
Non-prenex QBF Solving using Abstraction?

Leander Tentrup

Reactive Systems Group
Saarland University

tentrup@react.uni-saarland.de

Abstract. In a recent work, we introduced an abstraction based algo-
rithm for solving quantified Boolean formulas (QBF) in prenex negation
normal form (PNNF) where quantifiers are only allowed in the formula’s
prefix and negation appears only in front of variables. In this paper, we
present a modified algorithm that lifts the restriction on prenex quan-
tifiers. Instead of a linear quantifier prefix, the algorithm handles tree-
shaped quantifier hierarchies where different branches can be solved in-
dependently. In our implementation, we exploit this property by solving
independent branches in parallel. We report on an evaluation of our im-
plementation on a recent case study regarding the synthesis of finite-state
controllers from ω-regular specifications.

1 Introduction

In recent work [18], we introduced an algorithm for solving quantified Boolean
formulas (QBF) in prenex negation normal form (PNNF). For each maximal
consecutive block of quantifiers of the same type, we build an abstraction, i.e.,
a propositional formula that combines valuations of inner and outer quantifier
blocks into valuations of special literals, called interface literals. The algorithm
employs a counterexample guided abstraction refinement (CEGAR) loop that
does recursion over the quantifier blocks. In every block, we use a SAT solver as
an oracle to generate new abstraction entries and to provide us with witnesses for
unsatisfiable queries. This algorithm, however, is limited to prenex QBF where
quantifier are only allowed in the formula’s prefix. This can be problematic for
non-prenex formulas since the task of prenexing a QBF is non-deterministic and
different prenexing strategies lead to different solving times [3]. On the other
hand, miniscoping can be used to translate prenex formulas into non-prenex
form. We have observed [17] that this is very effective for splitting instances into
independent parts on some benchmark families.

In this paper, we extend our previous algorithm to handle non-prenex QBFs
in negation normal form. Instead of a linear quantifier prefix, the algorithm is
optimized to handle tree-shaped quantifier hierarchies. These optimizations in-
clude identifying parts of the formula that belongs only to one quantifier block,

? This work was partially supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

hence, eliminating the need for interface literals. Further, for a branching node,
i.e., a quantifier block which has multiple children, it is possible to solve the chil-
dren independently. Our implementation exploits this independence by solving
the different branches in parallel.

2 Quantified Boolean Formulas

A quantified Boolean formula (QBF) is a propositional formula over a finite set
of variables X with domain B = {0, 1} extended with quantification. The syntax
is given by the grammar

ϕ := x | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ ,

where x ∈ X . For readability, we lift the quantification over variables to the
quantification over sets of variables and denote a maximal consecutive block of
quantifiers of the same type ∀x1.∀x2. · · · ∀xn. ϕ by ∀X.ϕ and ∃x1.∃x2. · · · ∃xn. ϕ
by ∃X.ϕ, accordingly, where X = {x1, . . . , xn}.

Given a subset of variables X ⊆ X , an assignment of X is a function α :
X → B that maps each variable x ∈ X to either true (1) or false (0). We
identify α as the conjunctive formula

∧
x∈X|α(x)=1 x ∧

∧
x∈X|α(x)=0 ¬x. When

the domain of α is not clear from context, we write αX . A partial assignment
β : X → B∪{⊥}may additional set variables x ∈ X to an undefined value ⊥. We
say that β is compatible with α, β v α for short, if they have the same domains
(dom(α) = dom(β)) and α(x) = β(x) for all x ∈ X where β(x) 6= ⊥. For two
assignments α and α′ with disjoint domains X = dom(α) and X ′ = dom(α′) we

define the combination α t α′ : X ∪X ′ → B as α t α′(x) =

{
α(x) if x ∈ X,
α′(x) otherwise.

We define the complement α to be α(x) = ¬α(x) for all x ∈ dom(α). The set of
assignments of X is denoted by A(X).

