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Abstract. We revisit the synthesis of timed controllers with partial
observability. Bouyer et al. showed that timed control with partial observ-
ability is undecidable in general, but can be made decidable by fixing the
granularity of the controller, resulting in a 2ExpTime-complete problem.
We refine this result by providing a detailed complexity analysis of the
impact of imposing a bound on the size of the controller, measured in
the number of locations. Our results identify which types of bounds are
useful (and which are useless) from an algorithmic perspective. While
bounding the number of locations without fixing a granularity leaves
the problem undecidable, bounding the number of locations and the
granularity reduces the complexity to NExpTime-complete. If the con-
troller is restricted to be a discrete automaton, the synthesis problem
becomes PSpace-complete, and, for a fixed granularity of the plant, even
NPTime-complete. In addition to the complexity analysis, we also present
an effective synthesis algorithm for location-bounded discrete controllers,
based on a symbolic fixed point computation. Synthesis of bounded con-
trollers is useful even if the bound is not known in advance. By iteratively
increasing the bound, the synthesis algorithm finds the smallest, and
therefore often most useful, solutions first.

1 Introduction

The theory of timed automata has made it possible to extend the algorithms
for automatic verification and controller synthesis from discrete systems to real-
time systems. An open challenge is, however, to effectively synthesize real-time
controllers under partial observability, i.e., in situations where there are some
events in the plant that the controller cannot observe.

Since the synthesis problem of real-time controllers under partial observability
is in general undecidable [4], synthesis algorithms must focus on restricted classes
of controllers. Bouyer et al. studied, for example, the synthesis problem with fixed
granularity, where the number of clocks and the precision of the guards is limited
in advance [11,4]. While this restriction ensures decidability, it unfortunately



XXXXXXXXXBound
Granularity

Unspecified Fixed Discrete

Unbounded Undecidable 2ExpTime-complete 2ExpTime-complete

Locations Undecidable NExpTime-complete
PSpace-complete /
NPTime-complete

Clocks Undecidable 2ExpTime-complete —

Table 1. Overview on the complexities of bounded synthesis for timed controllers with
partial observability. The results written in bold face are established in this paper, the
other results are taken from [4].

does not suffice to obtain an effective algorithm, because the synthesis problem
remains intractably expensive (2ExpTime-complete). Finding restrictions on the
timed controllers that lead to a significant reduction in complexity thus remained
an open question.

In this paper, we undertake a systematic study of the impact of various
restrictions on the complexity of the controller synthesis problem. We introduce a
bound on the size of the controller and limit the search to only those controllers
that fall below the bound. In the setting of discrete systems, this idea is known as
bounded synthesis [30]. For plants given as timed automata, natural adaptations
of the bounded synthesis approach are to search for a controller with a bounded
number of locations.

We analyze the complexity of the bounded synthesis problem under different
types of bounds, and under different restrictions on the granularity. The results
are summarized in Table 1. Some restrictions do not help: bounding the number of
locations without fixing a granularity leaves the problem undecidable. Fixing both
the granularity and a bound on the number of locations, however, reduces the
complexity from 2ExpTime-complete to NExpTime-complete. Most interesting
is the restriction to discrete controllers, where all clocks are located in the plant
and the untimed controller only reacts to discrete events. Here, the complexity
reduces to PSpace, i.e., the problem is exactly as hard as standard model
checking. If the granularity of the plant is fixed, the complexity reduces further
to NPTime.

Related work. In his seminal work on discrete two-player games [27], Reif
introduced the knowledge-based subset construction to transform a game with
imperfect information to a game with perfect information. The construction
causes an exponential blow-up. The (fully observable) timed controller synthesis
problem in the framework of timed automata [1] was defined by Maler et al. by
introducing two-player timed games [23,2]. The decidability of the problem was
shown by demonstrating that the discrete attractor construction [31] can be
adapted to a zone-based algorithm to obtain timed controllers. Henzinger and
Kopke showed that the discrete attractor construction on the region graph is
theoretically optimal by proving that the synthesis problem for safety properties is
ExpTime-complete [16]. Controller synthesis against external specifications given
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as nondeterministic timed automata was considered by D’Souza and Madhusudan
[11]. They were the first who discovered that fixing the granularity of the controller
leads to decidability. Bouyer et al. extended this work by introducing partial
observability for the controller [4]. A more pragmatic approach was investigated
by Cassez et al. by restricting the choices and the observability of the controller
so that the implementation of zone-based synthesis algorithms becomes possible
[7]. An extension of this work uses alternating timed simulation relations to
efficiently control partially observable systems [9]. An alternative restriction is
to only consider controllers that match a given template. We recently obtained
promising experimental results with an implementation that searches for such
controllers using automatic abstraction refinement [14].

The idea of a-priori fixing syntactic properties of the system that should be
synthesized resembles bounded synthesis [30] from the (fully observable, pure
discrete) LTL synthesis community. Symbolic implementations based on SMT-
solving [15], antichains [13], or BDDs [12] followed. In these works, one fixes
the maximal number of states that the synthesized system may have. Recently,
Kupferman et al. continued this line of research by distinguishing between bound-
ing the system and/or the environment [19]. Following a similar idea, Lustig et al.
proposed synthesizing systems based on component libraries [22].

Laroussinie et al. investigated the impact of bounding the number of clocks
for model checking timed automata [20]. Chen and Lu extended this work to
the fully observable synthesis setting by bounding the number of clocks in the
plant [10], which is in contrast to this paper, where we impose bounds on the
controller. For STRIPS planning, Rintanen [28] investigated the impact of no
and partial observability on finding discrete plans.

Contributions of the paper

– We provide the theoretical foundation for an extension of the bounded
synthesis approach to the setting of real-time control. Our results identify
which types of bounds are useful (and which are useless) from an algorithmic
perspective.

– We provide matching lower and upper bounds for the complexity of the
various synthesis problems, extending the complexity analysis of Bouyer
et al. [4] to a complete picture of the controller synthesis problem for timed
systems under partial observability. The proofs require nontrivial extensions
of the techniques used in the literature that may also be of interest in other
settings. For example, the proof of the NExpTime lower bound of Theorem 6
is based on an insightful connection between timed automata and the theory
of problems on succinctly specified graphs.

– We demonstrate that bounded synthesis can be implemented in the setting
of standard fixpoint-based verification tools for real-time systems. For this
purpose, we present a construction that computes the set of discrete location-
bounded controllers symbolically as a least fixed point.

Outline. We first recall the foundations of timed automata and timed controller
synthesis with partial observability in Sections 2 and 3, respectively. In Section 4,
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we investigate the impact of bounding the locations of the controller. Finally,
Section 5 introduces discrete controllers and investigates the impact of bounded
and unbounded synthesis in this setting. For each lemma and theorem newly
established in this paper, we give a brief description of the proof idea in the main
part of the paper. The detailed versions of the proofs as well as their underlying
technical constructions can be found in the appendix.

2 Timed Automata

In this section, we recall the timed automaton model by Alur and Dill.

