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ABSTRACT

We propose a sound and complete compositional proof rule for distributed synthesis.
Applying our proof rule only requires the manual strengthening of the specification into
a conjunction of formulas that can be guaranteed by individual black-box processes. All
premises of the proof rule can be checked automatically.
For this purpose, we give an automata-theoretic synthesis algorithm for single processes
in distributed architectures. The behavior of the local environment of a process is un-
known in the process of synthesis and cannot be assumed to be maximal. We therefore
consider reactive environments that have the power to disable some of their own actions,
and provide methods for synthesis (and realizability checking) in this setting. We estab-
lish upper bounds for CTL (2EXPTIME) and CTL* (3EXPTIME) synthesis with in-
complete information, matching the known lower bounds for these problems, and provide
matching upper and lower bounds for µ-calculus synthesis (2EXPTIME) with complete
or incomplete information. Synthesis in reactive environments is harder than synthesis
in maximal environments, where CTL, CTL* and µ-calculus synthesis are EXPTIME,
2EXPTIME and EXPTIME complete, respectively.
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1. Introduction

In the synthesis of distributed systems, we transform a given specification into

a collection of finite-state programs that are guaranteed to satisfy the specification

when combined according to a given architecture. For certain restricted classes of

architectures, such as pipelines and rings [1, 2], distributed synthesis can be done

automatically. However, as soon as the architecture contains an information fork,

i.e., a pair of processes that each have access to some information about the system

state that is hidden from the other process, the problem becomes undecidable [1, 3].

In this paper, we investigate a semi-automatic approach, where we synthesize

one process at a time. It turns out that the synthesis of a single process can be done
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automatically and it is always possible to decompose a realizable specification into a

conjunction of properties that can be guaranteed by single processes. This approach

therefore works for all distributed architectures, including those with information

forks.

We consider the problem of synthesizing a single process in a given distributed

architecture. An architecture consists of an external environment and a set of system

processes, which we partition into subsets of white-box and black-box processes:

each white-box process comes with a known and fixed implementation, while the

implementation of the black-box processes is to be found. For each process, the

architecture identifies a set of input variables and a set of output variables. A

process thus does not, in general, have complete information. Based only on the

history of previous values of its input variables, the process determines a set of

possible assignments to its output variables, among which one particular assignment

is then chosen nondeterministically.

The synthesis of process implementations has previously been studied in a sim-

pler setting, where the process is either completely isolated (closed synthesis, c.f.

[4, 5]) or the process interacts only with a monolithic environment (open synthesis).

Variations of the open synthesis problem assume the environment to be maximal,

i.e., to show all possible behaviors [6, 7], or to be reactive, i.e., to show some but

not necessarily all of its possible behaviors [8].

The main difference between the classic synthesis problems and the problem

studied in this paper is that the environment of the process now consists of multiple

constituents. In addition to the external environment, the process may interact

with the white-box processes and with the other black-box processes in the system.

Both the behavior of the external environment and the behavior of the white-box

processes are known a priori : In our setting, we assume that the behavior of the

external environment is maximal and that the behavior of each white-box process

is given as a (possibly nondeterministic) finite-state automaton. By contrast, the

strategies of the other black-box processes are unknown. From the point of view

of the considered process, their behavior therefore appears reactive: at any point,

they may disable some (but not all) of their possible responses.

We call a process implementation resilient if the specification is satisfied inde-

pendently of how the other black-box processes are implemented. We demonstrate

that the resilient synthesis problem is 2EXPTIME-complete for CTL and µ-calculus

specifications and 3EXPTIME complete for specifications in CTL*. Our proof is

constructive: we give an automata-theoretic algorithm that determines for a tem-

poral specification and a process in a distributed architecture whether there exists

a resilient implementation and, if yes, computes one such implementation. We es-

tablish 2EXPTIME and 3EXPTIME upper bounds for synthesis with incomplete

information in case of µ-calculus and CTL* specifications, respectively. These up-

per bounds match the lower bounds for checking resilient realizability for CTL and

CTL* specifications, respectively, under the assumption of complete information

and a monolithic environment [8].
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We propose to use the new synthesis algorithm in a compositional synthesis rule

for distributed synthesis. Applying our synthesis rule requires the strengthening

of the specification into a conjunction of local specifications for the individual pro-

cesses, such that each local specification is resiliently realized by its process. The

rule is complete: if a specification can be implemented, then there also exists a

strengthening for which that implementation is resilient. Since the synthesis of re-

silient implementations is automatic, the strengthening is the only manual step in

the application of the rule.

The remainder of the paper is structured as follows. In Section 2, we formally

introduce the synthesis problem studied in this paper. We introduce the composi-

tional synthesis rule in Section 3 and illustrate its application on a simple example

in Section 4. In Section 5, we prove the completeness of the rule. The synthesis

algorithm is presented in Section 6.

2. The Distributed Synthesis Problem

In the distributed synthesis problem, we construct for a given pair (A,ϕ), con-

sisting of an architecture A and a specification ϕ, a finite-state program (or strategy)

for each black-box process in A, such that the joint behavior satisfies ϕ.

2.1. Architectures

An architecture is a tuple A = (B,W, env , V, I,O, {sw | w ∈W}) consisting of:

• A set B of black-box processes for which an implementation is sought.

• A set W of white-box processes for which an implementation is provided.

• A designated environment-process env .

The disjoint union P = B ⊎W ⊎ {env} of the black- and white-box processes

and the environment is called the set of processes.

• A set V of shared boolean variables, which the processes use to communicate.

They also serve as atomic propositions in the specification.

• A collection I = {Ip ⊆ V | p ∈ P}, consisting of the input variables for the

processes.

• A collection O = {Op ⊂ V | p ∈ P}, consisting of the output variables for

the processes. The elements of O partition the set V of system variables,

i.e., each variable is written to by exactly one process. We assume that Op is

non-empty for all black- and white-box processes.

• A set {sw : (2Iw )∗ → 22Ow

r {∅} | w ∈W} of finite-state implementations for

the white-box processes.

The environment is a special process, which is always omniscent (Ienv = V ) and

shows maximal behavior, i.e., senv : (2V )∗ → {2Oenv}.
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2.2. Specifications

We consider specifications that are given as a CTL, CTL*, or µ-calculus for-

mula ϕ. (Appendix A contains a brief summary of these logics.) The models of

such a specification ϕ are a set Mϕ of total 2AP -labeled Υ-trees over some set Υ of

directions, where AP = V denotes the set of atomic propositions in ϕ.

As usual, an Υ-tree is given as a prefix-closed subset Y ⊆ Υ∗ of all finite words

over Υ. If the set of directions is not important or clear from the context, we call

Y a tree. We define that every non-empty node x · υ, x ∈ Υ∗, υ ∈ Υ, has the

direction dir (x · υ) = υ and the empty word ε has some designated root-direction

dir (ε) = υ0 ∈ Υ. An Υ-tree Y is called total, if it contains the empty word ε ∈ Y

and every element y ∈ Y of the tree has at least one successor y · υ ∈ Y, υ ∈ Υ. If

Y = Υ∗, the tree is called full.

For given finite sets Σ and Υ, a Σ-labeled Υ-tree is a pair 〈Y, l〉, consisting of a

tree Y ⊆ Υ∗ and a labeling function l : Y → Σ that maps every node of Y to a

letter of Σ.

As usual, we write 〈Y, l〉 � ϕ for a tree 〈Y, l〉 ∈ Mϕ which is a model of ϕ.

2.3. Implementations

We consider nondeterministic implementations. After reading the values of its

input variables, each process determines a set of possible assignments to its output

variables, among which one particular assignment is then chosen nondeterministi-

cally. We require that at least one future must be possible; i.e., the set of assign-

ments cannot be empty. The set of possible decisions Dp ≡ 22Op

r {∅} therefore

form the set of nonempty sets of assignments to the output variables of pa. Since

the sets of output variables Op and Oq of two different processes p and q are disjoint,

their sets Dp and Dq are disjoint, too.

A process p is implemented by a strategy, i.e., a function sp : (2Ip)∗ → Dp ≡

22Op

r {∅}. sp maps each input history of p to a non-empty set of possible variable

assignments. A strategy is finite-state (or regular) if it is the unraveling of a finite-

state transducer. We consider only finite-state implementations in this paper, and

denote finite-state strategies by sp : (2Ip)∗ →r Dp.

The implementations {sw : (2Iw )∗ →r Dw | w ∈ W} of the white-box pro-

cesses W are fixed for the architecture. An implementation of an architecture is a

set of strategies S = {sb : (2Ib)∗ →r Db | b ∈ B} for the black-box processes.

