
FlexRay for Avionics: Automatic Verification with

Parametric Physical Layers

Michael Gerke, Rüdiger Ehlers, Bernd Finkbeiner, and Hans-Jörg Peter

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany

The automotive FlexRay standard is increasingly attracting attention in the aeronautics
industry. Upgrading existing physical layers, such as CAN-based systems, with FlexRay is
attractive, especially given that inexpensive FlexRay hardware is available on the market.
However, such a change of the application context requires a careful examination of the
assumptions the protocol is based on. For example, the FlexRay standard assumes that the
harness length is at most 24 meters, a requirement that is typically met by ground vehicles
but not by planes. In this paper, we present a methodology for the formal analysis of the
impact of changes to the physical setting on the fault tolerance of the protocol. We use
the real-time model checker Uppaal to automatically verify the behavior of the FlexRay
physical layer protocol when executed on a range of hardware configurations. We report
on design considerations and lessons learned in building a model that is sufficiently small
to allow for automatic verification and, at the same time, sufficiently precise to describe
the intricate real-time interplay of protocol and hardware.

I. Introduction

The application of mass-market bus protocols in the aeronautics context is an attractive alternative to
using proprietary protocols whose hardware is typically expensive. However, as x-by-wire applications have
strict requirements on the quality of service of the bus protocol, a careful examination of how changes to the
physical-layer properties affect the protocol behavior is imperative for the safe application of such protocols
in new application contexts.

In this paper, we analyze the FlexRay bus protocol, which stems from the automotive context and has
recently generated a lot of interest in the aeronautics industry. FlexRay provides automatic low-level error
correction and predictable timing. Upgrading existing physical layers, such as CAN-based systems, with
FlexRay is very attractive, especially given that inexpensive FlexRay hardware is available on the market.1,2

However, the FlexRay specification is based on environment assumptions that do not necessarily hold in
the aeronautics context. For example, the FlexRay standard assumes that the harness length is at most
24 meters, a requirement that is typically met by ground vehicles but not by planes.1,3 This problem can
be eliminated by formally verifying that the desired properties of the protocol still hold under the changed
assumptions.

A first attempt at formalizing and verifying FlexRay was undertaken in the Verisoft project, where Beyer
et al. gave a deductive correctness proof.4 This “paper-and-pencil” verification effort was later extended to a
more comprehensive proof that was machine-checked using the interactive theorem prover Isabelle/HOL.5–7

Such manual correctness proofs can be helpful to increase the confidence in a protocol for a given application
context, but they are very expensive and it is doubtful if the manual effort can be scaled to a systematic
exploration of the impact of the application context on the behavior of the protocol.

In our own work,8 we have used the real-time model checker Uppaal9 to verify real-time properties
of FlexRay’s physical layer protocol. The advantage of model checking is that it is completely automatic
once the protocol including its physical layer has been formalized using an automata-based framework. Our
analysis provides a detailed picture of the robustness of the protocol under changes of the physical layer
properties. We showed that, for typical hardware parameters, such as those of a realistic design from the
Nangate Open Cell Library,10 FlexRay tolerates one glitch-affected sample in every sequence of four samples
or two glitch-affected samples in every sequence of 88 samples. In fact, this tolerance is robust under

1 of 16

American Institute of Aeronautics and Astronautics



variations of the hardware. For example, the variance in the delay of the propagation of values on the bus
can be increased to up to 7570 ps without negative impact on the tolerable glitch patterns.

Although the model checking process itself is automatic, developing a model that is sufficiently small
to make automatic verification feasible and, at the same time, sufficiently precise to describe the intricate
real-time interplay of protocol and hardware, is a formidable challenge. Models of real-time communication
protocols suffer from two sources of state explosion. Firstly, the combination of multiple clocks, which are
needed to describe the behavior of oscillators and low-level timing details such as hold times and propagation
delays, leads to a combinatorial explosion of the state space. Secondly, the data domain is huge. In theory, a
model of the FlexRay physical layer protocol must account for more than 10600 different possible messages.

In this paper, we describe the modeling principles that have allowed us to analyze the FlexRay physical
layer with a high degree of precision using an off-the-shelf model checker. Our approach aims for efficiently
checkable models by using both clocks and data as economically as possible. The introduction of clocks can
often be avoided if the timing of two events depend on each other. In FlexRay, for example, certain events
on the bus are triggered by the sender, whose actions are in turn triggered by the ticks of its oscillator. By
reusing the clock that measures the time between the ticks in the description of the resulting actions and
events, we can specify the entire causal chain with a single clock. The explosion in the data domain can be
reduced significantly through the careful introduction of nondeterminism into the model. While we cannot
restrict the space of potential messages without affecting the soundness of our analysis, we eliminate the
storage of data in the model whenever possible by generating data nondeterministically at data-dependent
branchings in the protocol.