Definition. A timed automaton [1] is a tuple A = (L, l0, Σ,∆,X), where L is
a finite set of (control) locations, l0 ∈ L is the initial location, Σ is a finite set of
actions, ∆ ⊆ L×Σ × C(X)× 2X ×L is an edge relation, X is a finite set of real
valued clocks, and C(X) is the set of clock constraints over X. A clock constraint
ϕ ∈ C(X) is of the form

ϕ ≡ true | x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1,

where x is a clock in X, ϕ1 and ϕ2 are clock constraints from C(X), and
c is a constant in Q≥0 encoded in binary. A clock valuation t : X → R≥0
assigns a nonnegative value to each clock and can also be represented by a
|X|-dimensional vector t ∈ R, where R = RX≥0 denotes the set of all clock

valuations. We write l
a,ϕ,λ−−−→ l′ to refer to a tuple (l, a, ϕ, λ, l′) in ∆. We say that

A is deterministic if, for any two distinct edges l
a,ϕ,λ−−−→ l′ and l

a′,ϕ′,λ′

−−−−−→ l′′, it
holds that a = a′ ⇒ ϕ ∧ ϕ′ ≡ false. Following the setting of [2], we assume that
timed automata are strongly nonzeno, i.e., there are no cycles where an infinite
time-convergent sequence of transitions is possible.

The (timed) states of a timed automaton are pairs (l, t) of locations and clock
valuations. Timed automata have two types of transitions: timed transitions, where
only time passes and the location remains unchanged, and discrete transitions,
where no time passes, the current location may change and some clocks can be
reset to zero. In a timed transition, denoted by (l, t)

a−→ (l, t + a · 1), the same
nonnegative value a ∈ R≥0 is added to all clocks. A discrete transition, denoted

by (l, t)
a−→ (l′, t′) for some a ∈ Σ, corresponds to an edge (l, a, ϕ, λ, l′) of ∆ such

that t satisfies the clock constraint ϕ, written as t |= ϕ, and t′ = t[λ := 0] is
obtained from t by setting the clocks in λ to 0.

We say that a state s is forward reachable if there is an n ∈ N and a
finite sequence of transitions of the form s0

a1−→ s1 . . . sn−1
an−−→ sn such that

s0 = (l0,0) is the initial state (where 0 is the zero vector), sn = s, and for all

1 ≤ i ≤ n, si = (li, ti) are states and si−1
ai−→ si are transitions of the automaton,

respectively. We say that the sequence a1a2 . . . an ∈ (Σ ∪R≥0)∗ is a timed prefix
of A and we define L(A) as the set of all timed prefixes leading to states that
are forward reachable.
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Granularity. The granularity of a timed automaton defines its timing re-
sources [11]. Formally, a granularity is represented by a tuple µ = (Y,m, cmax ),
where Y is a finite set of clocks, m ∈ N≥1, and cmax ∈ Q≥0. We say that a timed
automaton A = (L, l0, Σ,∆,X) is µ-granular if X = Y and, for each constant
c ∈ Q≥0 appearing in the clock constraints of the guards of the edges in ∆, it
holds that c is an integer multiple of 1

m and c ≤ cmax . We call the value of a
clock x ∈ X maximal if it is strictly greater than cmax .

Composition. Timed automata can be syntactically composed into networks,
in which the automata run in parallel and synchronize on shared actions. For
two timed automata A1 = (L1, l

1
0, Σ1, ∆1, X1) and A2 = (L2, l

2
0, Σ2, ∆2, X2),

the parallel composition A1‖A2 is the timed automaton (L1 × L2, (l
1
0, l

2
0), Σ1 ∪

Σ2, ∆,X1 ∪X2), where ∆ is the smallest set that contains

– (l1, l2)
a,ϕ1∧ϕ2,λ1∪λ2−−−−−−−−−−→ (l′1, l

′
2),

if a ∈ Σ1 ∩Σ2, l1
a,ϕ1,λ1−−−−−→ l′1 ∈ ∆1 and l2

a,ϕ2,λ2−−−−−→ l′2 ∈ ∆2,

– (l1, l2)
a,ϕ1,λ1−−−−−→ (l′1, l2),

if a ∈ Σ1 \Σ2, l1
a,ϕ1,λ1−−−−−→ l′1 ∈ ∆1, and

– (l1, l2)
a,ϕ2,λ2−−−−−→ (l1, l

′
2),

if a ∈ Σ2 \Σ1, l2
a,ϕ2,λ2−−−−−→ l′2 ∈ ∆2.

If A1 is (X,m, cmax )-granular and A2 is (X ′,m′, c′max )-granular, then the com-
bined granularity of A1‖A2 is (X ∪X ′,m ·m′,max(cmax , c

′
max )).

Finite semantics. The decidability of the reachability problem of timed
automata relies on the existence of the region equivalence relation [1] on R
which has a finite index. In the following, we fix a µ-granular timed automaton
A = (L, l0, Σ,∆,X) with µ = (X,m, cmax ). We say that two clock valuations
t1, t2 ∈ R are in the same clock region, denoted t1 ∼ t2, if

– the set of clocks with maximal value is the same in t1 and in t2
(i.e., ∀x ∈ X : t1(x) > cmax ⇔ t2(x) > cmax ), and

– m · t1 and m · t2 agree (1) on the integer parts of the clock values, (2) on
the relative order of the fractional parts of the clock values, and (3) on the
equality of the fractional parts of the clock values with 0. That is, for all
clocks x and y with nonmaximal value, it holds that
(1) bm · t1(x)c = bm · t2(x)c,
(2) fr(m · t1(x)) ≤ fr(m · t1(y))⇔ fr(m · t2(x)) ≤ fr(m · t2(y)), and
(3) fr(m · t1(x)) = 0 iff fr(m · t2(x)) = 0,
where fr(m · ti(x)) = m · ti(x)− bm · ti(x)c for i ∈ {1, 2}.

We denote with [t] = {t′ ∈ R | t ∼ t′} the clock region t belongs to. We say that
two states s1 = (l1, t1) and s2 = (l2, t2) of A are region-equivalent, denoted by
s1 ∼ s2, if their locations are the same (l1 = l2) and the clock valuations are in
the same clock region (t1 ∼ t2), and denote with [(l, t)] = {(l, t′) ∈ L×R | t ∼ t′}
the equivalence class of region-equivalent states that (l, t) belongs to.
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Regions are a suitable semantics for the abstraction of timed automata because
they essentially preserve the set of time-abstracted prefixes: if there is a discrete
transition s

a−→ s′ from a state s to a state s′ of a timed automaton, then there
is, for all states t with t ∼ s, a state t′ with t′ ∼ s′ such that t

a−→ t′ is a discrete
transition with the same label. For timed transitions, a slightly weaker property

holds: if there is a timed transition s
d−→ s′ from a state s to a state s′, then there

is, for all states t with t ∼ s, a state t′ with t′ ∼ s′ such that there is a timed

transition t
d′−→ t′ (but possibly with d′ 6= d).

The finite semantics of a timed automaton A = (L, l0, Σ,∆,X) is the finite
directed graph JAKµ = (Q, q0, T ) where

– the symbolic state set Q = {[(l, t)] | (l, t) ∈ L × R} of JAKµ is the set of
equivalence classes of region-equivalent states of A, with

– the initial state q0 = [(l0, t0)], and

– the set T = {(q, q′) ∈ Q × Q | ∃t ∈ q, t′ ∈ q′, a ∈ Σ ∪ R≥0. t
a−→ t′} of

transitions.

The finite semantics of a timed automaton A is also sometimes called the region
graph of A.

The finite semantics is reachability-preserving:

Lemma 1. [1] For a timed automaton A = (L, l0, Σ,∆,X) there is a finite path
from a state (l, t) to a state (l′, t′) if, and only if, there is a finite path from[
(l, t)

]
to
[
(l′, t′)

]
in JAKµ.