We identify a strategy sp : (2Ip)∗ → Dp with the full Dp-labeled 2Ip-tree

〈(2Ip)∗, sp〉.

aFor generality, we allow all processes to be nondeterministic. If a subset S ⊆ B ⊎ W of the
processes is to be deterministic, one can simply choose, for all p ∈ S, the set Dp of possible decisions
of p as the set of singleton subsets of 2Op instead of the set of non-empty subsets. Generally, Dp

can be set to any non-empty subset of 22Op
r {∅}.
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2.4. Compositions

The strategies of the processes are composed synchronously. In every step, each

process p ∈ P fixes, based on the history visible to p, a set d ∈ Dp of possible

valuations of its output variables Op. The composition of a set Q ⊆ P of processes

maps the global input history to the possible valuation of their joint output variables⋃
p∈QOp, which is defined by the decisions of the strategies {sq | q ∈ Q} of the

processes in Q.

As an auxiliary notion, we first define the composition of sets:

• For two sets of sets A and B, we define their composition A ⊕ B = {a ∪ b |

a ∈ A, b ∈ B} as the set of unions of their elements.

• For two sets of sets of sets A and B, we define their composition A ⊗ B =

{a⊕ b | a ∈ A, b ∈ B} as the set of compositions of their elements.

We use DQ to abbreviate the set
⊗

q∈Q Dq of possible joint decisions of the processes

in Q. The composition of two strategies sp and sq of processes p and q with complete

information (Ip = Iq = V ) is the strategy s{p,q} : (2V )∗ → Dp⊗Dq with s{p,q}(y) =

sp(y) ⊕ sq(y) for all y ∈ (2V )∗.

In the general case of incomplete information we need to compose strategies of

processes with different sets of input variables. We define two auxiliary functions:

The function hide projects a history of variable assignments to a history for a subset

of the variables (such as the visible input variables of a process). The function widen

extends a strategy to a larger set of input variables, without changing its behavior

(i.e., the extended strategy does not depend on the new input variables).

• For a set Ξ × Υ of directions and a node x ∈ (Ξ × Υ)∗, hideΥ(x) denotes the

node in Ξ∗ obtained from x by replacing (ξ, υ) by ξ in each letter of x.

• For a Σ-labeled Ξ-tree 〈Ξ∗, l〉, 〈(Ξ × Υ)∗,widenΥ(l)〉, denotes the Σ-labeled

Ξ×Υ-tree 〈(Ξ×Υ)∗, l′〉 with l′(x) = l(hideΥ(x)). Hence, l◦hideΥ ≡ widenΥ(l).

The widening function widenΥ guarantees that the label of each node y ∈ (Ξ ×

Υ)∗ in the resulting tree depends only on the visible part hideΥ(y) ∈ Ξ∗ of the

input history. This construction is illustrated with an example in Figure 1.

We define the composition s{p,q} : (2V )∗ → D{p,q} = Dp ⊗ Dq of two strategies

sp : (2Ip)∗ → Dp and sq : (2Iq)∗ → Dq as the strategy s{p,q} = widen2V rIp (sp) ⊕

widen2V rIq (sq), and use sQ as an abbreviation for the composition
⊗

q∈Q sq of the

strategies {sq | q ∈ Q} of the processes in Q.

2.5. Computations

An implementation {sb : (2Ib)∗ → Db | b ∈ B} defines the computation tree

〈‖sP ‖, dir〉, where sP =
⊗

p∈P sp denotes the composition of the process strategies,

and ‖sP ‖ denotes the set of computations allowed by sP : ‖sP ‖ is the greatest total

tree Y ⊆ (2V )∗ such that for all y ∈ (2V )∗ and all υ ∈ 2V , if y · υ ∈ Y , then y ∈ Y

and υ ∈ sP (y).
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Figure 1: The widening function widenΥ maps a Ξ-tree 〈Ξ∗, l〉 to the Ξ × Υ-tree
whose label depends only on the Ξ-part of the history. Figure 1a shows a unary
tree (or word) as a simple input to the widening function widenB. The result is a
binary tree, where every path is labeled identically (Figure 1b). Figure 1d shows
the result of a Boolean widening on the Boolean tree 〈B, l〉 from Figure 1c. Here,
every pair y, y′ ∈ (B×B)∗ of nodes which are indistinguishable under hiding of the
second element (hideB(y) = hideB(y′)) has the same label l(hideB(y)).

Figure 2 illustrates the construction of the computation tree with an example.

A system with composed strategy sP satisfies a specification ϕ if and only if the

computation tree 〈‖sP ‖, dir〉 � ϕ is a model of ϕ.

2.6. Realizability

A set of strategies {sq : (2Iq)∗ → Dq | q ∈ Q} of a set Q ⊆ B of black-box

processes is called a resilient realization of a specification ϕ if the computation tree

satisfies ϕ independently of the other black-box processes: i.e., for every DBrQ-

labeled 2V -tree 〈(2V )∗, sBrQ〉, representing the behavior of the black-box processes

in B r Q, the computation tree 〈‖s‖, dir〉 with s = sQ ⊗ sBrQ ⊗ sW ⊗ senv is a

model of ϕ.

A specification ϕ is resiliently realizable by a set Q ⊆ B of black-box processes,

denoted by (A,Q)∃� ϕ, if there exists a set of finite-state strategiesb for the processes

bFor existential and universal quantification over a set of strategies for a set of processes, we
use the notation ∃{sp : 2Ip → Dp | p ∈ Q} and ∀{sp : 2Ip → Dp | p ∈ Q}, respectively.
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...

(a) strategy tree 〈B∗, sP : B
∗ → 22B

r {∅}〉

{1}

{0, 1} {0}

{0} {1} {0, 1} {0}

{0} {1} {0, 1} {1} {0} {1} {0, 1} {0, 1}

10101010
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10

...

(b) computation tree 〈‖sP ‖, dir〉

0

0 1

0 1 0 1

0 1 0 1 0 1 0 0

10101010

1010

10

Figure 2: Figure 2a shows a Boolean strategy tree 〈B∗, sP 〉. Every node is labeled
with a nonempty subset of B, indicating the possible futures. Figure 2b shows (in
solid lines) the computation tree 〈‖sP ‖, dir〉. The computation tree contains those
paths of the full tree 〈B, dir 〉 (shown in gray) that are consistent with the strategy.

in Q that are a resilient realization of ϕ:

(A,Q) � ϕ :⇔ ∃{sb : (2Ib)∗ →r Db | b ∈ Q}. ∀{sBrQ : (2V )∗ → DBrQ.
〈‖

⊗
b∈Q

sb ⊗ sBrQ ⊗ sW ⊗ senv‖, dir 〉 � ϕ

A specification ϕ is realizable if it is (resiliently) realizable by the entire set B

of black-box processes.

3. The Compositional Synthesis Rule

Using the definitions from the previous section, we now introduce a semi-

automatic approach to distributed synthesis. We define a compositional synthesis

rule that establishes the realizability of a specification by showing that the specifica-

tion can be strengthened into a conjunction of local specifications for the individual

processes, such that each local specification is resiliently realized by its process.

While the strengthening of the specification must be done manually, we will show

in Section 6 that all premises of the synthesis rule can be checked automatically.
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For a distributed architecture A with a set of black-box
processes B = {b1, · · · , bn}, and CTL* or µ-calculus
formulas ψ, ϕb1 , . . . ϕbn

,

(R1) (A, {b1}) ∃
� ϕb1

...
...

(Rn) (A, {bn}) ∃
� ϕbn

(S) (A, ∅) ∃
�

∧
b∈B

ϕb → ψ

(A,B) ∃
� ψ

Theorem 1 The compositional synthesis rule is sound.

Proof. Premises (R1) through (Rn) prove that each local specification ϕbi
is

resiliently realized by the respective black-box process bi:

(A, {bi})∃� ϕbi
⇔ ∃sbi

: (2Ibi )∗ →r Dbi
. ∀sBr{bi} : (2V )∗ → DBr{bi}.

〈‖sbi
⊗ sBr{bi} ⊗ sW ⊗ senv‖, dir〉 � ϕbi

.

Consequently, such strategies sbi
can be fixed independently. The resulting imple-

mentation {sbi
| bi ∈ B} satisfies ϕbi

for all bi ∈ B. Hence, (A,B)∃�
∧

bi∈B ϕbi

holds true:

∃{sbi
:(2Ibi )∗ →r Dbi

| bi ∈ B}. 〈‖
⊗

bi∈B

sbi
⊗ sW ⊗ senv‖, dir〉 �

∧

bi∈B

ϕbi
.

