
LTL Path Checking is Efficiently Parallelizable?

Lars Kuhtz and Bernd Finkbeiner

Universität des Saarlandes
66123 Saarbrücken, Germany

{kuhtz|finkbeiner}@cs.uni-sb.de

Abstract. We present an AC1(logDCFL) algorithm for checking LTL
formulas over finite paths, thus establishing that the problem can be
efficiently parallelized. Our construction provides a foundation for the
parallelization of various applications in monitoring, testing, and verifi-
cation.

Linear-time temporal logic (LTL) is the standard specification language to
describe properties of reactive computation paths. The problem of checking
whether a given finite path satisfies an LTL formula plays a key role in moni-
toring and runtime verification [12,10,6,1,4], where individual paths are checked
either online, during the execution of the system, or offline, for example based on
an error report. Similarly, path checking occurs in testing [2] and in several static
verification techniques, notably in Monte-Carlo-based probabilistic verification,
where large numbers of randomly generated sample paths are analyzed [22].

Somewhat surprisingly, given the widespread use of LTL, the complexity of
the path checking problem is still open [18]. The established upper bound is P:
The algorithms in the literature traverse the path sequentially (cf. [10,18,12]);
by going backwards from the end of the path, one can ensure that, in each step,
the value of each subformula is updated in constant time, which results in bi-
linear running time. The only known lower bound is NC1 [8], the complexity of
evaluating Boolean expressions. The large gap between the bounds is especially
unsatisfying in light of the recent trend to implement path checking algorithms
in hardware, which is inherently parallel. For example, the IEEE standard tem-
poral logic PSL [13], an extension of LTL, has become part of the hardware
description language VHDL, and several tools [6,4] are available to synthesize
hardware-based monitors from assertions written in PSL. Can we improve over
the sequential approach by evaluating entire blocks of path positions in parallel?

In this paper, we show that LTL path checking can indeed be parallelized
efficiently. Our approach is inspired by work in the related area of evaluating
monotone Boolean circuits [11,9,15,3,17,5]. Rather than sequentially traversing
the path, we consider the circuit that results from unrolling the formula over the
path. Figure 1 shows such a circuit for the formula ((aU b) U (cU d)) U e and a
path of length 5.
? This work was partly supported by the German Research Foundation (DFG) as

part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

e4

d4 b4d4 b4

e4
∨

∧

e3

∨
∧

∨
∧

∨
∧

d3

c3

b3

a3

d3

c3

b3

a3∨
∧

∨
∧

∨
∧

e3

∨
∧

∨
∧

e2

∨
∧

∨
∧

∨
∧

d2

c2

b2

a2

d2

c2

b2

a2∨
∧

∨
∧

∨
∧

e2

∨
∧

∨
∧

e1

∨
∧

∨
∧

∨
∧

d1

c1

b1

a1

d1

c1

b1

a1∨
∧

∨
∧

∨
∧

e1

∨
∧

∨
∧

e0

∨
∧

∨
∧

∨
∧

d0

c0

b0

a0

d0

c0

b0

a0∨
∧

∨
∧

∨
∧

e0

∨
∧

Fig. 1. Circuit resulting from unrolling the LTL formula ((aU b) U (cU d)) U e over a
path ρ of length 5. We denote the value of an atomic proposition p at a path position
i = 0, . . . , 4 by pi. The graph of the circuit has no planar embedding.

Yang [21] and, independently, Delcher and Kosaraju [7] have shown that
monotone Boolean circuits can be evaluated efficiently in parallel if the graph
of the circuit has a planar embedding. Unfortunately, this condition is already
violated in the simple example of Figure 1. Individually, however, each operator
results in a planar circuit: for example, d U e results in e0∨(d0∧(e1∨(d1∧. . .) · · ·).
The complete formula thus defines a tree of planar circuits.

Our path checking algorithm works on this tree of circuits. We introduce
a contraction technique that combines a parent node and its children into a
single planar circuit. Simple paths in the tree immediately collapse into a planar
circuit; the remaining binary tree is contracted incrementally, until only a single
planar circuit remains. The key insight of our solution is that the contraction
can be carried out as soon as one of the children has been evaluated. Because
no evaluated child has to wait for the evaluation of its sibling before it can be
contracted with its parent, we can contract a fixed portion of the nodes in every
sequential step, and therefore terminate in at most a logarithmic number of
steps.