Reachability model checking. The decidability of checking reachability
properties for timed automata relies on the existence of the so called region
abstraction that yields a finite semantics. Applying this abstraction on a given
timed automaton gives a finite automaton whose number of states is linear in
the locations and exponential in the granularity:

Lemma 2. [1] For a µ-granular timed automaton A = (L, l0, Σ,∆,X) with
µ = (X,m, cmax ), there always exists a finite automaton A′ which preserves the
reachability information of the states of A. Furthermore, the number of states of
A′ is bounded by

|L| · |X|! · 2|X| ·
∏
x∈X

O(m · cmax )

= |L| · |X|! ·O(m · cmax )|X|.

For a given timed automaton A, we define Reach(A) as the set of all states
forward reachable of A. For a set of states B, characterizing the bad states of A,
we use Safe(A,B) as an abbreviation for Reach(A) ∩B = ∅. We assume that B
can be compactly represented by a Boolean predicate over the locations and clock
values of A. The model checking problem (MC) is to decide whether Safe(A,B)
is true. For deciding MC, the region abstraction is a theoretically optimal state
space representation:
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Theorem 1. [1] For a timed automaton A and a set of bad states B, deciding
Safe(A,B) is PSpace-complete.

3 Timed Control with Partial Observability

In this section, we recall some known results for timed controller synthesis, which
form the starting point of our investigation.

Plants and controllers. A partially observable plant is a tuple
(P,Σin, Σ

obs
out , X

obs), where P is a timed automaton (L, l0, Σ,∆,X), Σin and Σobs
out

are the input and observable output actions, respectively, with Σin ]Σobs
out ⊆ Σ,

and Xobs ⊆ X are the observable clocks. For a partially observable plant
P = (P,Σin, Σ

obs
out , X

obs), with P = (Lp, l
p
0, Σp, ∆p, Xp), a controller for P is

a deterministic timed automaton C = (Lc, l
c
0, Σc, ∆c, Xc) with Xc ∩Xp = Xobs

and Σc = Σin ∪Σobs
out such that C does neither

(1) reset plant clocks: for each l
a,ϕ,λ−−−→ l′ ∈ ∆c, we require that λ ∩Xp = ∅;

(2) inhibit plant actions: for all timed prefixes w ∈ L(P‖C) with w.u ∈ L(P )
and u ∈ Σobs

out , we require that w.u ∈ L(P‖C); nor
(3) introduce timelocks : for all timed prefixes w ∈ L(P‖C), we require that there

is a d ∈ R≥0 and a c ∈ Σin such that w.d.c ∈ L(P‖C).

We treat the case where the controller has complete information as a special case.
We say that (P,Σin, Σ

obs
out , X

obs) is fully observable, if

(1) P is deterministic,
(2) Σin ∪Σobs

out = Σ, and
(3) Xobs = X.

For a (partially or fully observable) plant P = (P,Σin, Σ
obs
out , X

obs) and a set of
bad states B, the controller synthesis problem is to synthesize a controller C such
that Safe(P‖C,B). Recall that we require timed automata (so the controllers) to
be non-zeno. This way, we rule out trivial solutions consisting of a (physically
unmeaningful) zeno controller that achieves its safety objective just by executing
discrete actions infinitely often in a bounded amount of time.

Controller synthesis. For the fully observable setting, Maler et al. showed
that the controller synthesis problem can be reduced to solving a finite two-player
safety game (which is known to be PTime-complete [17]) on the finite semantics
of the given plant. They also showed that a fully informed controller can always
be expressed in the granularity of the plant:

Lemma 3. [23] For a fully observable plant P = (P,Σin, Σ
obs
out , X

obs), where P
is µ-granular, and a set of bad states B, if there is a controller C for P, such
that Safe(P‖C,B), then there is a µ-controller C ′ (i.e., with no own clocks) such
that Safe(P‖C ′, B).
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Henzinger and Kopke proved that the game-theoretic synthesis algorithm based
on the finite semantics is theoretically optimal.

Theorem 2. [16] For a fully observable plant P and a set of bad states B,
synthesizing a controller C for P , such that Safe(P‖C,B), is ExpTime-complete.

Bouyer et al. showed that in the presence of partial observability, the general
timed synthesis problem becomes undecidable, even when a bound is imposed on
the number of clocks of the controller.

Theorem 3. [4,3] For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs) and
a set of bad states B, the following holds:

(1) Synthesizing a controller C for P, such that Safe(P‖C,B), is undecidable.
(2) For a given integer constant k ∈ N≥1, synthesizing a controller C for P with

k clocks, such that Safe(P‖C,B), is undecidable.

However, an important result of their work is that by imposing a granularity
bound on the controller, one achieves decidability.

Theorem 4. [4,3] For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a
granularity µ, and a set of bad states B, synthesizing a µ-controller C for P,
such that Safe(P‖C,B), is 2ExpTime-complete.

Inspired by the last theorem, our paper continues this line of research by investi-
gating finer bounds on the controller.

This concludes the recalling of the results that can be found in the literature.
Based on these results, we start with our investigation.

4 Location-bounded Controllers

This section starts the presentation of our new results. First, we investigate the
impact of bounding only the number of locations while leaving the granularity
unspecified. It turns out that this does not bring decidability.

Theorem 5. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a set of
bad states B, and an integer k ∈ N≥1, synthesizing a controller C for P with k
locations, such that Safe(P‖C,B), is undecidable.

The proof is based on a reduction from the halting problem of a given two-counter
Minsky machine, which is known to be undecidable [24]. The basic idea is to let
the synthesis algorithm generate a controller that simulates an accepting run
of the machine, or to report that no such controller/run exists. Following the
standard construction proposed in [3] (which, in turn, is an extension of the
one proposed in [1]) we let the plant nondeterministically and unobservably for
the controller verify that he faithfully performs the simulation. The challenge
in obtaining the undecidability result of Theorem 5 is to reduce the halting
problem to the existence of a controller with a bounded number of locations. In
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the appendix, we give a novel encoding where the computation of the Minsky
machine is entirely stored in the clock values. The proof thus reduces the halting
problem to the existence of a controller with a single location.

When bounding the locations of the controller and its granularity, the com-
plexity for controller synthesis drops from 2ExpTime-complete (cf. Theorem 4)
to NExpTime-complete.

Theorem 6. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a granu-
larity µ, a set of bad states B, and a bound k ∈ N, synthesizing a µ-controller C
for P with k locations, such that Safe(P‖C,B), is NExpTime-complete.

We note that this result does not depend on the (unary or binary) encoding
of k and µ. The proof of the NExpTime lower bound is based on a novel
proof technique that uses clocks to represent bits for querying an edge relation
of a succinctly represented graph. The key idea is to represent exponentially
many nodes via only polynomially many clocks. We provide a polynomial-time
reduction from Succinct graph coloring, which is known to be NExpTime-
complete [21,26,32]. In our reduction, we use an answer of the synthesis problem to
decide whether there is a k-coloring of a given undirected graph that is succinctly
represented (i.e., the graph’s edge relation E is given by a Boolean function).

In the (possibly infinite) interaction between plant and controller, the plant
nondeterministically selects a node n and queries a color c from the controller.
Then, the plant selects a second node n′ and queries a color c′. If n and n′

are connected via E and c and c′ are the same, the plant enters a bad state.
Otherwise, the colors of another two nodes are queried, and so on. A selected
node is communicated to the controller by letting him read the values of the
clocks representing that node.