Premise (S) shows that the conjunction of the local specifications
∧

bi∈B ϕbi

implies the system specification ψ. Therefore, every implementation that satisfies

all local specifications must also satisfy ψ:

(A, ∅)∃�
∧

bi∈B

ϕbi
→ψ

⇔ ∀sB:(2V )∗ → DB .〈‖sB ⊗ sW ⊗ senv‖, dir〉 �
∧

bi∈B

ϕbi
→ψ

⇔ ∀sB : (2V )∗ → DB.〈‖sB⊗sW ⊗senv‖, dir 〉�
∧

bi∈B

ϕbi
⇒ 〈‖sB⊗sW ⊗senv‖, dir〉�ψ.

In particular, the computation tree defined by {sbi
| bi ∈ B} must satisfy ψ.

Hence, the compositional synthesis rule is sound. �

The compositional proof rule can be applied to all architectures, including those

which contain an information fork. This is no contradiction to the undecidability

of the realizability problem for these architectures: there is no decision procedure

which can distinguish unrealizable specifications from realizable specifications for

which we merely failed to find local strengthenings.

4. Example

We illustrate the compositional synthesis rule with a simple distributed shared-

resource application. The system architecture is shown in Figure 3a. The external

environment Env is depicted as a circle, the two black-box processes p1 and p2 as

filled rectangles, and the white-box “Arbiter” process as a white rectangle.
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Env

p1

Arbiter

p2

(a)

request1

request2

access1

access2

release1

release2

grant1

grant2

(b)

grant1 := true
grant2 := false

release1

grant1 := false
grant2 := true

release2

grant1 := true
grant2 := false

¬release1 ¬release2

Figure 3: A simple distributed shared-resource application. (a) The system ar-
chitecture. An edge between two process nodes p and q labeled with variable v
indicates that v is an output variable of process p and an input variable of pro-
cess q. (b) The implementation of the white-box process Arbiter, represented as a
finite-state Mealy machine. The edges are labeled with the value of the input vari-
ables and with new assignments to the output variables (if the value of the output
variables changes).

Env can request access to the resource by setting the request variable of one

of the two black-box processes p1 and p2. The white-box process Arbiter, whose

implementation is shown in Figure 3b, ensures mutual exclusion by passing a grant

back and forth between p1 and p2, such that each process retains the grant until

the respective release variable is set.

We specify the expected behavior of the shared-resource system as a conjunction

ψ = ψ1 ∧ ψ2 ∧ ψ3 of three CTL* formulas, where the first two formulas specify

that there is a way for both processes to use the resource infinitely often (ψi =

EGF access i for i ∈ {1, 2}) and the third formula specifies mutual exclusion (ψ3 =

AG ¬(access1 ∧ access2)).

Obviously, neither p1 nor p2 can guarantee ψ for all possible implementations of

the other process (for example, if p1 constantly sets its access1 variable to true, p2

cannot avoid violating mutual exclusion if it is to obtain access along some branch).

Using the proof rule, we need to strengthen ψ into two separate properties

ϕp1 and ϕp2 that can be resiliently realized by p1 and p2, respectively. A natural

assumption to be made by process p3−i about process pi is that there is a path such

that process pi infinitely often releases the grant (αpi

1 = EGF releasei) and that,

on every path, pi only accesses the resource when permitted by the arbiter (αpi

2 =

AG access i → grant i). By adding these assumptions, we obtain a strengthened

specification ϕ = ϕp1 ∧ ϕp2 where

ϕpi
= αpi

1 ∧ αpi

2 ∧ (α
p3−i

1 ∧ α
p3−i

2 → ψ).

Once the auxiliary formulas ϕp1 and ϕp2 have been defined, a resilient imple-

mentation can be found for both processes. For example, process pi can guarantee
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ϕpi
by setting access i after each request i as soon as grant i becomes true and by

setting releasei in the immediately following state.

In terms of the traditional system development process, the strengthening in

our proof rule can be understood as the definition of an abstract interface or con-

tract between the processes. Typically, the user can choose from multiple correct

contracts. In the shared-resource application, the user might, for example, alter-

natively specify strict turn-taking by strengthening ψ to ϕ′
p1

and ϕ′
p2

, where ϕ′
p1

requires that p1 accesses the resource exactly after every odd number of steps and

ϕ′
p2

requires that p2 accesses the resource exactly after every even number of steps.

The resilient implementations of this strengthening are slightly unorthodox (the

arbiter is ignored), but are also guaranteed to satisfy ψ.

As a final remark about this example, let us convince ourselves that it is really

necessary to consider resilient implementations. Suppose that, in a hypothetical

alternative proof rule, we require only the (cheaper) realizability in a maximal

environment. It is now possible to strengthen ψ into two formulas ϕ′′
p1

and ϕ′′
p2

that can, in a maximal environment, be guaranteed by p1 and p2, respectively,

but whose conjunction is equivalent to false. For example, p1 can easily guarantee

AG¬release1, while any implementation of p2 guarantees EF release1 in a maximal

environment.

5. Completeness

To demonstrate the completeness of the compositional synthesis rule, we show

that the auxiliary formulas ϕb1 , . . . , ϕbn
required in the rule can be derived from a

distributed implementation {sbi
| bi ∈ B} that satisfies the specification ψ. Given

an implementation sb of a black-box process b, we define a CTL formula ϕb that

is a strict characterization of the behavior of b and the white-box processes. Strict

characterization means that (1) sb is a resilient implementation of ϕb and (2) for all

other implementations {s′bi
| bi ∈ B} that realize ϕb, the implementations sb and

s′b have the same computation trees:

∀sBr{b} : (2V )∗ → DBr{b}. ‖sb⊗ sBr{b}⊗ sW ⊗ senv‖ = ‖s′b⊗ sBr{b}⊗ sW ⊗ senv‖.

Condition (1) guarantees that premise (Ri) of the proof rule is satisfied for each

black-box process bi, and Condition (2) guarantees that premise (S) is satisfied.

The arbiter depicted in Figure 3(b) has the following strict characterization:

ϕarbiter = ϕ0 ∧ AG(ϕ0 ∨ ϕ1), with

ϕ0 = grant1 ∧ ¬grant2 ∧ AX(release1 → ¬grant1 ∧ grant2)

∧AX(¬release1 → grant1 ∧ ¬grant2), and

ϕ1 = ¬grant1 ∧ grant2 ∧ AX(release2 → grant1 ∧ ¬grant2)

∧AX(¬release2 → ¬grant1 ∧ grant2).

Let the implementation for the processes b ∈ B and for the white-box processes

be given as finite-state transducers, which we combine into a single transducer TB
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with a set SB of states and an initial state sB
0 ∈ SB. Additionally, we construct a

finite-state transducer Tb with a set Sb of states and initial state sb
0 for the product

of each single black-box process b and the white-box processes.

We define a CTL formula ϕb such that the models of ϕb are the trees obtained

by unraveling Tb. To construct ϕb, we give a formula ϕs for each state s ∈ Sb

which ensures that, for the next max{|SB|, |Sb|} + 1 steps, the tree corresponds

to the unraveling of T starting in state s. Since the other black-box processes are

unknown, ϕs does not require that all branches of the unraveling exist, but rather

that, provided they do exist, the reaction is in accordance with Tb. The specification

ϕb = ϕsb
0
∧ AG

∨
s∈Sb

ϕs requires that ϕs0 holds initially, and that always some ϕs

holds true.

The formula ϕb is a strict characterization of the behavior of b and the white-

box processes. As required by Condition (1), sb is a resilient implementation of ϕb.

For Condition (2), note that resilient realization includes realization in a maximal

environment as a special case: hence, s′b ⊗
⊗

w∈W sw must react to any input

from the other black-box processes or from the external environment exactly like

sb ⊗
⊗

w∈W sw.

An unraveling of height |Sb| + 1 suffices for strict characterizations, and an

unraveling of height |SB| + 1 suffices to guarantee that the formula
∧

b∈B ϕB is a

strict characterization of the overall system.

Theorem 2 The compositional synthesis rule is complete.

Proof. Assume that ψ is realizable and let {sbi
: (2Ibi )∗ →r Dbi

| bi ∈ B} be

a realization of ψ. For each black-box process bi, we can infer a formula ϕbi
, which

is a strict characterization of the behavior of bi and the white-box processes, i.e.,

of sbi
⊗ sW . Premises (Ri) of the compositional synthesis rule are satisfied because

for each ϕbi
, the given sbi

is a resilient realization.

The conjunction of the single strict characterizations define a strict specification

of the overall system. Consequently, each implementation that satisfies
∧

bi∈B ϕbi

also satisfies ψ, and Premise (S) holds true. �

6. Synthesis of Resilient Implementations

We now develop a procedure that checks if a specification is resiliently realizable

by a single black-process b, (A, {b})∃� ϕ, as required for Premises (R1) through

(Rn), and a procedure that checks if a specification is resiliently realized by the

empty set of black-box processes, (A, ∅)∃� ϕ, as required for Premise (S).