The path checking problem can, hence, be parallelized efficiently. In addi-
tion to planarity, our construction maintains some further technical invariants,
in particular that the circuits have all input gates on the outer face. Analyz-
ing this construction, we obtain the result that the path checking problem is
in AC1(logDCFL).

1 Preliminaries

Linear-Time Temporal Logic. We consider specifications in linear-time tem-
poral logic (LTL). We apply the usual finite-path semantics with a weak and a
strong version of the Next-Operator [16]. Let P be a set of atomic propositions.
The formulas of LTL are defined inductively as follows: For each atomic propo-
sition p ∈ P p and ¬p are LTL formulas. If φ and ψ are LTL formulas, then so
are

φ ∧ ψ, φ ∨ ψ, X∃ φ, X∀ φ, φ U ψ, and φRψ .

LTL formulas are evaluated over computation paths. A path ρ = ρ0, . . . , ρn−1

is a sequence of states where each state ρi for i = 0, . . . , n − 1 is a valuation
ρi ∈ 2P of the atomic propositions. The length of ρ is n and is denoted by ‖ρ‖.
The suffix of ρ at position i, 0 ≤ i < n, is denoted by ρi. The empty path is
denoted by ε.

Given an LTL formula φ, a nonempty path ρ 6= ε satisfies φ, denoted by
ρ |= φ, if one of the following holds:

– φ ∈ P and φ ∈ ρ0,
– φ = ¬p and p 6∈ ρ0,
– φ = φl ∧ φr and ρ |= φl and ρ |= φr,
– φ = φl ∨ φr and ρ |= φl or ρ |= φr,
– φ = X∃ψ and ρ1 |= ψ and ρ1 6= ε,
– φ = X∀ψ and ρ1 |= ψ or ρ1 = ε,
– φ = φl Uφr and ∃0 ≤ i < ‖ρ‖ s.t. ρi |= φr and ∀0 ≤ j < i, ρj |= φl, or
– φ = φl Rφr and ∀0 ≤ i < ‖ρ‖, ρi |= φr or ∃0 ≤ j < i s.t. ρj |= φl.

The semantics of LTL implies the expansion laws, which relate the satisfaction
of a temporal formula in some position of the path to the satisfaction of the
formula in the next position and the satisfaction of its subformulas in the present
position:

φl Uφr ≡ φr ∨ (φl ∧X∃ (φl Uφr)); φl Rφr ≡ φr ∧ (φl ∨X∀ (φl Rφr)) .

We are interested in determining if an LTL formula is satisfied by a given
path. This is the path checking problem.

Definition 1 (Path Checking Problem). The path checking problem for LTL
is to decide, for an LTL formula φ and a nonempty path ρ, whether ρ |= φ.

Complexity classes within P. We assume familiarity with the standard com-
plexity classes within P. L is the class of problems that can be decided by a
logspace restricted deterministic Turing machine. logDCFL is the class of prob-
lems that can be decided by a logspace and polynomial time restricted determin-
istic Turing machine that is equipped with a stack. ACi, i ∈ N, denotes the class
of problems decidable by polynomial size unbounded fan-in Boolean circuits of
depth logi, where the depth of a circuit is the length of a longest directed path

in the circuit. AC is defined as
⋃
i∈N ACi. Throughout the paper, all circuits are

assumed to be uniform in the sense that the circuit for inputs of length n can be
generated by a deterministic Turing machine using space log(n). It holds that

L ⊆ logDCFL ⊆ AC1 ⊆ AC2 ⊆ · · · ⊆ AC ⊆ P .

Given a problem P and a complexity class C, P is AC1 Turing reducible to
C (denoted as P ∈ AC1(C)) if there is a family of AC1 circuits with additional
unbounded fan-in C-oracle gates that decides P . It holds that

AC1 ⊆ AC1(logDCFL) ⊆ AC2 .