For showing the NExpTime upper bound, one can provide a nondeterministic
algorithm that guesses a controller in exponential time, and then validates that
the guess was correct. For a granularity µ = (X,m, cmax ), the number of distinct
atomic constraints is bounded by

γ =
∏
x∈X

O(m · cmax ) = O(m · cmax )|X|,

which is single exponential (recall that m and cmax are given in binary using
polynomially many bits). Now, in each location admitted to C, for each atomic
constraint and each event from Σ, we have to decide (1) which clocks to reset
and (2) in which location to change next. Note that, because we require C to be
deterministic, we only have to make this decision once for every atomic constraint.
Hence, since this choice has to be repeated for every location admitted to C, the
number of possible controllers is bounded by(

k · 2|X|
)γ·|Σ|·k

and a single controller can thus be represented using

γ · |Σ| · k ·
(
dlog ke+ |X|

)
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(i.e., only single exponentially) many bits. The validation relies on model checking,
which is, according to Theorem 1, in PSpace ⊆ NExpTime. Note that, from
a complexity-theoretic point of view, this is the best one can do, since any
deterministic algorithm would have a double exponential worst-case running time,
unless NExpTime = ExpTime.

Concerning the size of the representation of the smallest feasible controller, if
there is one at all, the following theorem states that it is highly unlikely3 that a
small controller always exists.

Theorem 7. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a granu-
larity µ, a set of bad states B, and a bound k ∈ N, if there is a µ-controller C for
P with k locations, such that Safe(P‖C,B), then C cannot always be represented
polynomially, unless NExpTime = PSpace.

5 Discrete Controllers

In this section, we investigate the impact of restricting the controller to be a pure
discrete system communicating synchronously with an arbitrary timed plant.

Definition. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), we say
that a controller C = (Lc, l

c
0, Σc, ∆c, Xc) is discrete, if |Xc| = 1 and for each

l
a,ϕ,λ−−−→ l′ ∈ ∆c it holds that λ = Xc and either

(1) a ∈ Σobs
out and ϕ ≡ true, or

(2) a ∈ Σin and ϕ ≡ x ≤ 0, assuming Xc = {x}.

Intuitively, discrete controllers only react to discrete observations of the plant.
They are not allowed to measure the time between two observed events.

We want to point out that discrete controllers differ from controllers with a
fixed sampling rate considered in [16,8]. Obviously, the only meaningful bound
which one can impose on discrete controllers is to restrict the number of locations.
In the following, we investigate the bounded and the unbounded case.

5.1 Bounded Case

Requiring that the controller should be discrete, and, additionally, bounding the
number of locations of the controller, reduces the complexity of the synthesis
problem from 2ExpTime-complete (cf. Theorem 4) to PSpace-complete. The
problem is thus exactly as hard as model checking (cf. Theorem 1).

Theorem 8. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a set of
bad states B, and a bound k ∈ N given in unary, synthesizing a discrete controller
C for P with k locations, such that Safe(P‖C,B), is PSpace-complete.

3 as it is common belief that PSpace ( ExpTime ( NExpTime
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The lower bound immediately follows from the PSpace-hardness of timed model
checking, which is easily seen to be a special case.

Containment in NPSpace (which is known to coincide with PSpace [29])
can be established through the following nondeterministic algorithm. As the
synthesized controller must be discrete and since every controller should be
deterministic, a number of bits polynomial in |Σin ∪ Σobs

out | · k suffices to fully
describe a controller. Hence, our algorithm can just guess these bits in polynomial
time and then use timed model checking as an oracle to verify the guess. In
summary, our algorithm is in NPTimeMC ⊆ NPSpace = PSpace.

An effective synthesis algorithm. To illustrate the practical relevance of
the PSpace upper bound, we now describe an effective deterministic algorithm
for the synthesis of bounded discrete controllers. The algorithm is based on
a symbolic fixed point iteration. We use (a polynomial number of) Boolean
variables to represent the structure of the controller (i.e., which locations are
connected via an edge with a certain action). Sets of locations are represented
using Boolean functions over a set of O(log k) location variables.

Let R be the set of states of the finite semantics of the plant, S be the set of
all possible controller structures, and L be the set of all locations for all possible
structures. Our algorithm incrementally computes a partial function f : R →
S → L such that, for each location l ∈ f(r, s), the combined plant/controller
state (r, l) is backward reachable assuming that the controller is of structure s. In
an actual implementation, one would represent f as a mapping from regions to
tuples from 2S × 2L, which, in turn, can be efficiently represented using discrete
symbolic data structures (such as binary decision diagrams).

Initially, f maps each bad region to true (representing all controllers and
locations) and each other region to false (representing no controllers and no
locations). In each step of the fixed point iteration, we backpropagate from each
region r the annotated pair of controller structures/locations over all transitions
leading to r. When backpropagating a pair, represented by a Boolean formula ϕ,
over a transition t, the resulting formula ϕ′ is obtained by computing the weakest
predecessors of ϕ. For the source region r′ of t, we update f(r′) := f(r′) ∨ ϕ′.

Once the fixed point is reached, we can derive the feasible controller structures
from the annotation of the initial region. For this purpose we quantify the con-
junction of the annotation of the initial region with the initial controller location
existentially over the location variables. The set of structures characterized by
the resulting Boolean function are the infeasible controllers. Hence, the negation
yields the feasible controllers.

Since, according to Lemma 2, there are only single-exponentially many regions,
and since a particular region is visited at most single-exponentially often (because
there are only single-exponentially many controllers), we obtain in total a single-
exponential running time (note that the two exponents multiply). We can therefore
conclude that, unless PTime = PSpace, the time-complexity of the deterministic
algorithm matches the complexity established in Theorem 8.
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Inspired by the argumentation for the upper bound in Theorem 8, one might
ask for the complexity of the synthesis problem if we impose a polynomial bound
on the finite semantics of the plant. We can show that, in this case, the synthesis
problem even becomes NPTime-complete.

Lemma 4. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), where the
number of regions of P is polynomial in the size of P , a set of bad states B, and
a bound k ∈ N, synthesizing a discrete controller C for P with k locations, such
that Safe(P‖C,B), is NPTime-complete.

The lower bound can be shown by a reduction from Graph coloring, which
is known to be NPTime-hard. The reduction goes analogously to the one for
establishing the lower bound for Theorem 6 with the difference that, here, we
use polynomially many locations (and no clocks) to represent the explicitly given
graph in the plant.

Before we prove containment in NPTime, let us first ascertain the following
fact that immediately follows from the well-known result that reachability checking
on explicitly represented graphs is NLogSpace-complete:

Lemma 5. [18] For a given directed graph G = (V,E) with nodes V and edges E,
and a set of bad nodes V ′ ⊆ V , finding a lasso (i.e., a path leading to and
containing some cycle in G), which avoids any nodes in V ′, is NLogSpace-
complete.

Now, the NPTime upper bound of Lemma 4 can be established by the
following nondeterministic algorithm that runs in polynomial time. Analogously
to establishing the upper bound for Theorem 8, we first guess a controller in
polynomial time. But now, the model checking procedure runs on a region graph
of only polynomial size and, according to Lemma 5, requires only logarithmic
space. Thus, the problem is in NPTimeNLogSpace = NPTime.

