton T recognizing traces(S) ∩ L(¬ϕ). Hence, L(T) = ∅ if and only if traces(S) ⊆
L(ϕ).

It remains to construct TS . Similarly to the proof of Lemma 3, we first construct T′S such that L(T′S)∩
st(Σω) = st(traces(S)). By intersecting T′S with TΣ we then obtain the required TS . The idea behind the
construction of T′S is to simulate a run of S along the cardinal branch of the tree. This is straightforward
in the case of local actions and unmatched calls or returns. Upon encountering a matched call, T′S guesses
the state reached by S upon encountering the matched return and verifies that guess on the stack tree
of the nested infix.

Let S = (Q, Σ̃, Γ,∆, qI). We define T′S = (Q′, qI , ∆
′, Q′F ) with Q′ = Q ∪ (Q ×Q) ∪ (Q × Γ ) ∪ (Q ×

Γ ×Q) ∪ {q⊥}, Q′F = Q′, and

∆′ = ∆l ∪∆uc ∪∆ur ∪∆mc ∪∆mr ∪∆s .

The individual components of ∆′ are defined as follows: We process local actions using transitions of the
form

∆l = {(q, l, q′, q⊥), ((q, qG), l, (q′, qG), q⊥) | (q, l, q′) ∈ ∆, qG ∈ Q} .

Similarly, upon encountering unmatched calls or returns, we use transitions of the form

∆uc = {(q, c, q⊥, q′) | (q, c, q′, A) ∈ ∆}

and

∆ur = {(q, r, q′, q⊥) | (q, r,⊥, q′) ∈ ∆} ,

respectively. When encountering a matched call, we guess a state qG reached by the automaton upon
processing the matching return and verify that guess using transitions from

∆mc = {(q, c, (qG, A), (q′, qG)) | (q, c, q′, A) ∈ ∆, qG ∈ Q}∪
{((q, qG), c, (q′G, A, qG), (q′, q′G)) | (q, c, q′, A) ∈ ∆, qG, q′G ∈ Q} .
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Upon encountering a matched return, we are in some state from (Q×Γ )∪ (Q×Γ ×Q), since a matched
return only occurs directly following a matched call. Hence, we use a transition from

∆mr = {((q, A), r, q′, q⊥) | (q, r, A, q′) ∈ ∆} ∪ {((q, A, qG), r, (q′, qG), q⊥) | (q, r, A, q′) ∈ ∆}

in order to process that matched return. Finally, we define ∆s = {(q⊥,⊥, q⊥, q⊥)} to continue the run
of T′S upon encountering the sink state q⊥.

Using the intuition given above, it can easily be verified that T′S ∩ st(Σω) = st(traces(S)) indeed
holds true. Thus, as previously argued, we obtain the automaton TS,¬ϕ with the properties given in the
statement of this lemma. ut

Due to Theorem 3, we obtain a novel asymptotically optimal algorithm for VLDL model checking:
Given a VPS S and a VLDL formula ϕ, we construct T such that L(T) = ∅ if and only if traces(S) ⊆
L(ϕ). The automaton T can be constructed in exponential time and is of exponential size in |ϕ| and of
polynomial size in |S|. Hence, we can check T for emptiness in exponential time in |ϕ| and in polynomial
time in |S|. Since the problem of VLDL model checking is ExpTime-complete [23], this algorithm is
asymptotically optimal.

6 Conclusion

In this work we have presented a correspondence between infinite words over a pushdown alphabet and
infinite binary trees. Moreover, we demonstrated a construction translating VLDL formulas into tree au-
tomata that are language-equivalent with respect to the above correspondence. This construction yields
novel algorithms for satisfiability- and model checking of VLDL formulas that reduce the problem to the
emptiness problem for tree automata. Thus, this construction leverages the strong connection between
visibly pushdown languages and regular tree languages that was already exhibited by Alur and Madhusu-
dan in their seminal work on the former family of languages [2]. Moreover, the construction demonstrates
that the well-known breakpoint construction by Miyano and Hayashi [15], which is routinely used to re-
move alternation from stack-free automata, can easily be adapted to transform alternating automata
over visibly pushdown words into corresponding alternation-free automata over trees representing such
words.

In future work, we plan to empirically evaluate both the algorithms presented in this work as well
as those presented in earlier work [23], which reduce the satisfiability- and model checking problems for
VLDL to the emptiness problem for visibly pushdown automata. Recall that our novel algorithm reduces
both problems to the emptiness problem for tree automata, which in turn reduces to the well-studied
problem of solving a two-player Büchi game. The latter problem is well-studied due to its important
applications, e.g., in program verification [1, 22] and program synthesis [13]. Hence, there exist efficient
algorithms [7] for solving them as well as mature solvers [10, 11]. Thus, we expect our novel algorithm to
outperform the previous approach [23] to the above problems.

Moreover, in previous work we investigated the problem of solving two-player games on a visibly
pushdown arena in which the winning condition is given by a VLDL formula and determined this problem
to be 3ExpTime-complete [23]. We showed membership of this problem in 3ExpTime by reducing it to
the problem of solving visibly pushdown games against a winning condition given by visibly pushdown
automata. Currently, we are investigating whether there exists a reduction of the former problem to that
of solving games in which the winning condition is given via tree automata that yields an asymptotically
optimal algorithm.

Acknowledgements The author would like to thank Martin Zimmermann for multiple fruitful discussions.
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