Every formula of a temporal logic can be translated into an alternating tree au-

tomaton that accepts exactly its set of models. This automaton is the starting point

for our construction, which consists of a series of tree automata transformations.

6.1. Tree Automata

An alternating parity tree automaton is a tuple A = (Σ,Υ, Q, q0, δ, α), where Q

denotes a finite set of states, q0 ∈ Q denotes a designated initial state, δ denotes a
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transition function, and α : Q→ C ⊂ N is a coloring function. The transition func-

tion δ : Q×Σ → B
+(Q×Υ) maps a state and an input letter to a positive boolean

combination of states and directions (for a predefined finite set Υ of directions).

An alternating automaton runs on full Σ-labeled Υ-trees. A run tree on a given

full Σ-labeled Υ-tree 〈Υ∗, l〉 is a Q×Υ∗-labeled tree where the root is labeled with

(q0, ε) and where for every node n with a label (q, y) and a set child(n) of children,

the labels of these children have the following properties:

• for all children m ∈ child(n) of n, the label of m is (qm, y · υm) for some

qm ∈ Q and υm ∈ Υ such that (qm, υm) is an atom of δ(q, l(y)), and

• the set of atoms defined by the children of n satisfies δ(q, l(y))c.

The label of a node on the run tree refers to the current state of the automaton

and its current position on the input tree. An infinite path fulfills the parity condi-

tion, if the highest color of the states appearing infinitely often on the path is even.

A run tree is accepting if all infinite paths fulfill the parity condition. Note, that a

run tree may have finite paths: if δ(q, l(y)) is true, then the set of successors may

be empty. Likewise, an input tree may not have any run tree. If δ(q, l(y)) is false ,

then no set of successors can satisfy δ(q, l(y)). Finite paths are always acceptingd.

A total Σ-labeled Υ-tree is accepted if it has an accepting run tree.

The set of trees accepted by an alternating automaton A is called its language

L(A). L(A) denotes the set of full Σ-labeled Υ-trees not accepted by A. An

automaton is empty if its language is empty.

The acceptance of a tree can also be viewed as the outcome of a game, where

player accept chooses, for a pair (q, σ) ∈ Q×Σ, a set of atoms of δ(q, σ), satisfying

δ(q, σ), and player reject chooses one of these atoms, which is executed. The input

tree is accepted iff player accept has a strategy enforcing a path that fulfills the

parity condition. One of the player has a memoryless winning strategy, i.e., a

strategy where the moves only depend on the state of the automaton, the position

in the tree and, for player reject, on the choice of player accept in the same move.

A nondeterministic automaton is a special alternating automaton, where the

image of δ consists only of such formulae that, when rewritten in disjunctive normal

form, contain exactly one element of Q× {υ} for all υ ∈ Υ in every disjunct.

For nondeterministic automata, every node of a run tree corresponds to a node in

the input tree. Emptiness can therefore be checked with an emptiness game, where

player accept also chooses the letter of the input alphabet. A nondeterministic

automaton is empty iff the emptiness game is won by reject.

Symmetric alternating automata are a variant of alternating automata that

run on total Σ-labeled Υ-trees. For a symmetric alternating automaton S =

cIf δ(q, l(y)) is rewritten in disjunctive normal form, we can require that the atoms of a disjunct
are contained in the set of atoms defined by the children of n.

dIf only infinite paths shall be allowed, true and false can be substituted by fresh states qtrue

and qfalse , respectively, such that

• α(qtrue) is even and α(qfalse ) is odd, and

• for some υ ∈ Υ and all σ ∈ Σ, δ(qtrue , σ) = (qtrue , υ) and δ(qfalse , σ) = (qfalse , υ).

12



(Σ, Q, q0, δ, α), Q, q0, and α are defined as before. The transition function

δ : Q × Σ → B
+(Q × {�,♦}) now maps a state and an input letter to a posi-

tive boolean combination over atoms that refer to some (♦) or all (�) successor

states.

A run tree on a given Σ-labeled Υ-tree 〈R, r〉 is a Q×Υ∗-labeled tree where the

root is labeled with (q0, ε) and where, for a node n with a label (q, y) and a set of

labels of its successors L = {r(n · ρ) | ρ ∈ succset(n)}, the following property holds:

there is a set of atomsA ⊆ 2Q×{�,♦} satisfying δ(q, l(y)) such that ∀q′ ∈ Q.((q′,�) ∈

A⇒ ∀υ ∈ succset(x).(q′, y ·υ) ∈ L)∧((q′,♦) ∈ A⇒ ∃υ ∈ succset(x).(q′, y ·υ) ∈ L).

A run tree on a given Σ-labeled Υ-tree 〈Υ∗, l〉 is a Q × Υ∗-labeled tree where the

root is labeled with (q0, ε) and where for every node n with a label (q, y) and a set

child(n) of children, the labels of these children have the following properties:

• for all children m ∈ child(n) of n, the label of m is (qm, y · υm) for some

qm ∈ Q and υm ∈ Υ, y · υm ∈ Y such that (qm,�) or (qm,♦) is an atom of

δ(q, l(y)), and

• interpreting each occurrence of (q′,�) as
∧

υ∈Υ. y·υ∈Y (q′, υ) and each occur-

rence of (q′,♦) as
∨

υ∈Υ. y·υ∈Y (q′, υ), the atoms defined by the children of n

satisfy δ(q, l(y)).

We introduce a function suc : (Q × Σ → B
+(Q × {�,♦})) → (Q × Σ × 2Υ

r

{∅} → B
+(Q×Υ)) that translates the transition function of a symmetric alternating

automaton running on total Σ-labeled Υ-trees into the corresponding transition

function of an alternating automaton running on full Σ× 2Υ
r {∅}-labeled Υ-trees.

For the set 2Υ
r {∅} of possible sets of successors, suc(δ) : Q× Σ × (2Υ

r {∅}) →

B
+(Q×Υ) maps a state, an input letter and a set of successors to a positive boolean

combination of states and directions.

6.2. Overview

To check whether a specification ϕ is resiliently realizable by a black-box pro-

cess b, we construct a tree automaton Cϕ that accepts the set of resilient realizations,

and check Cϕ for emptiness. Our construction consists of a series of automata trans-

formations. Before we describe the individual steps in detail we give an overview of

the construction.

From formulas to automata. We start our construction with a symmetric

automaton Sϕ that accepts the models of the specification ϕ:

L(Sϕ) = {〈Y, l : Y → 2V 〉 | 〈Y, l〉 � ϕ}.

Characteristic trees. Computation trees are total trees. Since it is more

convenient to work with automata over full trees, we make the choice of enabled

directions explicit. We add the set of enabled directions to the label and construct

an alternating automaton Aϕ from Sϕ that uses this information: Where Sϕ sends
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a copy to all successors, Aϕ sends a copy to all enabled successors, and where Sϕ

sends a copy to some successor, Aϕ sends a copy to some enabled successor.

Considering a full 2V ×(22V

r{∅})-labeled 2V -tree 〈(2V )∗, l′〉, where the nodes are

additionally decorated with the sets of relevant successors, one can easily determine

the original total 2V -labeled 2V -tree 〈Y, l〉, which we call its characteristic tree.

We continue with an automaton A+
ϕ that accepts those full 2V × (22V

r {∅})-

labeled 2V -trees whose characteristic tree is a model of ϕ. (Note that the labeling

of nodes that do not belong to the characteristic tree have no influence on the

acceptance.) Each distributed implementation defines a set of successors, i.e., a

tree 〈(2V )∗ →
⊗

p∈P sp〉, whose label refers to the set of successors. Since the

mapping of
⊗

p∈P sp is resticted to Db ⊗ DW ⊗ DBr{b} ⊗ Denv we restrict the

language of A+
ϕ to 2V × Db ⊗ DW ⊗ DBr{b} ⊗ Denv -labeled 2V -trees, resulting in

an automaton Aϕ with

L(Aϕ) = {〈(2V )∗, l× l′〉 | l : (2V )∗ → 2V ,
l′ : (2V )∗ → Db ⊗ DW ⊗ DBr{b} ⊗ Denv and 〈‖l′‖, l〉 ∈ L(Sϕ)}.

Resilience. In this step, we universally quantify over the decisions of the re-

maining black-box processes Br{b} and the environment. We build an automaton

Rϕ that accepts a 2V × Db ⊗ DW -labeled 2V -tree if all DBr{b} ⊗ Denv extensions

are accepted by Aϕ:

L(Rϕ) = {〈(2V )∗, l × l′〉 | l : (2V )∗ → 2V , l′ : (2V )∗ → Db ⊗ DW and
∀l′′ : (2V )∗ → DBr{b} ⊗ Denv . 〈(2

V )∗, l × (l′ ⊗ l′′)〉 ∈ L(Aϕ)}.