It is straight forward to see that, according to Lemma 2, the number of regions
is only exponential in the granularity, but linear in the number of locations. Also,
note that no plant clocks were used in establishing the NPTime lower bound for
the last lemma. Consequently, we can state the following corollary.

Corollary 1. For a fixed granularity µ, the problem of synthesizing a bounded
discrete safety controller for a partially observable µ-granular plant is NPTime-
complete.

5.2 Unbounded Case

It turns out that the restriction to discrete controllers does not pay off in the
unbounded case. In fact, we obtain the same 2ExpTime complexity bounds
(cf. Theorem 4) as for the general synthesis problem already investigated in the
literature [11,4,3].

Theorem 9. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs) and a set
of bad states B, synthesizing a discrete controller C for P with an unspecified
number of locations, such that Safe(P‖C,B), is 2ExpTime-complete.

12



The upper bound follows immediately from the upper bound established in
Theorem 4. However, we additionally provide a deterministic algorithm that
runs in double exponential time. First, we obtain a new plant automaton P ′

by enriching P by a fresh clock x, which is reset to 0 on every edge with an
action a ∈ Σin. On every edge of P ′ with an action a ∈ Σobs

out , we strengthen the
guard with x ≤ 0. Then, we construct the region graph of P ′, which, according
to Lemma 2, is of single exponential size. We hide unobservable action and delay
transitions by replacing them by ε-transitions. Finally, we obtain an equivalent
finite game with perfect information by constructing the so-called belief space [27],
which leads to a second exponential blowup. Since solving pure discrete safety
games is PTime-complete [17,16], we conclude that our algorithm requires double
exponential time.

The AExpSpace = 2ExpTime lower bound, which is more technically in-
volved, is established by a reduction from the halting problem of an alternating
Turing machine whose tape length is bounded exponentially in the size of the
input. In our reduction, the Turing machine reaches its final state iff there exists
a safe controller. Similar to a proof presented by Rintanen in the reachability
planning setting [28], instead of storing the contents of the whole tape, we let the
plant, unobservable for the controller, select a dedicated tape cell that should
be watched. Unlike in the pure discrete setting of [28], we use polynomially
many clocks (instead of Boolean variables) to represent the bits of some integer
variables encoding the exponentially large index of the watched tape cell and the
current position of the tape head.

Also different to [28], as our interest lies in safety controllers, we need to
avoid that a controller is synthesized that never reaches the final state by in-
finitely looping through some other states. For this, we introduce a counter that
keeps track of the number of steps executed so far. Since the maximal number
of steps without visiting a state twice corresponds to the number of possible
configurations, we can use this maximal number as a general bound, beyond
which the plant immediately enters a bad state. Unfortunately, as this number
is double exponential in the number of bits (i.e., clocks), we cannot use just
another integer variable to represent the step counter (because this variable would
require exponentially many bits). Instead, we let the plant force the controller to
faithfully produce the correct sequence of bits of the step counter. Again, instead
of remembering all bits, we let the plant nondeterministically and unobservably
for the controller select a dedicated bit that should be watched, whose correct
incrementation is verified.

We point out that, for establishing the lower bound, the 2ExpTime-hardness
proof given in [11], where the controller is timed and can observe all clocks, does
not apply to our setting of discrete controllers with partial observability.

6 Conclusion

In this paper, we have extended the bounded synthesis approach [30] to timed
systems. We have established the complexity of timed control with partial observ-
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ability under different types of bounds, and under different restrictions on the
granularity. Our results in particular identify the synthesis of discrete controllers
(over timed plants with limited observability) as a special case with significant
practical relevance and, at the same time, very reasonable complexity: synthesiz-
ing discrete controllers is no harder than model checking, and can, in fact, be
implemented with a symbolic fixed point iteration similar to BDD-based model
checking [5,6]. Our results thus draw a much more optimistic picture for the
synthesis of realistic controllers than previous work on the unbounded synthesis
problem, where the introduction of real-time was shown to cause an exponential
blow-up and partial observability was shown to make the problem undecidable.

The bounded synthesis approach is useful both when a reasonable bound
is fixed a priori and when no bound is known in advance and the algorithm
must, instead, search for the right bound. Bounded synthesis with iteratively
increasing bounds is a complete method for the unbounded synthesis problem,
with the significant advantage over previously studied approaches that the smallest
solutions are found first.
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A Proof of Theorems

We first present a general technique how to use clocks of a timed automaton to
represent bits of integer variables, which we will use later in the following proofs
of the lemmas and theorems.

A.1 Using Clocks to Represent Bits

For an integer variable v whose value ranges over {0, . . . , n− 1}, where n = 2b

and b ∈ N, we introduce the clocks x1, . . . , xb, abbreviated as xb. Assuming the
value of v is represented by the bit string 〈vb . . . v1〉, we use the following normal
form encoding: for all 1 ≤ i ≤ b,

vi =

®
0 if xi = 0

1 if xi > 0

For comparing two integer variables, we can use the following equivalence as
an edge guard. Assuming the clocks xb and yb represent the bits of two variables
v and w, respectively, the value represented by v equals the value represented by
w iff

b∧
i=1

xi = 0⇔ yi = 0.

A nondeterministic choice, setting v to some arbitrary value, can be imple-
mented using the following gadget. First, we let exactly one time unit elapse
(e.g., using an auxiliary clock z). Then, we iterate over each bit 1 ≤ i ≤ b and
nondeterministically reset xi or not.

The incrementation of v is modeled by the following gadget, which resembles
a chain of half adders. We introduce a location (i, c), for each bit i ∈ {1, . . . , b}
and a carry flag c ∈ {0, 1}. After the gadget is entered, we assume that the
representation for the value of v using the clocks xb is in normal form. First,
we let exactly one time unit pass by. Then, the actual incrementation starts at
location (1, 1). At each location (i, c), we have two edges:

(1) with guard xi > 1 ∧ c = 1 ∨ xi = 1 ∧ c = 0, which sets xi := 0, and
(2) with guard xi = 1 ∧ c = 1 ∨ xi > 1 ∧ c = 0, which leaves xi unchanged.

If i < b, the target locations of edges (1) and (2) are (i + 1, c) and (i + 1, 0),
respectively.
If i = b, (1) and (2) exit the gadget.

The decrementation of v is modeled by a similar gadget, which exploits the
fact that

v + n− 1 ≡ v − 1 (mod n).

Again, we introduce a location (i, c), for each bit i ∈ {1, . . . , b} and a carry flag
c ∈ {0, 1}. After the gadget is entered, we assume that the representation for the
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value of v using the clocks xb is in normal form. First, we let exactly one time
unit pass by. Then, the actual decrementation starts at location (1, 0). At each
location (i, c), we have two edges:

(1) with guard xi > 1 ∧ c = 0 ∨ xi = 1 ∧ c = 1, which sets xi := 0, and
(2) with guard xi = 1 ∧ c = 0 ∨ xi > 1 ∧ c = 1, which leaves xi unchanged.

If i < b, the target locations of edges (1) and (2) are (i + 1, 1) and (i + 1, c),
respectively.
If i = b, (1) and (2) exit the gadget.

Clearly, immediately after exiting the increment or decrement gadget, v is
in normal form encoding. Further, note that after globally letting time elapse
to increment or decrement v, it is no problem to restore the normal form of the
other variables again.

A.2 Proofs

Before we come to the proof of Theorem 5, we first give a proof for the following
lemma.