Monotone Boolean circuits. A monotone Boolean circuit 〈Γ, γ〉 consists of
a set Γ of gates and a gate labeling γ. The gate labeling labels each gate either
with a Boolean value or with a tuple 〈and , left , right〉, 〈or , left , right〉, 〈id , suc〉,
where left , right , and suc are gates.

A gate that is labeled with a Boolean value is called a constant gate. For a
non-constant gate a labeled with 〈id , b〉, we say that a directly depends on b,
denoted by a ·� b. Likewise, for a gate a labeled with 〈and , b, c〉 or 〈or , b, c〉, a
directly depends on b and c. The dependence relation is the transitive closure of
·�. A gate on which no other gate depends is called a sink gate. A circuit must
not contain any cyclic dependencies.

For a set of gates G, const(G) denotes the set of all constant gates in G. If
G = const(G), we call G constant.

In the following, we assume that all circuits are monotone Boolean circuits.
We omit the labeling whenever it is clear from the context and identify the
circuit with its set of gates. We will often analyze subcircuits which are only
well-defined in the context of the full circuit. We call such subcircuits partial
circuits: Given a circuit C = 〈Γ, γ〉, a partial circuit is a circuit D = 〈∆, δ〉 with
∆ ⊆ Γ and δ = γ|∆. The gates in {g ∈ Γ \ ∆ | ∃h ∈ ∆.h ·� g} are called the
variable gates of D. For a variable gate g of D, we define δ(g) = ⊥. If C is clear
from the context, we refer to D as ∆.

Circuit evaluation. The evaluation of a circuit 〈Γ, γ〉 is the (unique) circuit
〈Γ, γ′〉 where for each gate g ∈ Γ the following holds:

– γ′(g) = 0 iff γ(g) = 〈and, l, r〉 and γ′(l) = 0 or γ′(r) = 0,
– γ′(g) = 1 iff γ(g) = 〈and, l, r〉 and γ′(l) = 1 and γ′(r) = 1,
– γ′(g) = 〈id, l〉 iff γ(g) = 〈and, l, r〉 and γ′(l) 6∈ {0, 1} and γ′(r) = 1,
– γ′(g) = 〈id, r〉 iff γ(g) = 〈and, l, r〉 and γ′(r) 6∈ {0, 1} and γ′(l) = 1,
– γ′(g) = 0 iff γ(g) = 〈or, l, r〉 and γ′(l) = 0 and γ′(r) = 0,
– γ′(g) = 1 iff γ(g) = 〈or, l, r〉 and γ′(l) = 1 or γ′(r) = 1,
– γ′(g) = 〈id, l〉 iff γ(g) = 〈or, l, r〉 and γ′(l) 6∈ {0, 1} and γ′(r) = 0,
– γ′(g) = 〈id, r〉 iff γ(g) = 〈or, l, r〉 and γ′(r) 6∈ {0, 1} and γ′(l) = 0,
– γ′(g) = γ′(s) iff γ(g) = 〈id, s〉 and γ′(s) ∈ {0, 1}, and
– γ′(g) = γ(g) otherwise.

A circuit is evaluated if all constant gates are sink gates. In an evaluated
circuit, all gates that do not depend on variable gates are constant. Hence, a
full circuit evaluates to a constant circuit; for a partial circuit, a subset of the
gates is relabeled: some and -/or -/id -gates are labeled as constant or id -gates.
In the construction presented in this paper, we evaluate circuits in several stages
by evaluating partial circuits. In this process, the evaluation of a partial circuit
includes substituting the partial circuit by its evaluation within the full circuit.
Since the evaluation of a partial circuit is a local operation, disjoint partial
circuits can be evaluated in parallel.

The problem of evaluating monotone planar circuits has been studied exten-
sively in the literature. Our construction is based on the evaluation of one-input-
face planar circuits:

Given a circuit G = 〈Γ, γ〉 with variable gates X, the graph gr(G) of G is
the directed graph 〈V,E〉, where V = Γ ∪X and E = {〈a, b〉 ∈ V × V | a ·� b}.
A circuit C is planar if there exists an planar embedding of the graph of C. The
input gates of C are all constant and all variable gates of C. A planar partial
circuit is one-input-face if there is a planar embedding such that all input gates
are located on the outer face.