Pruning directions from the labeling. The valuation of the atomic proposi-

tions V = AP must for each node be consistent with its direction. The alternating

automaton Dϕ accepts a Db ⊗ DW -labeled 2V -tree if the 2V × Db ⊗ DW -labeled

2V -tree obtained by adding the direction of a node to the label is accepted by Rϕ:

L(Dϕ) = {〈(2V )∗, l : (2V )∗ → Db ⊗ DW 〉 | 〈(2V )∗, dir × l)〉 ∈ L(Rϕ)}.

Adjusting for white-box processes. The behavior of the white-box processes

is known and fixed. In this step we build an automaton Wϕ that simulates their

behavior and supplies their decisions. The alternating automaton Wϕ accepts a Db-

labeled 2V -tree if the Db ⊗DW -labeled 2V -tree obtained by adding the decisions of

the white-box processes is accepted by Dϕ:

L(Wϕ) = {〈(2V )∗, l : (2V )∗ → Db〉 | 〈(2
V )∗, l ⊗ sW )〉 ∈ L(Dϕ)}.

Localization. The alternating automaton Bϕ accepts a Db-labeled 2Ib -tree if its

proper widening is accepted by Wϕ:

L(Bϕ) = {〈(2Ib)∗, l : (2Ib)∗ → Db〉 | 〈(2
V )∗,widen2V rIp (l)〉 ∈ L(Wϕ)}.
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Emptiness check. Checking Bϕ for emptiness decides realizability: (A, {b})∃� ϕ

holds true iff Bϕ is non-empty. To check emptiness, we first transform Bϕ into an

equivalent nondeterministic automaton Cϕ, and then check the emptiness of Cϕ

by solving its emptiness game. A memoryless winning strategy in the emptiness

game defines a finite-state implementation sb : (2Ib)∗ →r Dp for the process b that

resiliently realizes ϕ.

In the following, we discuss the automata transformations in detail.

6.3. Automata Transformations

6.3.1. From Formulas to Automata

We use standard constructions to translate a temporal specification ϕ into a

symmetric alternating automaton Sϕ that accepts the models of the formula.

Theorem 3 Given a CTL specification ϕ, we can construct a symmetric alternat-

ing automaton Sϕ with O(|ϕ|) states and two colors such that the language of Sϕ

consists of the models of ϕ [9]. Given a CTL* specification ϕ, we can construct a

symmetric alternating automaton Sϕ with 2O(|ϕ|) states and five colors such that the

language of Sϕ consists of the models of ϕ [9]. Given a µ-calculus specification ϕ,

we can construct a symmetric alternating automaton Sϕ with O(|ϕ|2) states and

O(|ϕ|) colors such that the language of Sϕ consists of the models of ϕ [7]. �

6.3.2. Characteristic Trees

Computation trees are total trees. Automata transformations are simpler for

automata running on full trees; we therefore represent total trees as full trees by

decorating each node with its own set of successors (making the choice of enabled

directions explicit). When the set of enabled directions is added to the label, we

can construct an alternating automaton Aϕ from Sϕ that uses this information:

Where Sϕ sends a copy to all successors, Aϕ sends a copy to all enabled successors,

and where Sϕ sends a copy to some successor, Aϕ sends a copy to some enabled

successor.

For a Σ × Ξ-labeled Υ-tree 〈Y, l〉, we denote the Σ-projection projΣ : 〈Y, l〉 7→

〈Y, lΣ〉 with l(y) = (σ, ξ) ⇒ lΣ : y 7→ σ that maps Σ×Ξ-labeled Υ-trees to Σ-labeled

Υ-trees.

For a full Σ×(2Υ
r{∅})-labeled Υ-tree 〈Υ∗, l〉, we define the characteristic tree as

the total Σ-labeled Υ-tree 〈Y, lc〉 = char (〈Υ∗, l〉) to be the sub-tree of projΣ(〈Υ∗, l〉)

with Y = ‖lsuc‖ for 〈Υ∗, lsuc〉 = proj 2Υr{∅}(〈Υ
∗, l〉). Intuitively, the second argu-

ment in the label of 〈Υ∗, l〉 defines the set of successors of a node.

Lemma 1 Given a symmetric alternating automaton S = (Σ, Q, q0, δ, α), running

on total Σ-labeled Υ-trees, we can construct an alternating automaton A = (Σ ×

(2Υ
r{∅}),Υ, Q, q0, suc(δ), α) that accepts a full Σ×(2Υ

r{∅}) labeled Υ-tree 〈Υ∗, l〉,

iff char (〈Υ∗, l〉) is accepted by S.
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Proof. Let 〈T, lT 〉 = char (〈Υ∗, l〉). Then the successor set succset(x) of a node

x ∈ T is defined by the label of x for the tree 〈Υ∗, l〉: succset(x) = proj 2Υr{∅}(l(x)).

�

6.3.3. Resilience

In this step we establish independence from the choices of the remaining black-

box processes by constructing an alternating automaton Rϕ that accepts a 2V ×

Db × DW -labeled 2V -tree if all DBr{b} × Denv extensions are accepted by Aϕ.

Intuitively, the automaton guesses the most hostile behavior of the remaining black-

box processes. Note that for universal specifications the most hostile behavior of

the remaining black-box processes is the maximal behavior, where each process

p ∈ B r {b} continuously enables all successors (sp(y) = {2Op} ∀y ∈ (2V )∗). The

quantification step can therefore be avoided in case of universal specifications (see

Subsection 6.6 for details).

To construct Rϕ, we interpose a language projection between two language

complementations:

(i) We complement Aϕ, i.e., we compute an alternating automaton Iϕ with

L(Iϕ) = L(Aϕ).

(ii) Next, we build a nondeterministic automaton Nϕ with the same language

L(Nϕ) = L(Aϕ).

(iii) Then, we compute a nondeterministic automaton Pϕ that accepts a 2V ×

Db × DW -labeled 2V -tree if it is the the DBr{b} × Denv -projection of a tree

accepted by Nϕ.

(iv) Finally, we complement Pϕ, i.e., we compute an alternating automaton Rϕ

with L(Rϕ) = L(Pϕ).

An alternating automaton A = (Σ,Υ, Q, q0, δ, α) can be complemented by dual-

izing its transition function (i.e., replacing each occurrence of ∧, ∨, true and false

by ∨, ∧, false and true, respectively) and increasing the color of each state by one.

Dualization of alternating automata was introduced by Muller and Schupp [10].

Lemma 2 [10] Given an alternating automaton A = (Σ,Υ, Q, q0, δ, α), the dual

automaton I = (Σ,Υ, Q, q0, δ, α + 1), where δ is the function dual to δ, accepts a

tree 〈Υ∗, l〉 iff 〈Υ∗, l〉 is not accepted by A. �

The most expensive operation in our construction is the transformation of gen-

eral alternating tree automata to nondeterministic automata.

Lemma 3 [3, 11] Given an alternating automaton A with n states and c colors,

we can construct an equivalent nondeterministic automaton N with nO(c·n) states

and O(c · n) colors. �

Language projection is a standard operation on nondeterministic automata,

where the automaton nondeterministically chooses a suitable extension of the label

of an input tree.

16



Lemma 4 Given a nondeterministic automaton N = (Σ×Ξ,Υ, Q, q0, δ, α), we can

construct a nondeterministic automaton P = (Σ,Υ, Q, q0, δ
′, α) that accepts a Σ-

labeled Υ-tree 〈Υ∗, l〉 iff there is a Σ×Ξ-labeled Υ-tree 〈Υ∗, lΞ〉 accepted by N with

〈Υ∗, l〉 = projΣ(〈Υ∗, lΞ〉).

Proof. P can be constructed by using δ′ to guess the correct tree: we set

δ′ : (q, σ) 7→
∨

ξ∈Ξ δ(q, (σ, ξ)). �

6.3.4. Pruning Directions from the Labeling

We are only interested in those trees where the label of every node is in ac-

cordance with its direction. This information then becomes redundant and can be

pruned. The following operation performs this pruning; the state space of the re-

sulting automaton is linear in the state space of the original automaton, while the

set of colors remains unchanged.

For a Σ-labeled Υ-tree 〈Υ∗, l〉, we define the function xray : 〈Υ∗, l〉 7→ 〈Υ∗, l′〉

with l′(x) = (dir (x), l(x)) that maps Σ-labeled Υ-trees to Υ × Σ-labeled Υ-trees.