Lemma 6. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a set of
bad states B, and an integer k ∈ N≥1, synthesizing a controller C for P with k
clocks, such that Safe(P‖C,B), is undecidable.

Proof. We show undecidability by a reduction from the halting problem of a
given two-counter Minsky machine, which is known to be undecidable [24]. The
basic idea is to let the synthesis algorithm generate a controller that simulates
an accepting run of the machine, or to report that no such controller/run exists.
Following the construction proposed in [3], which, in turn, is an extension of the
one proposed in [1], we let the plant nondeterministically and unobservably for
the controller verify that he faithfully performs the simulation. We refer to [3] for
details on the modeling of the verification gadgets. Note that the goal state of the
machine is reached after finitely many steps m ∈ N≥1 for a configuration with
some maximal counter value bounded by m. Hence, the synthesis algorithm must
somehow determine m (or report that no such m exists) and fix a sufficiently
large number of locations and fine granularity ({z}, 4m, 1) to accommodate the
necessary information to keep track of the machine’s configurations arising during
its execution. We let the controller and the plant communicate via the actions
a, b, c, and d. W.l.o.g., we assume that the states of the given machine have a
unique index and their number is less than m.

As usual for such proofs, a configuration is encoded as a sequence of actions
dsac1bc2cc3 representing the current machine state with index s, the current
values of the two machine counters c1 and c2, and the value of a step counter
c3. Here, c3 is necessary to force the controller to reach the goal state within a
finite amount of steps. After the ith step of the machine, we let the controller
produce the current configuration sequence within the time interval [i, i + 1).
Here, we force the controller that the delay between corresponding actions in
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two successive configurations is exactly one time unit. This can be achieved by
a plant component that nondeterministically chooses an action, waits exactly
one time unit, and then verifies whether the controller immediately produces
that action. In the first configuration, we let the controller choose an appropriate
value for c3 > 0. After each step, the plant checks that the controller decrements
c3 by one. If c3 becomes 0, we let the plant go into a bad state.

Now, assuming that the goal state of the given machine is reachable, let us
fix some m. It is easy to see that the number of distinct configurations of the
machine along with a certain step count is bounded by m4. Hence, a feasible
controller could have O(m8) locations, i.e., O(m2) locations to represent and
produce the current configuration of the machine as well as the step count. If
the machine is in a certain configuration after a certain number of steps, the
corresponding part of the controller’s control structure is of the following form:

ld
d,z= 1

4m ,z:=0
−−−−−−−−→ . . .

d,z= 1
4m ,z:=0

−−−−−−−−→︸ ︷︷ ︸
s times

l′d
ε,z= 1

4m ,z:=0
−−−−−−−−→ . . .

ε,z= 1
4m ,z:=0

−−−−−−−−→︸ ︷︷ ︸
m− s times

l′′d ,

for representing the current machine state s;

la
a,z= 1

4m ,z:=0
−−−−−−−−→ . . .

a,z= 1
4m ,z:=0

−−−−−−−−→︸ ︷︷ ︸
c1 times

l′a
ε,z= 1

4m ,z:=0
−−−−−−−−→ . . .

ε,z= 1
4m ,z:=0

−−−−−−−−→︸ ︷︷ ︸
m− c1 times

l′′a ,

for representing the current value of the machine counter c1;

lb
b,z= 1

4m ,z:=0
−−−−−−−−→ . . .

b,z= 1
4m ,z:=0

−−−−−−−−→︸ ︷︷ ︸
c2 times

l′b
ε,z= 1

4m ,z:=0
−−−−−−−−→ . . .

ε,z= 1
4m ,z:=0

−−−−−−−−→︸ ︷︷ ︸
m− c2 times

l′′b ,

for representing the current value of the machine counter c2;

lc
c,z= 1

4m ,z:=0
−−−−−−−−→ . . .

c,z= 1
4m ,z:=0

−−−−−−−−→︸ ︷︷ ︸
c3 times

l′c
ε,z= 1

4m ,z:=0
−−−−−−−−→ . . .

ε,z= 1
4m ,z:=0

−−−−−−−−→︸ ︷︷ ︸
m− c3 times

l′′c ,

for representing the current step count c3.
Thus, there is a controller iff there is an accepting run, and furthermore, if

there is a controller at all then there is one that can be represented using a single
clock.

Theorem 5. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a set of
bad states B, and an integer k ∈ N≥1, synthesizing a controller C for P with k
locations, such that Safe(P‖C,B), is undecidable.

Proof. To show undecidability, we give a similar reduction from the halting
problem of a given two-counter Minsky machine as the one used in the proof
of Lemma 6. But now, the synthesized controller generating an accepting run
(if there is one at all) has only one location and uses its clocks to represent all
information necessary to keep track of the machine’s current configuration. Such
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a one-location controller is a translation of the one-clock controller from above,
where the location-based control structure is simulated by a pure clock-based
control structure. In the following, we explain this translation.

Assuming, w.l.o.g., the one-clock controller has 2b locations, for some b ∈ N,
we introduce b clocks in the one-location controller x1, . . . , xb. Also, we assume
that each location has a unique index between 0 and 2b − 1. The one-clock
controller is in location with index l iff x = l, where

x = l :⇐⇒
b∧
i=1

xi ≤
1

4m
⇔ li = 0

and li refers to the ith bit of l. Since each step in the one-clock controller takes
exactly 1

4m time units, we also have an auxiliary clock z in the one-location
controller that is reset on every discrete step. For each edge between two locations
l and l′ in the one-clock controller, we introduce a corresponding (self-looping)
edge in the one-location controller with guard z = 1

4m ∧ x = l that resets all
clocks in x whose corresponding bit in l′ is zero.

Thus, if there is a controller at all then there is one that can be represented
using a single location.

Theorem 6. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a granu-
larity µ, a set of bad states B, and a bound k ∈ N, synthesizing a µ-controller C
for P with k locations, such that Safe(P‖C,B), is NExpTime-complete.

Proof. Containment in NExpTime follows from the following nondeterministic
algorithm. Let us fix µ = (X,m, cmax ). Observe that the number of distinct
atomic constraints is bounded by

γ =
∏
x∈X

O(m · cmax ) = O(m · cmax )|X|,

which is single exponential (recall that m and cmax are given in binary using
polynomially many bits). Now, in each location admitted to C, for each atomic
constraint and each event from Σ, we have to decide (1) which clocks to reset
and (2) in which location to change next. Note that, because we require C to be
deterministic, we only have to make this decision once for every atomic constraint.
Hence, the number of possible controllers is bounded by(

k · 2|X|
)γ·|Σ|·k

and a single controller can thus be represented using

γ · |Σ| · k ·
(
dlog ke+ |X|

)
(i.e., only single exponentially) many bits. A closer look on the last formula
reveals that we would still need exponentially many bits even if we would assume
a unary (instead of a binary) encoding of the constants. This is because the single
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exponential blow-up in γ comes from both the number of clocks and the encoding
of the constants. In fact, the number of clocks, the constants in the granularity,
and k (encoded in binary) independently induce at most a single exponential
blow-up in the number of bits.