In the following, we abbreviate evaluated circuit as EV and one-input-face
planar as OIF, using the terms EV and OIF for the circuits as well as for the
corresponding property of a circuit. Note that an EV circuit with all variables
on the outer face is OIF. The evaluation of full OIF circuits can be parallelized
efficiently. We make use of a result by Chakraborty and Datta [5]:

Theorem 1 (Chakraborty and Datta 2006). The problem of evaluating a
full OIF circuit is in logDCFL.

Using standard techniques for partial circuits [15], the theorem generalizes
from full to partial circuits:

Corollary 1. The problem of evaluating an OIF circuit is in logDCFL.

Proof. We first assign the Boolean constant 1 to all variable gates. Each gate
that evaluates to 0 is turned into a 0 constant gate. Next, we assign 0 to all
variable gates. Each gate that evaluates to 1 is turned into a constant gate with
value 1. Since the values of the remaining gates depend on the variables, they
are simply copied. If one of the latter gates depends on a constant gate, the
dependency is removed by changing such a gate into an id -gate. ut

2 From LTL to Circuits

In this section, we provide an L many-one reduction from the path checking
problem of LTL to the problem of evaluating monotone Boolean circuits.

Given an LTL formula φ and a path ρ, we define a circuit C(φ, ρ) = 〈Γ, γ〉
such that ρ |= φ if and only if a distinguished result gate c0,0 is mapped to 1 in
the evaluation of C(φ, ρ). The circuit is constructed by unrolling φ on ρ into a
DAG according to the expansion laws.

Definition 2. Given an LTL formula φ and a path ρ, the circuit C(φ, ρ) =
〈Γ, γ〉 is defined as follows. Let φ0, . . . , φm−1 (with φ0 = φ) be the subformulas
of φ and let ρ = ρ0, . . . , ρn−1. The set of gates Γ =

⋃
i=0,...,m−1
j=0,...,n−1

Ci,j contains

for each subformula φi and each path position 0 ≤ j < n the set Ci,j of gates
defined below:

– Ci,j = {ci,j} if j = n− 1 or if φi is either an atomic proposition, a negated
atomic proposition, a conjunction, a disjunction, an X∃-formula, or an X∀-
formula, and

– Ci,j = {ci,j , c′i,j} if 0 ≤ j < n − 1 and φi is either an U-formula or an
R-formula,

where ci,j , c′i,j , i = 0, . . . ,m− 1, j = 0, . . . , n− 1 are distinct gates. The gates are
labeled as follows. For 0 ≤ j < n− 1:

– γ(ci,j) =
〈
or , cr,j , c′i,j

〉
and

γ(c′i,j) = 〈and , cl,j , ci,j+1〉 for φi = φl Uφr,
– γ(ci,j) =

〈
and , cr,j , c′i,j

〉
and

γ(c′i,j) = 〈or , cl,j , ci,j+1〉 for φi = φl Rφr, and
– γ(ci,j) = 〈id , cl,j+1〉 for φi = X∃φl or φi = X∀φl;

for j = n− 1:

– γ(ci,j) = 〈id, cr,j〉 for φi = φl Uφr or φi = φl Rφr,
– γ(ci,j) = 0 for φi = X∃φl, and
– γ(ci,j) = 1 for φi = X∀φl;

for 0 ≤ j < n:

– γ(ci,j) = 1 for either φi = p and p ∈ ρj or φi = ¬p and p 6∈ ρj, p ∈ P ,
– γ(ci,j) = 0 for either φi = p and p 6∈ ρj or φi = ¬p and p ∈ ρj, p ∈ P ,
– γ(ci,j) = 〈and , cl,j , cr,j〉 for φi = φl ∧ φr, and
– γ(ci,j) = 〈or , cl,j , cr,j〉 for φi = φl ∨ φr.

Lemma 1. The size of C(φ, ρ) is polynomial in ‖ρ‖ and ‖φ‖. Moreover, in the
evaluation of C(φ, ρ) the gate c0,0 is labeled with the constant 1 if and only if
ρ |= φ. ut

In the remainder of the paper, we fix the formula φ and the path ρ, and refer
to the circuit C(φ, ρ) as C. We now provide an embedding of C.