A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in the scope ϕ. Vari-
ables that are not bound by a quantifier are called free. The set of free variables
of formula ϕ is defined as free(ϕ). We assume the natural semantics of the sat-
isfaction relation αX � ϕ for QBF ϕ and assignments αX where X are the
free variables of ϕ. QBF satisfiability is the problem to determine, for a given
QBF ϕ, the existence of an assignment α for the free variables of ϕ, such that
the relation � holds.

A closed QBF is a formula without free variables. Closed QBFs are either
true or false. A formula is in prenex form, if the formula consists of a quantifier
prefix followed by a propositional formula.

A literal l is either a variable x ∈ X, or its negation ¬x. Given a set of
literals {l1, . . . , ln}, the disjunctive combination (l1 ∨ . . . ∨ ln) is called a clause.
Given a literal l, the polarity of l, sign(l) for short, is 1 if l is positive and 0
otherwise. The variable corresponding to l is defined as var(l) = x where x = l
if sign(l) = 1 and x = ¬l otherwise.

A QBF is in negation normal form (NNF) if negation is only applied to
variables. Every QBF can be transformed into NNF by at most doubling the

size of the formula and without introducing new variables. For formulas in NNF,
we treat literals as atoms.

3 Algorithm

We introduce additional notation to facilitate working with arbitrary Boolean
formulas. Let B be the set of quantified Boolean formulas and let sf (ϕ) ⊂ B
(dsf (ϕ) ⊂ B) be the set of (direct) subformulas of ϕ (note that ϕ ∈ sf (ϕ)
but ϕ /∈ dsf (ϕ)). Further, dqsf (ϕ) ⊂ B denotes the direct quantified subfor-
mulas of ϕ, i.e., a quantifier QX ′. ψ is in dqsf (ϕ) if QX ′. ψ is in the scope
of ϕ and there is no other quantifier QX ′′. ψ′ such that QX ′′. ψ′ is in the
scope of ϕ and QX ′. ψ is in the scope of ψ′. For a subformula ψ, type(ψ) ∈
{lit ,∨,∧, Q} returns the Boolean connector if ψ is not a literal nor a quantifier.
For example, given ψ = ∃x. (∀y.∃z. (x ∨ y ∨ ¬x)) ∨ (∀y. (y ∧ x)), it holds that
type(ψ) = Q, dsf (ψ) = {∀y.∃z. (x ∨ y ∨ ¬x)) ∨ (∀y. (y ∧ x)}, and dqsf (ψ) =
{∀y.∃z. (x ∨ y ∨ ¬x),∀y. (y ∧ x)}.

For this section, we assume w.l.o.g. that all quantifier blocks in the QBF are
strictly alternating, even for quantifiers not in the prefix. That means that for
every quantified formula QX.ψ, the quantifier type of all ψ′ ∈ dqsf (QX.ψ) is Q.
We use a generic solving function sat(θ, α) for propositional formula θ under
assumptions α, that returns whether θ ∧ α is satisfiable and either a satisfying
assignment αV for variables V ⊆ free(θ) or a partial assignment βfailed v α such
that θ∧βfailed is unsatisfiable. Further, we define SATQ to be SAT if Q = ∃ and
UNSAT otherwise (UNSATQ analogously).

The non-prenex algorithm works on the principle of communicating the sat-
isfaction of subformulas between quantifier blocks in the QBF. This communi-
cation is realized by two special types of literals which we call interface literals.
Only the valuation of those literals are communicated between the quantifier
levels. For a given quantifier QX and a subformula ψ, the T literal tψ represents
the assignments made by the outer quantifiers while the B literal bψ represents
the assignments from the current quantifier QX including assumptions on the
satisfaction of subformulas by inner quantifiers. Thus, tψ is true if ψ is satisfied
by the outer quantifiers and a valuation that sets bψ to true indicates that ψ is
satisfied by the quantifier QX. Before going in more detail on the abstraction,
we introduce the basic algorithm first.

The algorithm abstraction-qbf is depicted in Algorithm 1. The algorithm
uses a dual abstraction for optimization of abstraction entries [18]. Given a quan-
tifier QX, the sets TX and BX contain the T and B literals corresponding to
this quantifier. When translating a B literal to a T literal, we use the the same
index, e.g., in line 12, the B literals bψ′′ are translated to T literals tψ′′ of the
inner quantifier. We initialize θX with the abstraction described below, which is
a propositional formula over variables in X, as well as T and B literals. For the
innermost quantifier, it holds that BX = ∅. Further, the dual abstraction θX is
defined as the abstraction for QX.