The paper is structured as follows. We begin with a brief summary of the FlexRay physical layer protocol
in Section II. In Section III, we describe our verification approach based on automatic parameter exploration.
In Section IV, we discuss the principles that have guided the development of our model. The results of our
analysis are presented in Section V. In Section VI, we discuss connections to related work.

II. The FlexRay Physical Layer Protocol

In this section, we briefly review the FlexRay11 physical layer protocol.

Topology and timing. The FlexRay protocol is used to establish the communication in a network of
electronic control units (ECUs), which can be arbitrary embedded devices. Each ECU is connected via a
controller to a shared communication channel (which we call bus in the following).

The timing hierarchy [11, Chapter 5] of FlexRay is shown in Figure 1. In one cycle of the communication,
one static slot is reserved for usage by each controller. Thus, every controller connected to the bus gets the
chance to send a message. This static segment of the cycle is followed by a dynamic segment where every
controller is allowed to try to send a message outside the normal schedule. FlexRay uses a time division
multiple access (TDMA) scheme during the static segment, and a flexible FTDMA scheme during the
dynamic segment, both of which exclude collisions.12,13 The end of the cycle consists of a small symbol
window for protocol-related communication, and finally a network idle time.

Communication cycle

Static
segment

Dynamic
segment

Symbol
window

Network
idle time

Static slot Static slot

Figure 1. Schedule of the FlexRay communication cycle.

Communication. A controller is based on a layered architecture comprising communicating processes.
Each process is assigned either to the distribution-and-control layer, the communication layer, or the bit-

2 of 16

American Institute of Aeronautics and Astronautics



ECU

controller
host interface

protocol oper-
ation control

clock synchroniza-
tion processing

macrotick generation

clock synchro-
nization startup

media access control
frame and sym-
bol processing

coding and decoding process CODEC

Distribution and control
layer (one for each con-
troller)

Communication layer (one
for each channel)

Bit level layer (one for each channel)

Figure 2. Overview on the architecture of a FlexRay controller.

level layer. Figure 2 shows an overview.
The communication between two controllers is handled by the coding and decoding processes (CODEC).

The FlexRay standard11 specifies a format for messages, the message frames (or just frames), which contain
the actual payload that is to be transferred, as well as protocol-related information. The format of a frame
is shown in Figure 3.

11111

Reserved Bit

Payload preamble indicator

Null frame indicator

Sync frame indicator

Startup frame indicator

Frame ID

11 bits

Header CRC covered area

Pay-
load
length

7 bits

Header
CRC

11 bits

Cycle
count

6 bits

Header Segment

Data 1 Data 2 Data n

0 . . . 254 bytes

Payload Segment

CRC CRC

24 bits

CRC

Trailer Segment

Figure 3. Format of a frame.

A message frame is transmitted as a structured stream [11, Section 3.2.1.1] of bits as shown in Figure 4.
The start of the stream is the transmission start sequence (TSS), which consists of a sequence of zeros and
precedes every transmission. The length of this sequence depends on the structure of the overall network and

3 of 16

American Institute of Aeronautics and Astronautics



may vary between 3 to 15 bits [11, Sections B.2.1]. After the TSS, the frame start sequence (FSS) signals
the start of a message transmission. The FSS consists of a single high bit. The receiving controller accepts
a transmission even if the FSS is received zero or two times. The bit string of the message is partitioned
into bytes. Each message byte is prefixed with a byte start sequence (BSS). The BSS consists of one high
bit followed by one low bit. At the end of the message, a frame end sequence (FES) is appended. The FES
consists of one low bit followed by one high bit. Every bit of the stream is transmitted as a bit cell, i.e., the
bit value is held for eight clock cycles.

High

Low

TSS F
S
S

BSS
1st byte
of data

BSS BSS
last byte
of data

FES

Figure 4. Format of a message bit stream.

III. Parameter Exploration based on Timed Automata

In this section, we recall the timed automaton model by Alur and Dill, introduce the parametric extension,
and briefly discuss our FlexRay model.

A. Timed Automata

We use networks of timed automata14,15 as our modeling language. Timed automata extend finite state
machines by clock variables (or just clocks) whose values range over the nonnegative reals. For a com-
prehensive overview and a more formal treatment of the subject, we refer to the textbook by Clarke et
al. [16, Chapter 17].

Syntax. A timed automaton has a finite set of locations with a dedicated initial location. Locations are
connected via edges. Clocks are referenced in clock constraints, which can be used as enabledness conditions,
called guards, on edges, and as location invariants (or just invariants) on locations. A clock constraint is a
conjunction of clock comparisons of the form

x1 ≺1 c1 ∧ . . . ∧ xn ≺n cn,

where x1, . . . , xn are clocks, ≺1, . . . ,≺n ∈ {<,≤,=,≥, >}, and c1, . . . , cn are nonnegative integer constants.
Each edge is additionally labeled with an action and with a set of clocks that should be reset to zero when
the edge is taken.

y ≤ 5

y ≤ 15

l1 l2

l3l4

a, x := 0

b, y > 2 c, x ≥ 4

b, y > 8

c, y := 0

Figure 5. Example timed automaton with the locations l1, l2, l3 and l4, the clocks x and y, as well as the
actions a, b and c.