The embedding EmbC : gr(C) → 2R×R is defined by EmbC(ci,j) =
{〈j,depth(φi)〉} and EmbC(c′i,j) = {〈j + 0.5,depth(φi)〉}, where depth(φi) de-
notes the nesting depth of φi in φ. An edge of gr(C) is embedded to the line
segment between the points onto which the incident nodes are embedded.

In general, EmbC is not planar. However, for each subformula φi, i =
1, . . .m − 1, we can identify a planar subcircuit µi =

⋃
j=0,...,n−1 Ci,j , which

we call the module of φi. Corresponding to the formula structure, the modules
form a module tree M = 〈M,E〉, where M = {µi | i = 0, . . . ,m − 1} and

φ = (a|{z}
φ3

U (b|{z}
φ7

U c|{z}
φ8

)

| {z }
φ4

)

| {z }
φ1

U (d|{z}
φ5

U e|{z}
φ6

)

| {z }
φ2

| {z }
φ0

µ0

µ1

µ3 µ4

µ7 µ8

µ2

µ5 µ6

Fig. 2. A schematic illustration of the circuit and the module tree for a formula φ and
a path of length six.

E = {〈µi, µj〉 | ((φi = φk ∧ φl or φi = φk ∨ φl or φi = φk Uφl or φi = φk Rφl)
and (j = l or j = k)) or φi = X∃φj or φi = X∀φj}. Note that the modules are
pairwise disjoint. A schematic illustration of an example circuit and the module
tree is shown in Figure 2.

Figure 3 shows the partial circuit that corresponds to a single branch of the
module tree from the example of Figure 2.

Our evaluation algorithm, which will be presented in the following section,
uses the fast evaluation of OIF circuits from Corollary 1 to evaluate subcircuits
of C. The following lemma establishes the connection between the embedding
EmbC and the module treeM that will allow for the application of Corollary 1
to increasingly larger subtrees of M.

Lemma 2. For a directed path π ⊆M in the tree M, the circuit P =
⋃
m∈πm

is planar. If P is EV and all variable gates in P belong to the terminating module
of π then P is OIF. This property is stable under evaluation of partial circuits
of C.

Proof. The first sentence follows directly from the definition of EmbC . The sec-
ond sentence follows from the definition of EmbC and the observation that an
EV circuit with all variables on the outer face is OIF. For the proof of the third
sentence, note that evaluation does not add any edge to gr(C). If the graph of
P was planar (OIF) before the evaluation, it is planar (OIF) after the evaluation
of any partial circuit of C. ut

{c0,0} 〈c′0,0〉

c2,0

{c0,1} 〈c′0,1〉

c2,1

{c0,2} 〈c′0,2〉

c2,2

{c0,3} 〈c′0,3〉

c2,3

{c0,4} 〈c′0,4〉

c2,4

[c0,5]

c2,5

{c1,0} 〈c′1,0〉

c3,0

{c1,1} 〈c′1,1〉

c3,1

{c1,2} 〈c′1,2〉

c3,2

{c1,3} 〈c′1,3〉

c3,3

{c1,4} 〈c′1,4〉

c3,4

[c1,5]

{c4,0} 〈c′4,0〉

c7,0

{c4,1} 〈c′4,1〉

c7,1

{c4,2} 〈c′4,2〉

c7,2

{c4,3} 〈c′4,3〉

c7,3

{c4,4} 〈c′4,4〉

c7,4

[c4,5]

c8,0 c8,1 c8,2 c8,3 c8,4 c8,5

Fig. 3. The partial circuit for the modules µ0, µ1, µ4, µ8 from the example in Figure 2.
The circuit is planar because the modules form a directed path in M. Braces denote or -
gates, angle brackets denote and-gates, and square brackets denote id-gates. Variable
gates are shown in gray. For constant gates the labeling is omitted.

3 The Evaluation Algorithm

We now present our circuit evaluation algorithm. The problem of evaluating the
circuit C from Section 2 is AC1 Turing reduced to the evaluation problem for OIF
circuits. Our algorithm repeatedly evaluates subcircuits of C. In the following,
we always refer to the current circuit as C.