Lemma 5 [9] Given an alternating automaton R = (Υ × Σ,Υ, Q, q0, δ, α), we can

construct an alternating automaton D = (Σ,Υ, Q × Υ, (q0, υ0), δ
′, α′) that accepts

〈Υ∗, l〉 iff R accepts xray(〈Υ∗, l〉). �

The transition function δ′ : Q×Υ×Σ → B+(Q×Υ×Υ) can be constructed from

δ : Q×Υ×Σ → B+(Q×Υ) by replacing all occurrences of (q, υ) in each δ(q′, υ′, σ′)

by (q, υ, υ), storing the direction as quasi-input. α′ : (q, c) 7→ α(q) simply evaluates

the first component of the new states.

6.3.5. Adjusting for White-Box Processes

The DW -fraction of the label represents the decisions made by the white-box

processes. Consequently, we are only interested in those trees, where the label of

every node is in accordance with these decisions. This information is then redundant

and can be pruned. We assume that the composed strategy
⊗

w∈W sw of the white-

box processes is represented as a finite-state automaton O = (2V , O, o0, dW , oW ),

where O is a set of states, o0 the initial state, the transition function dW : 2V ×O →

O is a mapping from the input alphabet and the set of states to the set of states,

and the output function oW : O → 22OW
r {∅} maps each state to a nonempty set

of output letters. The following operation performs the pruning; the state space of

the resulting automaton is linear in the state space of the original automaton and

the number of states of O, while the set of colors remains unchanged.

Lemma 6 Given an alternating automaton D = (Σ× Ξ,Υ, Q, q0, δ, α) and a finite

automaton O = (Σ, O, o0, dW , oW ) that produces a Ξ-labeled Υ-tree 〈Υ∗, l〉, we can

construct an alternating automaton W = (Σ,Υ, Q × O, (q0, o0), δ
′, α′) that accepts

〈Υ∗, l′〉 iff D accepts 〈Υ∗, l′′〉 with l′′ : y 7→ (l′(y), l(y)).

Proof. If δ : (q, σ, ξ) 7→ b(q,σ,ξ)({qi, υi | i ∈ I}), we can set δ′ : (q, o, σ) 7→

b(q,σ,oW (o))({qi, dW (σ, o), υi | i ∈ I}). The coloring function can simply be set to

α′ : (q, o) 7→ α(q). �
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6.3.6. Localization

The process b is in general not omniscient, and its output may only depend on

the history of the input visible to b. The following transformation therefore accepts

a 2Op-labeled 2Ip-tree if its proper widening is accepted by Wϕ. The state space

and the set of colors remain unchanged.

Lemma 7 [9] Given an alternating automaton W = (Σ,Ξ × Υ, Q, q0, δ, α), we can

construct an alternating automaton B = (Σ,Ξ, Q, q0, δ
′, α) that accepts a tree 〈Ξ∗, l〉

iff W accepts 〈(Ξ × Υ)∗,widenΥ(l)〉. �

The narrowing operation transforms the transition function δ. The new transi-

tion function δ′ is constructed by replacing each occurrence of (q, (ξ, υ)) in the map-

ping of δ by (q, ξ). A memoryless winning strategy of B for a Σ-labeled Ξ-tree 〈Ξ∗, l〉

defines a memoryless winning strategy for W on its Υ-widening widenΥ(〈Ξ∗, l〉):

if the winning strategy of B maps a node x ∈ Ξ∗ and a state q ∈ Q to a set

{(qi, ξi) | i ∈ I} of atoms, then the winning strategy of D maps a state y ∈ (Ξ×Υ)∗

with hideΥ(y) = x and q to {(qi, (ξi, υ)) | i ∈ I, υ ∈ Υ}.

Vice versa, an accepting run-tree of D for widenΥ(〈Ξ∗, l〉) can be turned into

an accepting run tree of B for a Σ-labeled Ξ-tree 〈Ξ∗, l〉 by replacing every node

y ∈ (Ξ × Υ)∗ from each label of the run tree by hideΥ(y).

6.3.7. Emptiness Check

We check the emptiness of Bϕ by first constructing a nondeterministic automaton

Cϕ and then testing the emptiness of Cϕ (Lemma 3).

Language emptiness for a nondeterministic automaton Cϕ can be checked by

solving its emptiness game. If the language is non-empty, a winning memoryless

strategy can be used to construct a finite-state transducer, which generates a regular

tree in the language of Cϕ.

Lemma 8 Given a nondeterministic automaton C = (Σ,Υ, Q, q0, δ, α) with n states

and c colors, we can check language emptiness in time nO(c). If C is non-empty, we

can construct a regular tree accepted by C within the same complexity bound.

Proof. The emptiness game can be modeled as a two person parity game with

nO(1) statese and c colors. Such a game can be solved in nO(c) time [12]. A winning

strategy defines a transducer with at most n states, which represents a regular tree

accepted by C. �

6.4. Upper Bounds

Our construction establishes 2EXPTIME upper bounds for CTL and µ-calculus

specifications, and a 3EXPTIME upper bound for CTL* specifications.

eIn the emptiness game, the states Vaccept = Q of the automaton become the states of player
accept, while the set Vreject = {δ(q, σ) | q ∈ Q, σ ∈ Σ} of player reject consists of the different

entries in the transition table of C. Players accept (|V | = |Q|) and reject (|Vreject | ≤ |Q||Υ|) each

have nO(1) states.
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Theorem 4 For a given architecture A = (B,W, I,O, {sw | w ∈W}) and a black-

box process b ∈ B, checking resilient realizability and, if applicable, constructing a

resilient realization sb : (2Ib)∗ →r Db can be performed in 2EXPTIME in the length

of ϕ if ϕ is a CTL or µ-calculus specification, and in 3EXPTIME in the length of

ϕ if ϕ is a CTL* specification.

Proof. Following the construction described in Section 6.2, we construct a

nondeterministic automaton Cϕ, which accepts exactly the resilient implementations

of ϕ by b. If n = |ϕ| denotes the length of the specification ϕ, then Cϕ has

• 2nO(n)

states and nO(n) colors if ϕ is a CTL specification,

• 222O(n)

states and 22O(n)

colors if ϕ is a CTL* specification, and

• 2nO(n3)

states and nO(n3) colors if ϕ is a µ-calculus specification.

By Lemma 8 we can check the emptiness of Cϕ and, if Cϕ is non-empty, construct

a regular tree accepted by Cϕ in time polynomial in the number of states and

exponential in the number of colors of Cϕ. �

6.5. Lower Bounds

To demonstrate that the upper bounds are sharp, we give a reduction from

the synthesis problem in reactive environments with complete information, which is

known to be 2EXPTIME and 3EXPTIME hard for CTL and CTL*, respectively [8].

In synthesis with reactive environments and complete information, we have only one

process b, for which a (deterministic) strategy sb : (2Oenv )∗ →r Db is sought. (Db is

the set of singleton subsets of 2Ob . The environment can react to the input by

restricting its actions to a non-empty subset of its output variables Oenv , which

can be viewed as a non-deterministic strategy senv : (2Oenv∪Ob)∗ → 22Oenv
r {∅}.)

In our terms, a strategy sb : (2Oenv )∗ → Db implements a specification ϕ if, for all

strategies senv : (2Oenv∪Ob)∗ → 22Oenv

r {∅} of the environment, 〈‖sb ⊗ senv‖, dir〉 is

a model of ϕ.

We encode this synthesis problem as the realizability of ϕ by b against a black-

box process e with output Oe and an external environment without output. The

second black-box process e plays the role of the reactive environment. Formally,

we define the architecture A = ({b, e}, ∅, env, {Ib = Oe, Ie = Ienv = V }, {Oenv =

∅, Ob, Oe}, ∅). The determinacy of sb can be guaranteed by construction (by set-

ting Db to the set of singleton subsets of 2Ob). Alternatively, we can ensure the

determinacy of sb by strengthening the specification ϕ such that only deterministic

strategies are allowed: We solve the realizability problem for ϕ′ = ϕ ∧ ψ, where

ψ =
∧

o∈Ob
AG ((EXo → AXo) ∧ (EX¬o → AX¬o)) (which is linear in ϕ).

Theorem 5 The realizability problem (A, {b})∃ � ϕ is 3EXPTIME complete for

CTL* and 2EXPTIME complete for CTL and µ-calculus specifications in the length

|ϕ| of the specification.

Proof. The lower bounds for CTL and CTL* follow from the equal lower

bounds for the synthesis problem with reactive environments [8]. The lower bound
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for the µ-calculus is established by the lower bound for CTL. The upper bound is

demonstrated by Theorem 4. �

6.6. Universal Specifications

For universal specifications, the quantification step of Subsection 6.3.3 can be

simplified, resulting in an exponential improvement in the complexity. A specifica-

tion is universal if its models are recognized by a universal symmetric automaton.