Algorithm 1 Non-prenex Abstraction Based Algorithm

1: procedure abstraction-qbf(QX.ψ, αTX)
2: while true do
3: result , αX t αBX , βfailed ← sat(θX , αTX) . βfailed v αTX
4: if result = UNSAT then
5: return UNSATQ, βfailed
6: else if ψ is propositional then
7: result , , βfailed ← sat(θX , αX t αTX) . result = UNSAT
8: return SATQ, βfailed . βfailed v αTX
9: sub-result ← SATQ

10: Let βsub be the empty assignment
11: for ψ′ = QY.ψ∗ in dqsf (QX.ψ) where αBX (bψ′) = 0 do
12: Define αTY s.t. αTY (tψ′′) = ¬αBX (bψ′′) for all tψ′′ ∈ TY
13: result , βTY ← abstraction-qbf(ψ′, αTY) . βTY v αTY
14: if result = UNSATQ then
15: θX ← θX ∧ (

∨
bψ′′∈BX |βTY (tψ′′)=1 bψ′′)

16: sub-result ← UNSATQ
17: else
18: βsub ← βsub t βTY
19: if sub-result = SATQ then
20: θX ← θX ∧ (

∨
bψ′′∈BX |βsub(tψ′′)=1 bψ′′)

21: result , , βfailed ← sat(θX , αX t βsub) . result = UNSAT
22: return SATQ, βfailed . βfailed v αTX

In every iteration of the while loop, a B literal assignment αBX is generated
according to the outer T assignment αTX (line 3). For every direct quantified
subformula ψ′ = QY.ψ∗ (line 11) which is assumed to be satisifed (αBX (bψ′) =
0), we translate αBX into a T assignment for the inner quantifier (line 12) and
proceed recursively (line 13). If the recursive call is UNSAT (w.r.t the current
quantifier), we refine the abstraction to exclude the counterexample βTY , i.e., in
the following iterations one of the bψ′′ such that βTY (tψ′′) = 1 must be set to
true. Due to the negation during translation, those bψ′′ were set to false in αBX .
In case the recursive call is SAT, we update βsub to include the optimized T
assignment returned from the inner quantifier. When all recursive calls returned
SAT, we update the dual abstraction θX and use it to optimize the witness
βsub for the outer scope. If the query in line 3 fails, UNSATQ together with an
assignment βfailed v αTX witnessing the unsatisfiability is returned.

To ensure correctness, we need requirements on the abstraction being used.
Given a quantifier ∃X, we say that a subformula ψ is good if it is not yet falsified
(type(ψ) = ∧), respectively satisfied (type(ψ) = ∨). For every quantifier QX and
B literal bψ it must hold that if bψ is set to true then ψ is good for quantifier X.
This gives us proper refinement semantics (line 15). The same property holds for
t literals tψ. For every direct quantified subformula ψ′ = QY.ϕ∗ in the current
scope, the B literal bψ′ can be only set to true if the subformula ψ′ is not assumed
to be true. Intuitively, this means that the result of subformula ψ′ is not used

to satisfy the abstraction θX . Further, for a quantifier alternation, it must hold
that the set of outer B literals BX matches the union of all inner T literals TY
to enable the translation in line 12. Combining these properties gives us that a
good subformula of quantifier QX is a bad subformula of quantifier QY and
vice versa. Termination then follows from progress due to refinements (line 15)
and correctness can be showed by induction over the quantifiers.