The central data structure of our algorithm is the evaluation tree M', which
is the quotient of M with respect to an equivalence '. As the algorithm pro-
gresses, more and more of the modules are collected into single nodes of M'.

We define ' as an equivalence relation on the modules of M such that the
equivalence classes of ' are full subtrees, i.e., for each equivalence class τ and
each node t ∈ τ , either each child or no child of t in M is in τ . For a node ν
of M' we denote the circuit

⋃
m∈νm by cir(ν). We call the nodes of M' the

enodes. An enode ν is called constant if cir(ν) is constant.
Initially, each simple path in M forms a class. Starting from the leaves of

M', our algorithm then evaluates the circuits corresponding to adjacent enodes
and updates ' by collapsing the equivalence classes.

Throughout this process, we maintain the invariant that, for every enode,
the corresponding partial circuit is OIF. This allows us to apply the evaluation
algorithm from Corollary 1 on the partial circuit and, hence, perform the con-
traction within logDCFL. The process ends when M' has been contracted into
a single class. At that point, C is fully evaluated.

To ensure the invariant, we maintain that the equivalence relation is well-
formed, as specified in the following definition:

Definition 3. The equivalence relation ' is well-formed if for each enode α of
M' it holds that

– cir(α) is EV,
– α is a full subtree of M, and

– α is either a leaf or there is a single module bo(α) ∈ α such that there are
modules b, c ∈M with b 6= c, b, c /∈ α, and 〈a, b〉 ∈ E and 〈a, c〉 ∈ E.

Together with Lemma 2, well-formedness ensures that for each enode, the
corresponding circuit is OIF.

Lemma 3. Let ' be well-formed and let α be an enode of M'. It holds that

– M' is a full binary tree,
– the circuit cir(α) is OIF, and
– if α is a leaf in M' then α is constant.

Proof. Since enodes are full subtrees ofM, the modules b and c from Definition 3
belong to different enodes. Each enode is therefore either a leaf or has exactly
two child enodes. Hence, M' is a full binary tree. The uniqueness of bo(α)
implies that all variable gates of cir(α) belong to bo(α). Since cir(α) is EV, all
but the ancestor enodes of bo(α) are constant. Hence, all non-constant modules
in α are on the directed path from the root of α to bo(α). Since cir(α) is EV, we
conclude, by Lemma 2, that cir(α) is OIF. If α is a leaf in M', then cir(α) has
no variable gates. Then α is constant, because cir(α) is EV. ut

Initialization. Initially, ' is set to be the reflexive, symmetric, and transitive
closure of '′, where a '′ b iff (a, b) ∈ E and there is no c different from b s.t.
(a, c) ∈ E.

X∃ and X∀ operators in the LTL formula give rise to modules with only a
single child inM. The initialization of ' via '′ causes the corresponding simple
paths inM to collapse, such thatM' is a full binary tree. Note that all classes
of ' are subtrees of M.

To ensure well-formedness, we evaluate (in parallel) all non-singleton enodes
that contain constants. These are exactly the enodes that correspond to modules
originating from X∃ and X∀ operators stacked upon a single constant module.
From the definition of EmbC it is clear that those nodes are OIF and thus the
evaluation can be performed in parallel within logDCFL, by using Corollary 1.

Lemma 4. After the initial evaluation, ' is well-formed. ut

Tree contraction. Each contraction step combines a leaf enode of M' with
its parent and its sibling into a single enode. Well-formedness is preserved by
evaluating the circuit of the resulting enode.

Lemma 5. LetM' be well-formed. Given an enode α ofM' with child enodes
β and γ. Let β be a leaf enode. The evaluation of cir(α∪β∪γ) can be performed
in logDCFL. Updating ' such that α ' β ' γ preserves well-formedness of M'.