Figure 5 shows an example timed automaton with locations l1, l2, l3 and l4, clocks x and y, and actions a,
b and c. The initial location is l1. The locations l1 and l3 have invariants y ≤ 5 and y ≤ 15, the other

4 of 16

American Institute of Aeronautics and Astronautics



locations l2 and l4 have no invariants (i.e., they have the invariant true). The edge between l1 and l2 is
labeled with action a, has a reset for x, and no guard (i.e., its guard is true). The edge between l2 and l3
is labeled with action c, has no resets, and a guard x ≥ 4.

Semantics. The configuration (or state) of a timed automaton comprises the location the automaton is
currently in and the current clock values. Due to the continuous value domain of the clocks, there are
infinitely many states. The set of all states is called the state space. The states are connected via two types
of transitions:

• action transitions that represent an instantaneous change to another location by taking an edge;

• delay transitions that represent a uniform elapsing of time (i.e., a synchronous increase on all clock
values).

Two states s and s′, whose locations are l and l′, respectively, are connected via an action transition iff there
is an edge e going from l to l′ such that the clock values in s satisfy the guard of e and the clock values after
executing the resets of e satisfy the location invariant of l′. The states s and s′ are connected via a delay
transition iff l = l′ and the clock values after the delay still satisfy the invariant of l.

The execution of a timed automaton starts in the initial state, comprising the initial location and where
all clock values are 0, and corresponds to a path of transitions connecting states. Such a path is also called
a timed trace (or just a trace) that is represented by a (possibly infinite) sequence of actions and delays.

For example, the execution of the timed automaton in Figure 5 starts in l1 with x = y = 0. Due to l1’s
invariant, the execution has to leave l1 within 5 time units. During that time, an action transition leading
to l2 can be executed, resetting x. Then, at l2, we have x ≤ y and time can elapse arbitrarily. After at least
4 time units have passed, another action transition to l3 can be executed unless y > 15, in which case the
target invariant would not be satisfied.

Networks. Timed automata can be syntactically composed into networks, in which the automata run in
parallel and synchronize on shared actions. We also call the timed automata in a network components.

y ≤ 5

y ≤ 15

l1 l2

l3l4

a, x := 0

b, y > 2 c, x ≥ 4

b, y > 8

c, y := 0 ‖

z ≤ 7

l5

l6

a, z := 0c

d, z > 1,

z := 0

Figure 6. Example network comprising two timed automata that synchronize on actions a and c.

Figure 6 shows an example network of two timed automata, which synchronize on actions a and c.
Provided that the clock guards are satisfied, an automaton can only execute an edge labeled with action a or
c if the other automaton executes an edge with the same action concurrently. Otherwise, the two automata
run asynchronously in the sense that they can independently execute edges labeled with action b or d.

B. Parametric Models

As a syntactic extension, we also allow integer variables and arrays of integers (or just arrays) with a
bounded domain in the description of our timed automata. Integer variables and arrays are referenced in
integer expressions, which can be arbitrary arithmetic expressions yielding integer values. Sometimes, we use
pseudocode such as foo(bar()) in integer expressions, where foo and bar are functions returning integer values.
We also allow expressions of the form v1 ≺ v2, where v1 and v2 are integer variables and ≺ ∈ {<,≤,=,≥, >},
yielding the values 0 or 1. We call such expressions integer constraints.

5 of 16

American Institute of Aeronautics and Astronautics



Guards and location invariants are extended to conjunctions of integer and clock constraints. Addition-
ally, integer variables can also be used in place of constants in clock constraints. For manipulating integer
variables, edges are extended by update expressions of the form

v1 := e1, . . . , vn := en,

where v1, . . . , vn are integer variables or arrays and e1, . . . , en are integer expressions.
We identify a subset of the integer variables as parameters. Parameters are not assigned an initial value

and do not appear on the left hand side of update expressions. All other integer variables are initialized
with a specific value. If an initial value is not explicitly given, we assume the initial value 0. Figure 7 shows
a timed automaton with parameters P, Q and R, and additional integer variables i and j.

y ≤ P y ≤ Q

l1 l2 l3

x > 42

y := 0

y > 1

i := i + 1,

y := 0

j > R

∧ x > i

y > 2 ∧ j < 5 · i,
j := j + 1,

y := 0

Figure 7. Example timed automaton with parameters P, Q and R, and additional integer variables i and j.

C. Modeling FlexRay with Parametric Timed Automata

We model the FlexRay physical layer protocol as a network of parametric timed automata. As illustrated in
Figure 8, we partition the components of the network into two parts: one that represents the protocol layer
and one that represents the underlying hardware including an error model. The correctness of the higher
protocol levels as well as FlexRay’s ability of to deal with errors outside the error model is beyond the scope
of this work.