Abstraction. We now give a formal definition of the abstraction. Given a QBF ϕ
in NNF and a quantifier ∃X.ϕ′, we build the following propositional formula in
conjunctive normal form representing the structural abstraction θX = out(ϕ) ∧∧
ψ∈sf (ϕ)∧type(ψ) 6=lit enc(ψ) for this quantifier, where out encodes the entry point

of the formula and enc defines a CNF formula that encodes the truth of subfor-
mula ψ with respect to the valuations of the current, inner and outer quantifiers
represented by B and T literals, respectively:

enc(ψ) =



∧
ψ′∈dsf (ψ)

(¬bψ ∨ encψ(ψ′)) if type(ψ) = ∧

¬bψ ∨
∨

ψ′∈dsf (ψ)

encψ(ψ′) if type(ψ) = ∨

(bψ ∨ out(ψ′)) if ψ = QX.ψ′

encψ(ψ′) =



ψ′ if type(ψ′) = lit ∧ var(ψ′) ∈ X
tψ if type(ψ′) = lit ∧ var(ψ′) bound by outer scope

¬bψ if type(ψ′) = lit ∧ var(ψ′) bound by inner scope

bψ′ if type(ψ′) 6= lit ∧ ψ′ only influenced by current or outer scope

¬bψ′ if type(ψ′) = Q

⊥ otherwise

enc∨(ψ) =
∨

ψ′∈dsf (ψ)
type(ψ′)=lit

encψ(ψ′) ∨
∨

ψ′∈dsf (ψ)
type(ψ′)=∧

bψ′ ∨
∨

ψ′∈dsf (ψ)
type(ψ′)=∨

enc∨(ψ′) ∨
∨

ψ′∈dsf (ψ)
type(ψ′)=Q

¬bψ′

out(ψ) =


bψ if type(ψ) = ∧
enc∨(ψ) if type(ψ) = ∨
¬bψ if type(ψ) = Q

An undefined result ⊥ form encψ(ψ′) means that the subformula ψ′ is ignored in
the encoding enc(ψ). The abstraction of a scope ∀X is defined as the existential
abstraction for ¬ϕ. The dual abstraction θX is defined as the abstraction for
¬QX. Note that not every B literal that is used in the abstraction may be
exposed as an interface literal.

For disjunctive formulas, enc(ψ) enforces that bψ can be only set to true if
a direct subformula that is (1) a (possibly negated) variable of the current or
outer scope, (2) a subformula that is not influenced by an inner variable, or (3)
a quantified subformula, is set to true. The encoding enc(ψ) of a conjunctive
formula enforces likewise that if bψ is true, the encodings encψ(ψ′) of all such

direct subformulas ψ′ ∈ dsf (ψ) are true. The abstraction has the required re-
finement semantics: If we want to ensure that one of the subformulas in a set
R = {ψ1, . . . , ψk} is guaranteed to be true at the current scope, we add the
clause (bψ1 ∨ · · · ∨ bψk).

Optimizations. The optimizations from the prenex algorithm [18] can be applied
to this algorithm as well. Additionally, we preprocess the formula using the well-
known miniscoping rules in order to decompose quantifier blocks.

In the algorithm, satisfying results of direct quantified subformulas are dis-
carded if one of them is UNSAT. Instead, we found that modifying the decision
heuristic of the underlying SAT solver to regenerate this subassignment reduced
the number of iterations overall.

4 Case Study: Reactive Synthesis

For our case study, we consider the reactive synthesis problem, i.e., the problem
of synthesizing a finite-state controller from an ω-regular specification. Formally,
we have a specification ϕ that defines a language L(ϕ) ⊆ (2I∪O)ω over the
atomic propositions that are partitioned into a finite set of inputs I to the
controller and a finite set of outputs O of the controller. An implementation
of a controller is a 2O-labeled 2I-transition system S = 〈S, s0, δ, l〉 where S is
a finite set of states, s0 ∈ S is the designated initial state, δ : S × 2I → S is
the transition function, and l : S → 2O is the state-labeling. The run of S on a
sequence π ∈ (2I)ω is run(S, π) = s0π0s1π1 · · · ∈ (S · 2I)ω where si+1 = δ(si, πi)
for every i ≥ 0. The corresponding trace, denoted by trace(S, π), is (l(s0) ∪
π0)(l(s1) ∪ π1) · · · ∈ (2I∪O)ω. A transition system S satisfies the specification ϕ
if trace(S, π) ∈ L(ϕ) for all input sequences π ∈ (2I)ω. By bounding the number
of states that the implementation of the controller may use, one can derive a
QBF encoding [4] from this problem using the bounded synthesis approach [5].
The synthesis instances used in this case study where taken from the Acacia
benchmark set [2].