Now, our algorithm first guesses a deterministic µ-granular timed automaton
C with k locations and actions Σin∪Σobs

out . Then, it verifies C by checking whether
Safe(P‖C,B′), where B′ ⊇ B is an enriched safety property that also forbids
infeasible controllers (i.e., controllers which reset plant clocks, inhibit plant
actions, or introduce timelocks). Since, according to Theorem 1, model checking
can be done in PSpace, we conclude that our algorithm is in NExpTimeMC =
NExpTimePSpace = NExpTime. Note that, even though C can be exponentially
large, the PSpace upper bound for model checking P‖C still holds: In the worst
case, C is of the same size as its region graph, which is exponential. Then, the
combined region graph of P‖C is still of at most exponential size, since the
exponential blow-up in P due to the succinctness of its clocks and constraints
multiplies with the exponentially large control structure of C.

For proving NExpTime-hardness, we provide a polynomial reduction
from Succinct graph coloring, which is known to be NExpTime-
complete [21,26,32]. Roughly speaking, this proof is an adaptation of the NPTime-
hardness proof for Lemma 4. The difference is that we assume here that the
given graph is succinctly represented (i.e., its edge relation is given as a compact
Boolean function).

For a given undirected graph G = (V,E), our synthesis procedure should
synthesize a controller with k locations iff there exists a k-coloring for G. W.l.o.g.,
we assume |V | = 2b, for some b ∈ N, and, for two nodes n1, n2 ∈ V , we assume
that E(n1, n2) = true iff n1 and n2 are adjacent. Moreover, we assume that E is
succinctly represented as a Boolean function with 2b inputs and one output, only
using AND, OR and NOT gates. In our reduction, we will use b plant clocks
for representing the bits of a node from V , as explained in A.1. For each color
1 ≤ i ≤ k, we introduce a controller action ci.

The (possibly infinite) interaction between plant and controller works as
follows. The plant nondeterministically selects a node n and queries a color c
from the controller. Then, the plant selects a second node n′ and queries a color
c′. If E(n, n′) = true and c = c′, then the plant enters a bad state. Otherwise,
the colors of another two nodes are queried, and so on. Technically, this node
querying gadget represents n and n′ using two node variables with b bits each.
The gadget for nondeterministic choice is explained in A.1, and the translation
of E into a corresponding isomorphic clock constraint is straight forward. For
instance, suppose b = 2 and

E(n, n′) ≡ n[0] ∧
(
¬n′[1] ∨ n[1]

)
,

assuming that n[i] refers to the ith bit of n, 0 ≤ i < 2, then we can translate this
Boolean function into the clock constraint

(x0 > 0) ∧
(
(y1 = 0) ∨ (x1 > 0)

)
,
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assuming that x0, x1, and y1 are the clocks representing the bits n[0], n[1], and
n′[1], respectively. We point out that, at the expense of introducing (a polynomial
amount of) locations, this technique also works when we restrict ourselves to
convex clock constraints.

We communicate a selected node n to the controller by letting him read the
values of the clocks representing n. Whenever the selection of a node is done,
the plant sends a dedicated action query to the controller. To ensure that the
controller only uses one color per location, we introduce a gadget that runs
in parallel and checks that the choice of the color stays stable between two
subsequent query actions. To avoid that the controller uses clock constraints
in his guards when sending a color, we always reset all observable clocks when
the plant sends query (recall that, on executing a discrete transition in a timed
automata, the clocks are reset after their values are read). Note that we can
safely ignore the case where the controller wastes two locations for the same
color, because, if such a controller can be synthesized, then also a (k− 1)-coloring
for G is possible.

Finally, it remains to force the controller not to cheat by sending inconsistent
color assignments for the same node. For this purpose, we add a gadget that first
nondeterministically and unobservably for the controller selects a node whose
color should be watched. When that watched node is queried first, the plant
memorizes the color sent by the controller. Then, whenever the watched node is
queried again, the plant checks if the proposed color is the same as the memorized
one.

We hide all steps from the controller that occur in the verification gadgets;
only the node querying is visible for the controller. Note that the plant can be
represented assuming a granularity (Xp, 1, 1), where Xp contains all observable
and hidden clocks needed to represent the node variables, and an auxiliary clock
z for expressing urgent constraints. For the controller, we fix the granularity
µ = (Xc, 1, 1), where Xc contains z and all observable clocks needed to read the
queried node variable (i.e., the controller does not need any clocks of its own).

Theorem 7. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a granu-
larity µ, a set of bad states B, and a bound k ∈ N, if there is a µ-controller C for
P with k locations, such that Safe(P‖C,B), then C cannot always be represented
polynomially, unless NExpTime = PSpace.

Proof. We assume that C can always be represented polynomially in the size of the
problem instance (i.e., C can be represented using polynomially many bits). Then,
we can always guess a correct C (if there is one at all) in polynomially many steps
and represent C using polynomial space. Thus, C can be guessed in NPSpace,
which is known to coincide with PSpace [29]. Validating the guess can be done
using model checking, which is, according to Theorem 1, in PSpace. Hence,
the overall complexity is in PSpacePSpace = PSpace. However, according to
Theorem 6, synthesizing C is NExpTime-complete. Thus, NExpTime = PSpace
(under the assumption that C can always be represented polynomially).
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Theorem 8. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a set of
bad states B, and a bound k ∈ N given in unary, synthesizing a discrete controller
C for P with k locations, such that Safe(P‖C,B), is PSpace-complete.

Proof. PSpace-hardness follows immediately from Theorem 1 since the standard
model checking problem for timed automata is just a special case: we assume
that P is fully observable and Σin = ∅.

Containment in NPSpace, which is known to coincide with PSpace [29], is
established through the following nondeterministic algorithm. Observe that in
each of the k locations admitted to a deterministic controller, there can be at
most one edge per action a ∈ Σ = Σin ∪ Σobs

out to some other location. Hence,
the number of possible controllers is bounded by k|Σ|·k and a single controller
can be represented using only a polynomial number of bits. Now, our algorithm
proceeds as follows: First, it guesses a controller C in polynomial time. Then, it
verifies the guess by model checking C‖P , whose number of regions is still single
exponential. Note that unobservable actions only limit the choices for C, while
neither observable nor unobservable clocks do affect C at all. In summary, our
algorithm is in NPTimeMC ⊆ NPSpace = PSpace.

Lemma 4. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), where the
number of regions of P is polynomial in the size of P , a set of bad states B, and
a bound k ∈ N, synthesizing a discrete controller C for P with k locations, such
that Safe(P‖C,B), is NPTime-complete.

Proof. Containment in NPTime can be shown by the following nondeterministic
algorithm that runs in polynomial time. Analogously to the proof of Theorem 8, we
first guess a controller in polynomial time. But now, the model checking procedure
runs on a region graph of only polynomial size and, according to Lemma 5, requires
only logarithmic space. Thus, the algorithm is in NPTimeNLogSpace = NPTime.