Hardware

Bus & Error Model

Sender

Add redun-
dancy

Assemble bit
stream

Message

Receiver

Remove redun-
dancy

Check bit
stream

Message=

Protocol

Figure 8. The structure of the model. The arrows indicate the flow of information.

In our model, the sender embeds the message in a structured bit stream. To introduce redundancy, every
bit of this stream is sent as a bit cell in which the bit value is held for eight clock cycles. The receiver in
turn reads one value in every clock cycle from the bus (the samples), removes the redundancy and checks
whether the received message deviates from the sent one. The error model, which is described in more detail
in Section V–A, is incorporated into the components of the hardware layer. A detailed description of the
complete model is available in a technical report.17

IV. Modeling Principles

In this section, we discuss the modeling principles that have allowed us to analyze the FlexRay physical
layer with a high degree of precision using an off-the-shelf model checker. Model checking is a complete
verification technique: unlike, for example, testing, model checking accounts for every possible behavior of
the system. The price for the complete coverage is that model checking is computationally expensive: model

6 of 16

American Institute of Aeronautics and Astronautics



checking a network of timed automata takes exponential time in the size of the network. Our modeling
approach aims for efficiently checkable models by using clocks and data as economically as possible. In the
following subsections we discuss these two principles in more detail.

A. Modeling with Fewer Clocks

The number of clocks has a dramatic impact on both the running time and the memory consumption of the
model checker. The model checker tracks the relationships between the different clocks using data structures
such as difference bound matrices18 (DBMs), which record, for every pair of clocks, an upper and a lower
bound on the current difference between the clock values. The number of different values of this data
structure that are encountered during a run of the model checker grows exponentially with the number of
clocks.

x ≤ CYCLE MAX

Oscillator

tick ,

x ≥ CYCLE MIN,

x := 0

‖

y ≤ PMIN

z ≤ PNEW

Stable bus value
Changing bus value

Between thresholds

tick , y := 0

y ≥ PMIN,

Bus := undef ,

z := 0

z ≥ PNEW,

Bus := new value

tick

Figure 9. Model of the sender’s oscillator and the bus, synchronizing on action tick . We use one clock for the
oscillator, one clock for the time to reach the first threshold, and another one for the time to reach the second
threshold.

Our modeling approach reduces the number of clocks by exploiting dependencies between the clocks.
Typically, if some event triggers another event, then the clock measuring the timing of the first event can
also be used to measure the timing of the second event. In FlexRay, such dependencies start with the two
oscillators in the sender and receiver, which each cause various dependent events. As a result, we can model
the entire physical layer protocol and the hardware with just two clocks.a

We illustrate the approach with an example, where we model some propagation of signals along the bus.
A timed automaton network for this scenario is shown in Figure 9. We start in a state where the bus value is
stable. When a clock tick occurs (driven by the local oscillator of the sender), the sender can begin to drive
a new value on the bus. The receiver does not immediately see the new value. Only after PMIN time units,
the sender has driven the voltage on the bus beyond the threshold for recognizing the old bus value. After
additional PNEW = PMAX− PMIN time units, the value of the bus at the receiver’s side has been driven beyond
the threshold for the new bus value, as shown in Figure 18. In the model, we implement this by measuring
three time spans: the length of the clock cycle, the time to drive the bus beyond the first threshold, and the
time to drive it beyond the second threshold. A clock cycle does not always have the same length (there are
no perfect oscillators in practice), but its length is always in between CYCLE MIN and CYCLE MAX. We have
one clock for measuring each of these time spans.

Analyzing our model, we find dependencies between the clocks: The events on the bus are triggered by
the sender. The sender’s actions are triggered by a tick from its oscillator. Thus, the events on the bus are
triggered by a tick from the sender’s oscillator. This allows us to describe events on the bus using the clock
for generating the ticks of the sender’s oscillator. We observe that the we can deduce from the clock value
of x the values of y and z. In the model of Figure 9, x and y always have the same value, and z is equal to
x + PMIN in the “Between thresholds” location, which is the only location in which the value of z is used.

aThis does not include the error model, which needs a separate clock.

7 of 16

American Institute of Aeronautics and Astronautics



Thus, we can remove the clocks y and z, replace any reference to y by x, and replace any reference to z by
x+ PMIN. Exploiting the equality PNEW = PMAX− PMIN, we obtain the simplified model shown in Figure 10.

x ≤ CYCLE MAX

Oscillator

tick ,

x ≥ CYCLE MIN,

x := 0

‖

x ≤ PMIN

x ≤ PMAX

Stable bus value
Changing bus value

Between thresholds

tick

x ≥ PMIN,

Bus := undef

x ≥ PMAX,

Bus := new value

tick

Figure 10. Optimized model of the sender’s oscillator and the bus, synchronizing on action tick . Here, we
use just the clock needed to generate the tick action of the sender’s oscillator, under the assumption that
PMIN ≤ PMAX ≤ CYCLE MIN holds.