The exact encoding is out of scope for this paper, so we are only giving a
high level overview. The QBF query has a quantifier prefix of the form ∃∀∃. The
variables in the top level existential correspond to a global constraint that cannot
be split syntactically. However, the constraints regarding the inner quantifiers
∀∃ are local to the state of the implementation, so one gets a QBF with a top
level existentially quantifier and n independent ∀∃ quantifiers below by using
miniscoping rules, where n is the number of states in the implementation. This is
merely a new observation and not particularly special for this kind of benchmark
as we have made similar observations regarding competitive benchmark suites
for CNF [17].

We implemented Algorithm 1 and its optimizations in a prototype tool called
PQuAbS (Parallel Quantified Abstraction Solver)1 that takes QBFs in the stan-
dard format QCIR [16]. We use PicoSAT [1] as the underlying SAT solver and

1 Available at https://www.react.uni-saarland.de/tools/quabs/

Table 1. Cumulated solving time of PQuAbS with respect to number of used threads.
There are 443 instances in total.

1 thread 2 threads 3 threads 4 threads prenex

solved instances 397 403 407 409 325
cumulated solving time 100% 64.51% 54.15% 49.94% -

the POSIX pthreads library for thread creation and synchronization. For ev-
ery quantifier QX that branches more than once, we create a thread for each
child quantifier. The loop in line 11 is then implemented by passing αTY to the
subquantifier and waking the corresponding thread. Before line 19, there is a
barrier where we wait for all children to finish. For our experiments, we used a
machine with a 3.6 GHz quad-core Intel Xeon processor and 32 GB of memory.
The timeout was set to 10 minutes.

Table 1 shows the overall results of our experiments. It depicts the number of
solved instances and the cumulated solving times with respect to the number of
threads used. For comparison, we also included the number of solved instances
from the single threaded version of PQuAbS without miniscoping, i.e., linear
prenex solving. One cannot expect linear speedup due to the non-parallelizable
parts, like preprocessing and solving of the top-level existential quantifier, as well
as the fact that the solving time of the children ∀∃ quantifiers are not uniform.

Nevertheless, already using 2 threads, the speedup compared to single thread
solving is more than 1.5 and using 4 threads reduces the solving time by a factor
of 2 on average. Table 2 gives detailed results for select instances from the scatter
plot of Figure 1. These examples are the two “outliers” load-full-6 and ltl2dba-05,
the hardest commonly solved instance ltl2dba-23, and two instances with close
to optimal speedup (ltl2dpa-12 and ltl2dpa-11).

Table 2. Detailed solving results for example instances.

instance branching 1 thread 2 threads 3 threads 4 threads

ltl2dba-23 10
598.20 s 393.68 s 335.59 s 312.70 s

100% 65.81% 56.10% 52.27%

ltl2dpa-12 15
521.35 s 302.13 s 233.98 s 202.27 s

100% 57.95% 44.88% 38.80%

ltl2dba-05 4
476.12 s 359.40 s 331.87 s 322.59 s

100% 75.49% 69.70% 67.75%

load-full-6 3
386.94 s 332.15 s 314.37 s 321.75 s

100% 85.84% 81.25% 83.15%

ltl2dpa-11 18
252.61 s 143.13 s 107.54 s 92.43 s

100% 56.67% 42.57% 36.59%

0 100 200 300 400 500 600
0

100

200

300

400
run time in sec.

ru
n

ti
m

e
in

se
c.

2 threads

3 threads

4 threads

Fig. 1. Scatter plot of solving times with multiple threads against single thread base-
line. Here, we consider only instances with more than 1 second of solving time.