Proof. Let A = α ∪ β ∪ γ. cir(α) is OIF and β is constant. Thus the circuit
cir(α∪β∪const(γ)) is OIF and can be evaluated in logDCFL. After the evaluation,
since cir(γ) is EV, all constants in cir(A) are sinks, and, hence, cir(A) is EV.M'

is a full binary tree. Thus the enodes α, β, γ together form a full subtree inM'.
M' is the quotient ofM, and α, β, and γ are each full subtrees ofM. It follows
that A is a full subtree in M as well. In the subtree A of M, the module bo(α)
is an internal node. Since β is a leaf, bo(β) does not exist. If γ is a leaf, A also
becomes a leaf. Otherwise, bo(A) = bo(γ). ut

Since, as we show in the following lemma, we can a contract a constant
portion of the enodes in parallel, the time consumed for the full contraction is
logarithmic in the size of M.

Lemma 6. The circuit C(φ, ρ) can be evaluated within AC1(logDCFL).

Proof. First, number the enodes ofM' that have a child that is a leaf from left
to right (using depth first search on the tree, starting with 1) in L. Then, on every
odd-numbered enode, apply Lemma 5. Since the involved circuits are disjoint
for all odd-numbered enodes, all applications of Lemma 5 can be performed in
parallel. This eliminates at least

⌈
(‖M'‖+1)/2

2

⌉
leaves from the tree resulting

in a tree M′' with ‖M′'‖ ≤ b3/4‖M'‖c. Iterating this procedure leads in
O(log ‖M'‖) steps to a single leaf enode. At this point, C(φ, ρ) is fully evaluated.
The whole procedure can be implemented as an AC1 circuit with logDCFL oracle
gates.

The reduction circuit operates in stages. Each stage is structured as follows:
an L oracle gate that takes the currentM' as input identifies the sets of enodes
to be contracted on the current stage and feeds these into logDCFL oracle gates
that implement Lemma 5. The remaining enodes are just copied. The output
of the stage is the updated version of M'. Since L ⊆ logDCFL, each stage is of
constant depth. A logarithmic number of sequential stages is stacked upon an
initialization step that consists of a single L oracle gate that initializesM' from
φ and ρ and parallel logDCFL oracle gates that evaluate enodes that initially are
simple paths in M. ut

Applying the evaluation algorithm to the circuit defined in Definition 2, we
obtain an AC1(logDCFL) solution to the path checking problem.

Theorem 2. The LTL path checking problem is in AC1(logDCFL).

Proof. Given an LTL formula φ and a path ρ. In L build the circuit C(φ, ρ).
Apply Lemma 6. The value of c0,0 is the result. ut

4 Conclusions

We have presented a positive answer to the question whether LTL can be checked
efficiently in parallel on finite paths. Our construction can, for example, be used
in hardware-based monitors to reduce the time needed to evaluate a block of
path positions from linear to just logarithmic.

The LTL path checking problem is closely related to the membership prob-
lems for the various types of regular expressions: the membership problem is

in NL for regular expressions [14], in logCFL for semi-extended regular expres-
sions [20], and P-complete for star-free regular expressions and extended regular
expressions [19]. Of particular interest is the comparison to the star-free reg-
ular expressions, since they have the same expressive power as LTL on finite
paths [16]. With AC1(logDCFL) vs. P, our result demonstrates a computational
advantage for LTL.

Tight bounds for the complexity of LTL path checking remain a challenging
open problem. There is some hope to further reduce the upper bound towards
NC1, the currently known lower bound, because our construction relies on the
algorithm by Chakraborty and Datta (cf. Theorem 1) for evaluating monotone
Boolean planar circuits with all constant gates on the outer face. The circuits
that appear in our construction actually exhibit much more structure. However,
we are not aware of any algorithm that takes advantage of that and performs
better than logDCFL.

References

1. Roy Armoni, Dimitry Korchemny, Andreas Tiemeyer, Moshe Y. Vardi, and Yael
Zbar. Deterministic dynamic monitors for linear-time assertions. In Proc. Work-
shop on Formal Approaches to Testing and Runtime Verification 2006, volume
4262 of Lecture Notes in Computer Science. Springer, 2006.

2. Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz Khur-
shid, Mike Lowry, Corina Pasareanu, Grigore Rosu, Koushik Sen, Willem Visser,
and Rich Washington. Combining test case generation and runtime verification.
Theoretical Computer Science, 336(2-3):209 – 234, 2005.