B. Modeling with Less Data

The number of possible messages in a transmission protocol is astronomic: in the case of FlexRay, there
are more than 10600 possible different messages. Since a natural specification of the correctness of the
protocol would require that every message is transmitted correctly, the large number of messages immediately
translates to an equally large state space: for example, our model might first fix and store the data to be
sent, then transmit the message via sender and receiver, and finally compare the stored data against the
delivered message.

To avoid this effect, we must avoid storing the actual data in the protocol. We let the model forget
the data to be sent and instead generate the data on-the-fly at data-dependent branchings of the protocol:
whenever the choice of a transition in the model depends on the actual message, we just nondeterministically
choose a transition. In addition to the data to be sent, one can often also ignore the format of the message.
Protocols typically have a fixed format for messages, such as the format of FlexRay message frames shown
in Figure 3. The state components needed to enforce this format can be eliminated if the modeled protocol
layer does not depend on the format.

x ≤ 0

payload := guess(),

byte := 0, bit := 0,

x := 0 msg := frame(payload)

bit = 8 ∧
byte < len(msg)− 1,

bit := 0, byte ++

tick ,

bit < 8,

send(msg [byte][bit ]),

bit ++

bit = 8 ∧
byte = len(msg)− 1

Figure 11. Generating a message payload, encasing it in the frame format, and sending it.

8 of 16

American Institute of Aeronautics and Astronautics



As an example, consider the automaton shown in Figure 11. We initialize the data that should be
transmitted in some array payload , whose values are chosen nondeterministically using the (pseudocode)
function guess(). Then, we use pseudocode to encase payload in the frame format shown in Figure 3 and
obtain a message frame that is stored in an array msg . The bits of msg are then sent to a message stream
generator that guarantees the format seen in Figure 4. If we drop the idea that only legal message frames
are to be transmitted in the model, but rather all messages of a possible length, then we can remove the
necessity to store the initial message altogether: we can just guess the message bits on-the-fly as we go. We
can additionally guess the length of the message on-the-fly. If we allow them to have an arbitrary length
(in bytes), we do not even have to store how many bytes we have already sent. The resulting automaton
is shown in Figure 12. Its state space is reduced to only 11 states: The automaton could be in the first
location, it could be in the second location and bit could have any integer value from 0 to 8, or it could be
in the last state, where only 8 is a possible value for bit .

bit ≤ 8
bit := 0

tick ,

bit ++,

send(0)

tick ,

bit ++,

send(1)

bit = 8

bit := 0

bit = 8

Figure 12. Generating and sending of a message while abstracting from its actual length, contents and format.

The drawback of ignoring the message is, of course, that we can no longer specify that the messages are
received correctly. It is sufficient, however, to store a single bit of the message, as long as the bit is chosen
nondeterministically. If a bit is not correctly transmitted, the nondeterminism guarantees that there is at
least one trace of the model where this bit is stored. In order to verify that the one stored bit is correctly
received, we need to identify the received bit that corresponds to the stored bit. For this purpose, the model
of the sender shown in Figure 13 stores the position posstored of the bit in the message, and the model of the
receiver shown in Figure 14 counts the received message bits until it identifies the bit corresponding to the
stored bit bitstored .

The timed automata in Figures 15 and 16 show a version of the model that has been optimized based on
an additional observation: we can reduce the counting effort for identifying the position of the stored bit by
keeping track of the number of bits that are in transit. We introduce a counter offset that stores the number
of bits in transit when the sender model stores the bit. While the bit is not yet stored, the sender model
shown in Figure 15 increments offset whenever it sends a bit to the message stream generator. While the
receiver model shown in Figure 16 has not yet verified the correct reception of the stored bit, it decrements
offset whenever it has received a message bit. When a bit has been stored, the receiver model checks the
value of offset to identify the received bit that corresponds to the stored bit.

V. Analysis of the FlexRay Physical Layer Protocol

We have used the real-time model checker Uppaal9 to analyze the impact of changes in the parameters
of the model, reflecting changes in the application context, on the fault tolerance of the model. We start
this section by describing the parametric error model, which we use to characterize fault tolerance. In the
following subsections, we present the results of the analysis with Uppaal.