5 Related Work

There are other solving techniques that use structural information, but they are
conceptional very different, including DPLL like [3, 6, 10] and expansion [7, 13,
15]. Further, some of them can be applied to non-prenex setting as well [3, 10].
Employing SAT solver to solve propositional queries with quantifier alternations
has been used before [7,8,17,19]. We extend our own work on abstraction based
QBF solving [18] that itself originated from techniques that communicate the
satisfaction of clauses through a recursive refinement algorithm [8,17] that were
limited to conjunctive normal form. MPIDepQBF [9] is the most recent parallel
solver for QBF. Their approach differs from our as they start instances of a
sequential solver without synchronization. Da Mota et al. [14] proposed methods
to split a QBF at the top level and solve the resulting QBF instances in parallel
by a sequential CNF algorithm. In contrast, our approach can handle branches at
every node in the quantifier hierarchy and our solving step is tightly integrated
into the algorithm. Other parallel solving approaches [11,12] are conceptionally
very different to our solution.

6 Conclusion and Future Work

We presented a QBF solving algorithm for QBFs in negation normal form, which
extends our previous algorithm [18] to non-prenex formulas together with new
optimizations and parallelization. Our evaluation shows that the parallelization
is beneficial for our case study and other experiments suggests this method is
more broadly applicable. Adapting the certification from [18] for non-prenex
formulas is left for future work. Further, it would be interesting to try non-
syntactic unprenexing methods to improve the parallelization, e.g., expansion of
variables that combine otherwise independent subformulas.

References

1. Biere, A.: PicoSAT essentials. JSAT 4(2-4), 75–97 (2008)
2. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.: Acacia+, a tool for LTL

synthesis. In: Proceedings of CAV. LNCS, vol. 7358, pp. 652–657. Springer (2012)
3. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form.

Constraints 14(1), 38–79 (2009)
4. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of reactive

synthesis. In: Proceedings of QUANTIFY (2015)
5. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6), 519–539 (2013)
6. Goultiaeva, A., Iverson, V., Bacchus, F.: Beyond CNF: A circuit-based QBF solver.

In: Proceedings of SAT. LNCS, vol. 5584, pp. 412–426. Springer (2009)
7. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-

terexample guided refinement. In: Proceedings of SAT. LNCS, vol. 7317, pp. 114–
128. Springer (2012)

8. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceedings of
IJCAI. pp. 325–331. AAAI Press (2015)

9. Jordan, C., Kaiser, L., Lonsing, F., Seidl, M.: MPIDepQBF: Towards parallel QBF
solving without knowledge sharing. In: Proceedings of SAT. LNCS, vol. 8561, pp.
430–437. Springer (2014)

10. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF
solver with game-state learning. In: Proceedings of SAT. LNCS, vol. 6175, pp.
128–142. Springer (2010)

11. Lewis, M.D.T., Schubert, T., Becker, B.: QmiraXT - A multithreaded QBF solver.
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen (MBMV), Berlin, Germany, March 2-4, 2009. pp. 7–16.
Universitätsbibliothek Berlin, Germany (2009)

12. Lewis, M.D.T., Schubert, T., Becker, B., Marin, P., Narizzano, M., Giunchiglia, E.:
Parallel QBF solving with advanced knowledge sharing. Fundam. Inform. 107(2-3),
139–166 (2011)

13. Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: Proceedings
of SAT. LNCS, vol. 4996, pp. 196–210. Springer (2008)

14. Mota, B.D., Nicolas, P., Stéphan, I.: A new parallel architecture for QBF tools. In:
Proceedings of HPCS. pp. 324–330. IEEE (2010)

15. Pigorsch, F., Scholl, C.: Exploiting structure in an AIG based QBF solver. In:
Proceedings of DATE. pp. 1596–1601. IEEE (2009)

16. QBF Gallery 2014: QCIR-G14: A non-prenex non-CNF format for quantified
Boolean formulas http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

17. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Proceedings of FM-
CAD. pp. 136–143. IEEE (2015)

18. Tentrup, L.: Solving QBF by abstraction. CoRR abs/1604.06752 (2016),
https://arxiv.org/abs/1604.06752

19. Tu, K., Hsu, T., Jiang, J.R.: QELL: QBF reasoning with extended clause learning
and levelized SAT solving. In: Proceedings of SAT. LNCS, vol. 9340, pp. 343–359.
Springer (2015)