The NPTime lower bound is established through a polynomial reduction from
Graph coloring, which is known to be NPTime-hard. For a given undirected
graph G = (V,E), our synthesis procedure should synthesize a controller with
k locations iff there exists a k-coloring for G. For each node 1 ≤ i ≤ |V |, we
introduce a plant action ni, and for each color 1 ≤ j ≤ k, we introduce a controller
action cj . The (possibly infinite) interaction between plant and controller works
as follows. The plant nondeterministically selects a node n and queries a color
c from the controller. Then, the plant selects an adjacent node n′ and queries
a color c′. If c = c′, then the plant enters a bad state. Otherwise, the colors of
another two nodes are queried and verified, and so on. The nondeterministic
node selection is modeled by letting the plant traverse over an automaton which
is isomorphic to G (i.e., for an edge (n, n′) ∈ E we introduce two edges from
location n to location n′ sending the action corresponding to n′, and vice versa).
The verification of the colors can be done using a gadget with O(k) locations.
We add another gadget which ensures that the controller proposes only one color
at a location admitted to him. Once the controller has proposed a certain color,
the gadget enters a bad state whenever the controller sends a different color
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before the next node change. This gadget can be realized using O(k) locations.
Note that we can safely ignore the case where the controller wastes two locations
for the same color, because, if such a controller can be synthesized, then also a
(k − 1)-coloring for G is possible. Finally, it remains to force the controller not
to cheat by sending inconsistent color assignments for the same node. For this
purpose, we add a gadget that first nondeterministically and unobservably for
the controller selects a node whose color should be watched. When that watched
node is queried first, the plant memorizes the color sent by the controller. Then,
whenever the watched node is queried again, the plant checks if the proposed color
is the same as the memorized one. This gadget can be realized using O(|V | · k)
locations.

In the construction of the plant, we do not need any clocks. We hide all
steps from the controller that occur in the verification gadgets; only the traversal
through G is visible for the controller.

Theorem 9. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs) and a set
of bad states B, synthesizing a discrete controller C for P with an unspecified
number of locations, such that Safe(P‖C,B), is 2ExpTime-complete.

Proof. Containment in 2ExpTime follows from the usual knowledge-based subset
construction [27] on the region graph. First, we obtain a new plant automaton
P ′ by enriching P by a fresh clock x, which is reset to 0 on every edge with an
action a ∈ Σin. On every edge of P ′ with an action a ∈ Σobs

out , we strengthen the
guard with x ≤ 0. Then, we construct the region graph of P ′, which, according
to Lemma 2, is of single exponential size. We hide unobservable action and delay
transitions by replacing them by ε-transitions. Finally, we obtain an equivalent
finite game with perfect information by constructing the so-called belief space,
which leads to a second exponential blowup. Since solving pure discrete safety
games is PTime-complete [17,16], we conclude that our algorithm requires double
exponential time.

AExpSpace-hardness (which is known to coincide with 2ExpTime-hardness)
can be shown by a reduction from the halting problem of an exponentially bounded
alternating Turing machine M = (Q, q0, qf , Γ, δ), where Q is a finite set of states
with Q = Q∃ ]Q∀, q0 ∈ Q is the initial state, qf ∈ Q is the final state, Γ is a
finite set of tape symbols, and δ : Q× Γ → Q×Q× Γ × {L,R} is the transition
function. We assume w.l.o.g. that M runs on a tape of length n = 2b, for some
b ∈ N, and that |Γ | = 2. Let m ≤ n, m ∈ N, be the length of the input. We let
the plant verify that the controller correctly simulates M . In our reduction, M
reaches qf iff there exists a safe controller.

Similar to a proof presented by Rintanen in the planning setting [28], instead
of storing the contents of the whole tape, we let the plant, unobservable for the
controller, select a dedicated tape cell that should be watched. Unlike in the
pure discrete setting of [28], we use b clocks (instead of b Boolean variables) to
represent the bits of some integer variable ranging from 0 to n − 1, using the
encoding from A.1. We use an unobservable integer variable watched to store the
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index of the watched cell and another integer variable cur to store the current
position of the tape head.

The (possibly infinite) interaction between plant and controller works as
follows. As an initialization step, unobservable for the controller, the plant
nondeterministically chooses a value for watched and sets cur to 0. Then, the plant
keeps track of the movement of the tape head by decrementing or incrementing
cur . Here, the plant enters a bad state whenever the controller proposes to move
the head to the left and it is over the first cell, or to move to the right and the
head is over the last cell. If cur 6= watched , the plant ignores the correctness of
the tape operations (writing in a cell and moving the head) determined by the
controller. If cur = watched , the tape operations are verified and the writing of
the new tape symbol is memorized. The states of M as well as the contents of
the watched tape cell are represented using O(|Q| · |Γ |) plant locations.

The transitions in δ are encoded in the following way. In case M is in an
existential state from Q∃, the plant prompts the controller by sending him the
dedicated action prompt , upon which he immediately reacts with a decision what
to write into the current tape cell and how to move the tape head. In case M is in
a universal state from Q∀, the plant decides in which state M branches by either
sending prompt1 or prompt2 to the controller. Recall that the verification gadget
gets activated whenever the current position of the head is over the watched
cell. In this case, for a q ∈ Q and a γ ∈ Γ , if δ(q, γ) = (q1, q2, γ

′, d) and q ∈ Q∃,
the plant sends prompt to the controller, upon which he can either respond
(q1, γ

′, d) or (q2, γ
′, d). If q ∈ Q∀, the plant either sends prompt1 or prompt2

to the controller, upon which he has to respond with (q1, γ
′, d) or (q2, γ

′, d),
respectively. If the tape head is not over the watched cell, the plant prompts the
controller nevertheless. But in this case, the plant does not restrict the choices of
the controller.

Each edge must be taken in an urgent manner (i.e., no time may pass by),
unless not explicitly mentioned otherwise (e.g., in some locations of the gadgets
for manipulating integer variables from A.1). We can easily achieve this by
introducing an auxiliary clock z, which is always set to zero after an edge is
taken. Now, for a location l, imposing urgency for the plant can be established by
strengthening the guards of the outgoing edges by z = 0. Imposing urgency for
the controller can be established by adding all states (l, t), for which t |= z > 0
to the set of bad states. Note that if l is a location where exactly one time
unit should pass by, then, of course, we adjust the guards to z = 1 and z > 1,
respectively.

We add a dedicated location lf representing the goal state qf . In lf , there
are no outgoing transitions and time can elapse forever without reaching B.
Finally, to avoid that a safe controller is synthesized that never reaches lf (by
infinitely looping through the states of M), we have to force the controller to
reach lf before a certain timeout (in terms of number of steps of M) has occurred.
The maximal number of steps without visiting a state twice corresponds to the
number of possible configurations of M . That is, we need to count steps up to a
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number bounded by

|Γ |n = |Γ |2
b

= 22
b

.

Obviously, as this number is double exponential in the number of bits (i.e., clocks),
we cannot use just another integer variable to represent the timeout counter.
Instead, similar to the incrementation gadget proposed in A.1, we introduce
a gadget implementing a chain of 2b half adders. Before M performs a step,
the plant forces the controller to produce a sequence of 2b bits representing

the current value of the timeout counter (ranging from 0 to 22b − 1). Now, to
verify that the controller increments the timeout counter correctly, similar to
the watched tape cell explained above, we let the plant nondeterministically and
unobservably for the controller select a dedicated bit j, 0 ≤ j < 2b, whose correct
incrementation is verified. The actual gadget implements a loop that iterates an
integer variable i from 0 to 2b− 1. In each iteration, the controller has to provide
the carry flag before bit i is incremented, the new (incremented) value of bit i,
and the carry flag for bit i+ 1. If i 6= j, we require that the controller provides
some value for the carry flags and the new value of bit i. If i = j, we actually
check that the controller provides correct values (as explained in A.1). It is easy
to see that the new value of bit j only depends on its last value and the incoming
carry flag. Furthermore, if i = 0, we always require that the first carry flag is
1. If i = 2b − 1 and the next carry flag is 1, the counter overflows, which means
that we have reached the timeout and let the plant enter some bad state in B.
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