9 of 16

American Institute of Aeronautics and Astronautics



bitsd ≤ 8

bitsd ≤ 8

bitsd ≤ 8

bitsd := 0,

possd := 0,

posstored := −1

tick sd ,

bitsd ++,

send(0)

posstored := possd ,

bitstored := 0

possd ++

tick sd ,

bitsd ++,

send(0)

tick sd ,

bitsd ++,

send(1)

bitsd = 8

bitsd := 0

tick sd ,

bitsd ++,

send(1)

posstored := possd ,

bitstored := 1

possd ++

bitsd = 8

bitsd := 0

bitsd = 8

Figure 13. Generating and sending of a message while abstracting from its actual length, contents and format.
The sender model nondeterministically chooses a bit to store and stores its position as well.

bitrc ≤ 8

bitrc ≤ 8

bitrc ≤ 8

Error
bitrc := 0,

posrc := 0

tick rc ,

bitrc ++,

received(0)

posrc = posstored ,

bitstored = 0

posrc = posstored ,

bitstored = 1

posrc ++

tick rc ,

bitrc ++,

received(0)

tick rc ,

bitrc ++,

received(1)

bitrc = 8

bitrc := 0

tick rc ,

bitrc ++,

received(1)

posrc = posstored ,

bitstored = 1

posrc = posstored ,

bitstored = 0

posrc ++

bitrc = 8

bitrc := 0

Figure 14. Receiving a message while abstracting from its actual length, contents and format. The receiver
model checks that the bit received at the position of the stored bit has the same value as the stored bit.

10 of 16

American Institute of Aeronautics and Astronautics



bitsd ≤ 8

bitsd ≤ 8

bitsd ≤ 8

bitsd := 0,

offset := 0,

bitstored := −1

tick sd ,

bitsd ++,

send(0)

bitstored := 0

offset ++

tick sd ,

bitsd ++,

send(0)

tick sd ,

bitsd ++,

send(1)

bitsd = 8

bitsd := 0

tick sd ,

bitsd ++,

send(1)

bitstored := 1

offset ++

bitsd = 8

bitsd := 0

bitsd = 8

Figure 15. Generating and sending of a message while abstracting from its actual length, contents and format.
The sender model nondeterministically chooses a bit to store and stores the number of bits in transit in offset.

bitrc ≤ 8

bitrc ≤ 8

bitrc ≤ 8

Error
bitrc := 0

tick rc ,

bitrc ++,

received(0)

offset = 1,

bitstored = 0

offset = 1,

bitstored = 1

offset −−

tick rc ,

bitrc ++,

received(0)

tick rc ,

bitrc ++,

received(1)

bitrc = 8

bitrc := 0

tick rc ,

bitrc ++,

received(1)

offset = 1,

bitstored = 1

offset = 1,

bitstored = 0

offset −−

bitrc = 8

bitrc := 0

Figure 16. Receiving a message while abstracting from its actual length, contents and format. If a bit is
stored, the receiver model checks that a bit received with offset = 1 has the same value as the stored bit.

11 of 16

American Institute of Aeronautics and Astronautics



x ≤ CYCLE MAX

Sender oscillator

tick sd ,

x ≥ CYCLE MIN,

x := 0

Sender components

synchronizing on

tick sd

y ≤ CYCLE MAX

Receiver oscillator

tick rc ,

y ≥ CYCLE MIN,

y := 0

Receiver components

synchronizing on

tick rc

‖ ‖ ‖

Figure 17. Network of parametric timed automata showing the oscillators for sender and receiver.

A. The Error Model

We consider two types of erroneous behavior: jitter induced by the asynchronous nature of physical layer
protocols, and glitches induced by influences from the environment.

Jitter. Asynchronous communication protocols must deal with several undesired effects due to the dis-
placement of pulses in the signal. Since sender and receiver do not share a common oscillator, there may
be a drift between the local oscillators. We model this drift as parametric timed automata as shown in
Figure 17. CYCLE MIN and CYCLE MAX are parameters that encode the potential deviation in the pulsing
resulting in a clock drift between sender and receiver. We have that

CYCLE MIN = CYCLE− DEVIATION

2
and CYCLE MAX = CYCLE +

DEVIATION

2
.

Each other component in the network either synchronizes on tick sd or tick rc , depending whether it represents
a part of the sender or the receiver, respectively.

Also subsumed under the term jitter is when the transition between voltage levels takes varying amounts
of time, as depicted in Figure 18. This kind of erroneous behavior is reflected in the modeling of the hardware
layer, as shown in Figure 10 on Page 8.

Volt

Time

tick sd

tick sd

high

low

undef

≥ PMIN

≤ PMAX

Figure 18. Characteristic timing diagram of a transition between voltage levels.

Glitches. Environmental interferences can always disturb electronic communication. The purpose of a
fault-tolerant physical layer protocol is to compensate for such disturbances up to a certain extend. A

12 of 16

American Institute of Aeronautics and Astronautics



glitch glitch

· · · · · ·

< ERRDUR > ERRDISTt

(a) Real-time glitch pattern, parametrized in the duration ERRDUR and glitch-free pe-
riod ERRDISTt.

> ERRDISTs

samples

> ERRDISTs

samples

glitch-affected

sample

glitch-affected

sample

glitch-affected

sample

· · · · · ·

(b) Sample glitch pattern: 1 out of ERRDISTs + 1.

Figure 19. Real-time vs. sample glitch patterns.

stream of bits transmitted between a sender and a receiver might get compromised at some positions. That
is, some bit values in the received stream might differ from the corresponding values in the sent stream.
Such a deviation for a particular bit is called a glitch.