A symmetric automaton U = (Σ, Q, q0, δ, α) is called universal if the mapping of the

transition function δ contains no existential atoms (i.e., no atoms (q,♦) ∈ Q×{♦}).

The universal specifications include in particular the formulas of the following logics:

• the syntactic subsets ACTL* and ACTL of CTL* and CTL, respectively,

which do not contain the existential path quantifier,

• the syntactic subset of the modal µ-calculus that does not contain the exis-

tential successor operator ♦, and

• trace languages like LTL.

Intuitively, the quantification step is used to guess, for a given strategy sb :

(2V )∗ → Db of a process b, a strategy sBr{b} : (2V )∗ → DBr{b} for the remaining

black-box processes B r {b} for which ϕb does not hold, i.e., 〈‖sb × sW × sBr{b} ×

senv‖, dir〉 2 ϕb. If ϕb is a universal specification, the strategy can be set to the

constant value
⊕

b6=b′∈B{2Ob′ }.

Theorem 6 If ϕ is a universal specification over a set AP of atomic propositions,

〈Y, l : Y → 2AP 〉 2 ϕ is no model of ϕ, and 〈Y ′, l′ : Y ′ → 2AP 〉 is a 2AP -labeled tree

with Y ⊆ Y ′ and l(y) = l′(y) for all y ∈ Y , then 〈Y ′, l′ : Y ′ → 2AP 〉 is no model

of ϕ.

Proof. Let Uϕ be a universal automaton recognizing ϕ and r a winning strategy

for player reject in the acceptance game of 〈Y, l : Y → 2AP 〉 (such a strategy exists,

since 〈Y, l : Y → 2AP 〉 2 ϕ is no model of ϕ). Then r is also a winning strategy

for 〈Y ′, l′ : Y ′ → 2AP 〉 (r always picks the same atom and the same direction for

〈Y ′, l′〉 as for 〈Y, l〉, so 〈Y, l〉 is never left). �

Consequently, we can assume w.l.o.g. that the strategies sb′ of all remaining

black-box processes b′ ∈ B r {b} are the constant strategies that constantly enable

all directions.

It is worth noting that the simplification of the quantification step depends on

the choice of the sets Db′ of possible decisions. In Section 2, the set of possible

decisions was fixed to Db′ = 22O
b′

r {∅}, but a different choice like a restriction to

deterministic decisions would not affect the argumentation for non-universal spec-

ifications. For universal specifications, the discussed simplification depends on the

existence of a maximal element in Db′ .

Corollary 1 If ϕ is a universal specification and, for all b 6= b′ ∈ B, Db′ has

a maximal element db′ ∈ Db′ (∀d ∈ Db′ . d ⊆ db′), than 〈‖sb ⊗ sW ⊗ sBr{b} ⊗
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senv‖, dir〉 � ϕ is a model of ϕ for all sBr{b} : (2V )∗ → DBr{b} iff 〈‖sb ⊗ sW ⊗

sBr{b} ⊗ senv‖, dir〉 � ϕ is a model of ϕ for sBr{b} : (2V )∗ → {
⊕

b6=b′∈B db′}. �

For trace languages, it is safe to extend Db′ by a maximal element db′ =
⋃

d∈Db′
d,

since no new traces are introduced by this extension (i.e., each trace in ‖sb ⊗ sW ⊗

sBr{b} ⊗ senv‖ for {sb′ : (2V )∗ → {sb′} | b 6= b′ ∈ B} is a trace in ‖sb ⊗ sW ⊗

sBr{b} ⊗ senv‖ for some {sb′ : (2V )∗ → Db′ | b 6= b′ ∈ B}).

This is, however, not true for general universal specifications: if the set of black-

box processes B = {b, b′} consists of two processes b and b′ and we allow only deter-

ministic implementations of b′, then b can resiliently realize AG (AXp) ∨ (AX¬p).

Obviously, this is no longer true if we add a maximal element to Db′ , which simul-

taneously allows for successors where p holds and for successors where p does not

hold.

6.7. Premise (S)

The correctness of Premise (S) can be checked along the same lines: we check

whether the empty strategy resiliently realizes
∧

b∈B ϕb → ψ. Since Db = {∅} and

Ib = ∅, the automaton Bϕ (with n states and c colors) is an alternating word au-

tomaton over the single-letter alphabet, whose emptiness can be checked in nO(c)

time. Checking Premise (S) is therefore in EXPTIME for CTL and µ-calculus spec-

ifications and in 2EXPTIME for CTL* specifications, respectively, in |
∧

b∈B

ϕb → ψ|.

7. Conclusions

We have introduced a sound and complete proof rule for distributed synthesis,

which reduces the distributed synthesis problem to the simpler task of deciding the

resilient realizability of local process specifications.

Synthesizing resilient implementations generalizes the synthesis of open systems.

Open synthesis assumes an environment with maximal behavior. For resilient im-

plementations, this environment model is extended in two aspects: (1) The other

black-box processes add a reactive component to the environment, and (2) the pro-

cess only has incomplete information about the environment behavior.

Extension (1) turns out to be expensive. Adding the reactive component in-

creases the complexity for CTL specifications from EXPTIME [9] to 2EXPTIME [8],

and for CTL* specifications from 2EXPTIME [9] to 3EXPTIME [8]. As shown in

Section 6, extension (2) has no extra cost. This settles an open question of [8]:

The complexity of synthesizing a single process in a distributed architecture is still

2EXPTIME and 3EXPTIME complete, respectively.

The semi-automatic compositional approach is an efficient alternative to fully

automatic distributed synthesis. Distributed synthesis is only decidable for a re-

stricted class of architectures. For this class of architectures, the complexity is

nonelementary [1, 2, 3].

The situation is similar to the verification of distributed systems, where the

compositional approach is well-established [13]. Our proof rule is a first example of

a compositional synthesis technique. The rule is complete and therefore sufficient to
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decompose any realizable specification. The rule may, however, be less convenient

to use than some compositional verification rules that, for example, apply circular

assume-guarantee reasoning [14]. Defining such rules for the synthesis problem is

an interesting topic of future research.
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Appendix A: Logics

This appendix provides a brief description of the logics used in the paper:

• CTL* and its sublogic ACTL*, LTL, CTL, and ACTL, and

• the modal µ-calculus.

These logics are interpreted over total 2AP -trees where AP denotes the set of

atomic propositions. The considered logics have the finite model property: if they

accept some tree, they accept a regular tree, i.e., a tree which can be constructed by

unraveling a finite transducer (cf. [4, 5, 15]). The finite model property holds both

for general total trees and for full Υ-trees with a predefined set of directions Υ.

1. Branching-Time Logics

Syntax. CTL* distinguishes state and path formulas. Let AP denote the set of

atomic propositions.

• true and false are state formulas.

• p and ¬p and state formulas for all p ∈ AP .

• If ϕ and ψ are state formulas then ϕ ∧ ψ and ϕ ∨ ψ are state formulas.

• If π is a path formula then Aπ and Eπ are state formulas.

• Every state formula is also a path formula.

• If π and τ are path formulas then

– π ∧ τ and π ∨ τ ,

– Xπ, Gπ and Fπ, and

– πUτ and πRτ

are path formulas.

Every state formula is a CTL* formula.

Semantics. A CTL* specification with atomic propositions AP is interpreted

over 2AP -labeled trees. The paths of a total Υ-tree Y ⊆ Υ∗ rooted in a node y ∈ Y

are defined as

paths(y) = {y0, y1, y2, y3, · · · | y0 = y ∧ ∀n ∈ N0∃υ ∈ Υ. yn+1 = yn · υ}.

The paths of Y is the set of all paths rooted in some y ∈ Y :

paths(Y ) =
⋃

{paths(y) | y ∈ Y }.
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A CTL* specification is evaluated along the structure of a specification. For a

state formula ϕ and a total tree 2AP -labeled tree 〈Y, l〉, ‖ϕ‖〈Y,l〉 ⊆ Y denotes the

set of nodes, where ϕ holds. A total tree 2AP -labeled tree 〈Y, l〉 is a model of ϕ iff

ϕ holds on the root ε ∈ Y of Y .

• Atomic propositions are interpreted as follows:

‖false‖〈Y,l〉 = ∅ and ‖true‖〈Y,l〉 = Y ; and

‖p‖〈Y,l〉 = {y ∈ Y | p ∈ l(y)} and ‖¬p‖〈Y,l〉 = {y ∈ Y | p /∈ l(y)}.

• Conjunction and disjunction are interpreted as intersection and union, respec-

tively:

‖ϕ ∧ ψ‖〈Y,l〉 = ‖ϕ‖〈Y,l〉 ∩ ‖ψ‖〈Y,l〉 and ‖ϕ ∨ ψ‖〈Y,l〉 = ‖ϕ‖〈Y,l〉 ∪ ‖ψ‖〈Y,l〉.