3. David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum. On
monotone planar circuits. In Proceedings of the 14th Annual IEEE Conference
on Computational Complexity (COCO ’99), pages 24–31, Washington, DC, USA,
1999. IEEE Computer Society.

4. Marc Boule and Zeljko Zilic. Automata-based assertion-checker synthesis of PSL
properties. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 13(1), 2008.

5. Tanmoy Chakraborty and Samir Datta. One-input-face MPCVP is hard for L,
but in LogDCFL. In S. Arun-Kumar and Naveen Garg, editors, Proc. FSTTCS,
volume 4337 of Lecture Notes in Computer Science, pages 57–68. Springer, 2006.

6. Anat Dahan, Daniel Geist, Leonid Gluhovsky, Dmitry Pidan, Gil Shapir, Yaron
Wolfsthal, Lyes Benalycherif, Romain Kamdem, and Younes Lahbib. Combining
system level modeling with assertion based verification. In ISQED ’05: Proceedings
of the 6th International Symposium on Quality of Electronic Design, pages 310–
315, Washington, DC, USA, 2005. IEEE Computer Society.

7. Arthur L. Delcher and S. Rao Kosaraju. An NC algorithm for evaluating monotone
planar circuits. SIAM J. Comput., 24(2):369–375, 1995.

8. S. Demri and Ph. Schnoebelen. The complexity of propositional linear temporal
logics in simple cases. Inf. Comput., 174(1):84–103, 2002.

9. Patrick W. Dymond and Stephen A. Cook. Complexity theory of parallel time and
hardware. Information and Computation, 80(3):205–226, 1989.

10. Bernd Finkbeiner and Henny B. Sipma. Checking finite traces using alternating
automata. Formal Methods in System Design, 24:101–127, 2004.

11. Leslie M. Goldschlager. A space efficient algorithm for the monotone planar circuit
value problem. Inf. Process. Lett., 10(1):25–27, 1980.

12. K. Havelund and G. Roşu. Efficient monitoring of safety properties. Software Tools
for Technology Transfer, 2004.

13. IEEE Std 1850-2007. Standard for Property Specification Language (PSL). IEEE,
New York, 2007.

14. Tao Jiang and Bala Ravikumar. A note on the space complexity of some decision
problems for finite automata. Information Processing Letters, 40:25–31, 1991.

15. S. Rao Kosaraju. On parallel evaluation of classes of circuits. In Kesav V. Nori
and C. E. Veni Madhavan, editors, Proc. FSTTCS, volume 472 of Lecture Notes
in Computer Science, pages 232–237. Springer, 1990.

16. Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past. In
Proceedings of the Conference on Logic of Programs, pages 196–218, London, UK,
1985. Springer.

17. Nutan Limaye, Meena Mahajan, and Jayalal M. N. Sarma. Evaluating monotone
circuits on cylinders, planes and tori. In Bruno Durand and Wolfgang Thomas,
editors, Proc. STACS, volume 3884 of Lecture Notes in Computer Science, pages
660–671. Springer, 2006.

18. Nicolas Markey and Philippe Schnoebelen. Model checking a path (preliminary
report). In Proc. CONCUR, volume 2761 of Lecture Notes in Computer Science,
pages 251–265. Springer, 2003.

19. Holger Petersen. Decision problems for generalized regular expressions. In Proc.
2nd International Workshop on Descriptional Complexity of Automata, Grammars
and Related Structures, London (Ontario), pages 22–29, 2000.

20. Holger Petersen. The membership problem for regular expressions with intersection
is complete in LOGCFL. In Helmut Alt and Afonso Ferreira, editors, Proc. STACS,
volume 2285 of Lecture Notes in Computer Science, pages 513–522. Springer, 2002.

21. Honghua Yang. An NC algorithm for the general planar monotone circuit value
problem. In Proc. 3rd IEEE Symposium on Parallel and Distributed Processing,
pages 196–203, 1991.

22. H̊akan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete
event systems using acceptance sampling. In Proc. CAV, volume 2404 of Lecture
Notes in Computer Science. Springer, 2002.