In order to explore the limits of a particular compensation mechanism, we incorporate the nondeter-
ministic occurrence of glitches in our model. The way how glitches might occur is formalized as glitch
patterns, where we distinguish between real-time glitches and sample glitches. A real-time glitch pattern is
parametrized in the duration of a glitch and the minimum glitch-free period between any pair of glitches.
A sample glitch pattern is parametrized in the number n of glitch-affected samples that may occur in any
sequence of ERRDISTs + n consecutive samples. Figure 19 shows the two types of glitch patterns.

B. Model Checking the FlexRay Physical Layer Protocol

Our first analysis is based on an instantiation of the protocol model using standard values for all parameters,
as shown in Table 1. The parameter values are taken from the FlexRay standard11 and the Nangate Open
Cell Library.10 Using Uppaal version 4.1.4, we verified that the model with this configuration tolerates at
most two glitch-affected samples at arbitrary positions, including next to each other, in every sequence of
88 consecutive samples. This was achieved using the sample glitch model. However, the counting associated
with the sample glitch model introduced a considerable amount of discrete complexity: Uppaal needs 250
minutes and 89 GiB of memory to verify this property.

We also used the sample glitch model to verify that our previous result8 that a model with the configura-
tion shown in Table 1 tolerates one glitch-affected sample in every sequence of 4 consecutive samples is still
valid for our new model. To model real-time glitches, we introduced a third clock to measure the duration of
a glitch ERRDUR and the glitch-free period ERRDISTt. The results from the real-time glitch model confirmed
our findings from the sample glitch model: a glitch of less than 2 ∗ CYCLE MIN and a glitch-free period of
more than 86 ∗ CYCLE MAX in between two glitches are tolerable. Hence, if a glitch can affect at most two
adjacent samples, the next 86 samples have to be unaffected by glitches, confirming that two glitch-affected
samples next to each other in a sequence of 88 consecutive samples are tolerable. This model was analyzed
in just 23 seconds using only 111 MiB.

If the glitch is shorter than 1∗CYCLE MIN, the glitch-free period in between two glitches can be shortened
to longer than 3 ∗CYCLE MAX. Hence, if a glitch can affect at most one sample, the next 3 samples have to be
unaffected by glitches, confirming that one glitch-affected sample in a sequence of four consecutive samples

13 of 16

American Institute of Aeronautics and Astronautics



Table 1. Standard parameter values based on conservative approximations of the parameters taken from the
FlexRay standard11 and the Nangate Open Cell Library.10

Parameter Value Corresponds to

CYCLE 10, 000 1
80MHz

= 12.5ns

DEVIATION 30 ±0.15%
SETUP 368 460 ps

HOLD 1160 1450 ps

PMIN 12 15 ps

PMAX 1160 1450 ps

Table 2. Tolerable glitch patterns with standard parameter values. The glitch pattern “y out of x” stands for
“at most y glitch-affected samples in x consecutive samples” and thus an error distance of x− y.

Glitch pattern Parameter Value Corresponds to

1 out of 4 ERRDISTs 3 3 samples

2 out of 88 ERRDISTs 86 86 samples

Short real-time glitch
ERRDUR CYCLE MIN 12.48125ns

ERRDISTt 3 ∗ CYCLE MAX 37.55625ns

Long real-time glitch
ERRDUR 2 ∗ CYCLE MIN 24.9625ns

ERRDISTt 86 ∗ CYCLE MAX 1033.548ns

is tolerable. This model was analyzed in just 45 seconds using only 172 MiB.
Our results based on the standard parameter values from Table 1 are summarized in Table 2.

C. Parameter Exploration

In our second analysis, we no longer fix the standard parameter values from Table 1, but rather investigate
the impact of changes to the parameter values on the resulting fault tolerance. Table 3 shows the results
with respect to changes to either the hardware parameters PMIN and PMAX, or to DEVIATION. The analysis
provides stringent hardware requirements which, if met, will guarantee robustness against the respective
glitch patterns. Note the subtle difference in the maximal tolerable delay variance PMAX − PMIN and clock
drift DEVIATION between short real-time glitches and long ones. This suggests that there is an intricate
relationship between the glitch patterns and the tolerable parameter changes.

Our results demonstrate a substantial resilience of the FlexRay physical layer protocol against imprecise
oscillators as well as against changes in the variance of the propagation delay. The latter result is of
particular interest in the aeronautics context, as the longer harnesses used in planes1 will likely increase the
delay variance. Based on data from the Nangate Open Cell Library,10 we initially assumed a variance in the
propagation delay of 1435 ps, but this value can be increased up to 7570 ps without a negative impact on
the tolerable glitch patterns.