• Formulas starting with a universal or existential path quantifier hold true in a

node y, if the respective path formula holds true for some or all paths rooted

in y, respectively:

‖Aϕ‖〈Y,l〉 = {y ∈ Y | ∀π ∈ paths(y). π ∈ ‖ϕ‖paths

〈Y,l〉 , and

‖Eϕ‖〈Y,l〉 = {y ∈ Y | ∃π ∈ paths(y). π ∈ ‖ϕ‖paths

〈Y,l〉 .

For a path formula ϕ and a total tree 2AP -labeled tree 〈Y, l〉, ‖ϕ‖paths

〈Y,l〉 ⊆ paths(Y )

denotes the set of paths of Y where ϕ holds. Path formulas are interpreted as follows:

• For state formulas ϕ, ‖ϕ‖paths

〈Y,l〉 =
⋃
{paths(y) | y ∈ ‖ϕ‖〈Y,l〉}.

• Conjunction and disjunction are interpreted as intersection and union, respec-

tively:

‖ϕ ∧ ψ‖paths

〈Y,l〉 = ‖ϕ‖paths

〈Y,l〉 ∩ ‖ψ‖paths

〈Y,l〉 and ‖ϕ ∨ ψ‖paths

〈Y,l〉 = ‖ϕ‖paths

〈Y,l〉 ∪ ‖ψ‖paths

〈Y,l〉 .

• A path π = y0, y1, y2, y3 · · · satisfies Xϕ (read: next ϕ), if the path

y1, y2, y3 · · · obtained by deleting the first letter of π satisfies ϕ:

‖Xϕ‖paths

〈Y,l〉 = {y0, y1, y2, y3 · · · ∈ paths(Y ) | y1, y2, y3 · · · ∈ ‖ϕ‖paths

〈Y,l〉 .

• A path π = y0, y1, y2, y3 · · · satisfies Gϕ (read: globally ϕ), if every path

yn, yn+1, yn+2, yn+3 · · · obtained by deleting some (possibly empty) initial se-

quence y0, y1, y2, y3 · · · yn−1 of π satisfies ϕ:

‖Gϕ‖paths

〈Y,l〉 = {y0, y1, y2 · · · ∈ paths(Y ) | ∀n ∈ N0. yn, yn+1, yn+2 · · · ∈

‖ϕ‖paths

〈Y,l〉 .

• A path π = y0, y1, y2, y3 · · · satisfies Fϕ (read: finally ϕ), if some path

yn, yn+1, yn+2, yn+3 · · · obtained by deleting some (possibly empty) initial se-

quence y0, y1, y2, y3 · · · yn−1 of π satisfies ϕ:

‖Fϕ‖paths

〈Y,l〉 = {y0, y1, y2 · · · ∈ paths(Y ) | ∃n ∈ N0. yn, yn+1, yn+2 · · · ∈ ‖ϕ‖paths

〈Y,l〉 .
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• A path π = y0, y1, y2, y3 · · · satisfies ϕUψ (read: ϕ until ψ), if there is a

natural number n ∈ N0 such that

(1) the path yn, yn+1, yn+2, yn+3 · · · obtained by deleting the initial sequence

y0, y1, y2, y3 · · · yn−1 of π satisfies ϕ, and

(2) for all i ≤ n, the path yi, yi+1, yi+2, yi+3 · · · obtained by deleting the initial

sequence y0, y1, y2, y3 · · · yi−1 of π satisfies ψ:

‖ϕUψ‖paths

〈Y,l〉 = {y0, y1, y2, y3 · · · ∈ paths(Y ) |

∃n ∈ N0. (yn, yn+1, yn+2 · · · ∈ ‖ϕ‖paths

〈Y,l〉 ∧ ∀i ≤ n. yi, yi+1, yi+2 · · · ∈ ‖ψ‖paths

〈Y,l〉 )}.

• A path π = y0, y1, y2, y3 · · · satisfies ϕRψ (read: ϕ releases ψ), if for every

natural number n ∈ N0

(1) the path yn, yn+1, yn+2, yn+3 · · · obtained by deleting the initial sequence

y0, y1, y2, y3 · · · yi−1 of π satisfies ϕ, or

(2) there is an i ≤ n, such that the path yi, yi+1, yi+2, yi+3 · · · obtained by

deleting the initial sequence y0, y1, y2, y3 · · · yn−1 of π satisfies ψ:

‖ϕRψ‖paths

〈Y,l〉 = {y0, y1, y2, y3 · · · ∈ paths(Y ) |

∀n ∈ N0. (yn, yn+1, yn+2 · · · ∈ ‖ψ‖paths

〈Y,l〉 ∨ ∃i ≤ n. yi, yi+1, yi+2 · · · ∈ ‖ϕ‖paths

〈Y,l〉 )}.

Sublogics CTL is the sublogic of CTL* where each path operator (X, G, F, U and

R) is directly preceded by a path quantifier (A or E). When considering universal

specifications, we also refer to the sublogics ACTL / ACTL* is the syntactical

sublogic of CTL / CTL*, where no existential path quantifiers (E) appear. LTL is

the syntactical sublogic of ACTL* where (universal) path quantifier appear only as

the first sign of a specification. Usually this quantification is left implicit.

2. µ-Calculus

The µ-calculus is a modal fixed-point logic which is (like CTL*) interpreted over

total 2AP -labeled trees. It is more expressive than CTL and CTL*.

µ-Calculus Syntax. Let AP and B denote disjoint finite sets of atomic propo-

sitions and bound variables, respectively. Then,

• true and false are µ-calculus formulas.

• p, ¬p and x are µ-calculus formulas for all p ∈ AP and x ∈ B.

• If ϕ and ψ are µ-calculus formulas then ϕ∧ψ and ϕ∨ψ are µ-calculus formulas.

• If ϕ is an µ-calculus formula then �ϕ and ♦ϕ are µ-calculus formulas.

• If x ∈ B and ϕ is an µ-calculus formula where x occurs only free, then µx.ϕ

and νx.ϕ are µ-calculus formulas.
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µ-Calculus Semantics. A µ-calculus formula ϕ with atomic propositions AP

is interpreted over a total 2AP -labeled tree 〈Y, l〉. ‖ϕ‖〈Y,l〉 ⊆ Y denotes the nodes

of Y where ϕ holds. A total 2AP -labeled tree 〈Y, l〉 is a model of a specification ϕ

with atomic propositions AP iff ϕ holds in its root (ε ∈ ‖ϕ‖〈Y,l〉).

• Atomic propositions are interpreted as follows:

‖false‖〈Y,l〉 = ∅ and ‖true‖〈Y,l〉 = Y ,

‖p‖〈Y,l〉 = {y ∈ Y | p ∈ l(y)} and ‖¬p‖〈Y,l〉 = {y ∈ Y | p /∈ l(y)}.

• Conjunction and disjunction are interpreted as intersection and union, respec-

tively:

‖ϕ ∧ ψ‖〈Y,l〉 = ‖ϕ‖〈Y,l〉 ∩ ‖ψ‖〈Y,l〉 and ‖ϕ ∨ ψ‖〈Y,l〉 = ‖ϕ‖〈Y,l〉 ∪ ‖ψ‖〈Y,l〉.

• A node y ∈ Y is in ‖�ϕ‖〈Y,l〉 iff ϕ holds in all successor states:

‖�ϕ‖〈Y,l〉 = {y ∈ Y | ∀υ ∈ Υ. y · υ ∈ Y → y · υ ∈ ‖ϕ‖〈Y,l〉}.

• A node y ∈ Y is in ‖♦ϕ‖〈Y,l〉 iff ϕ holds in some successor state:

‖♦ϕ‖〈Y,l〉 = {y ∈ Y | ∃υ ∈ Υ. y · υ ∈ ‖ϕ‖〈Y,l〉}.

• The least and greatest fixed points are interpreted as follows:

‖µx.ϕ‖〈Y,l〉 =
⋂
{Yx ⊆ Y | ‖ϕ‖〈Y,l

Yx
x 〉 ⊆ Yx}, and

‖νx.ϕ‖〈Y,l〉 =
⋃
{Yx ⊆ Y | ‖ϕ‖〈Y,l

Yx
x 〉 ⊇ Yx},

where 〈Y, lYx
x 〉 denotes the tree with the modified labeling function lYx

x : Y →

2AP∪{x} with

– lYx
x (y) ∩AP = l(y) and

– x ∈ lYx
x (y) ⇔ y ∈ Yx ⊆ Y .

Since the bound variable x occurs only positively in ϕ, ‖ϕ‖〈Y,l
Yx
x 〉 is monotone

in Yx and the fixed points are well-defined.
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