VI. Related work

The combination of FlexRay’s rich feature set and the availability of cheap off-the-shelf bus components
aroused interest in extending the protocol’s use from the automotive into the avionics domain. Srinivasan and
Lundqvist19 compared FlexRay with two older bus protocol standards, namely MIL-STD-1553 and TTP/C.
They conclude that FlexRay is the most versatile of these standards and should be the protocol of choice
in the long run. Heller and Reichel1 discuss the electrical effects of the high cable length that is typically
present in the aeronautics context onto the FlexRay bus protocol. They propose a simulation-based analysis
of the performance of alternatives to FlexRay’s default physical layer, such as RS485. Our analysis can be
used to additionally determine the constraints on the physical setting that allow the FlexRay physical layer
protocol to be used without negative impact on its fault tolerance.

Paulitsch and Hall2 discuss the problem of fault containment in FlexRay, i.e., ensuring that the bus

14 of 16

American Institute of Aeronautics and Astronautics



Table 3. Impact of changes to the parameter values on the tolerable glitch patterns. The glitch pattern “at
most y” means “at most y glitch-affected samples in the overall stream at arbitrary positions”.

Changed parameter Tolerable glitch patterns

PMAX− PMIN ≤ 6086 1 out of 4

PMAX− PMIN ≤ 6086 at most 2

PMAX− PMIN ≤ 6056 2 out of 88

PMAX− PMIN ≤ 6086 ERRDUR = CYCLE MIN ∧ ERRDISTt = 3 ∗ CYCLE MAX

PMAX− PMIN ≤ 6056 ERRDUR = 2 ∗ CYCLE MIN ∧ ERRDISTt = 86 ∗ CYCLE MAX

DEVIATION ≤ 92 1 out of 4

DEVIATION ≤ 80 2 out of 88

DEVIATION ≤ 92 at most 2

DEVIATION ≤ 218 at most 1

DEVIATION ≤ 348 none

DEVIATION ≤ 92 ERRDUR = CYCLE MIN ∧ ERRDISTt = 3 ∗ CYCLE MAX

DEVIATION ≤ 90 ERRDUR = 2 ∗ CYCLE MIN ∧ ERRDISTt = 86 ∗ CYCLE MAX

remains operational upon the failure of some connected component. When integrating several distributed
systems onto one bus, having fault containment in a bus system assures that a failure of one system does
not affect the others, which is crucial in the aerospace context. The authors point out that FlexRay appears
to be a strong field bus candidate for the aerospace domain, provided that a suitable bus guardian is used,
and that a careful re-examination of FlexRay’s dependability for the aerospace domain is equally necessary
to be done.

There are several previous formalizations of the FlexRay physical layer protocol. Beyer et al.4 gave the
first manual deductive correctness proof. Schmaltz5,6 presented a semi-automatic correctness proof in which
the proof obligations are discharged using Isabelle/HOL and the NuSMV model checker. This proof has
also been integrated into larger verified system architectures.12,20 An effort to unify these results into one
comprehensive correctness proof of the FlexRay protocol is presented by Müller and Paul.7 They prove a
deviation of oscillators from the ideal rate of up to 0.38% safe, assuming a reliable physical layer. However,
Müller and Paul explicitly leave the verification of stronger fault tolerance properties, which includes resilience
against an unreliable physical layer, to future work.

In previous work,8 we presented the first fully automatic correctness proof of the FlexRay physical layer
protocol. In contrast to the approaches mentioned above, we considered an unreliable (and therefore more
realistic) physical environment, in which we studied the fault tolerance of the protocol. The model used
in the current paper is a refinement of our earlier model. In particular, the new model includes real-time
glitches in addition to sample glitches. Our new model was developed based on the modeling principles
presented in this paper. Using the new model, we were able to verify additional properties of the FlexRay
physical layer protocol, such as the fault tolerance with respect to two glitch-affected samples in a sequence
of 88 samples.

VII. Conclusions

We have demonstrated that automatic model checking can be used to determine the impact of changes
to the physical setting on the fault tolerance of the FlexRay physical layer protocol. The key challenge in
this effort has been to build a model that is sufficiently small to allow for automatic verification and, at the
same time, sufficiently precise to describe the intricate real-time interplay of protocol and hardware. In the
paper, we have outlined modeling principles that lead to efficiently checkable models, using both clocks and
data economically.

Our analysis can be used to determine the application settings in which the protocol will operate robustly.
If the hardware parameters fall within the bounds found by our analysis, the protocol is guaranteed to be
tolerant with respect to the specified glitch patterns. In addition to these general results, our analysis can
easily be repeated for specific parameter values in order to determine the specific error patterns tolerated by
the protocol in a given application context.

15 of 16

American Institute of Aeronautics and Astronautics



Of particular interest for aeronautics is our result that the FlexRay protocol is resilient with respect to
changes in the variance of the propagation delay, as the longer harnesses used in planes1 will likely increase
the variance compared to ground vehicles. During our analysis, we noticed, however, that increasing the delay
variance decreases the maximal tolerable clock drift, and vice versa. In future work, we plan to investigate
the impact of varying both at the same time to precisely work out the trade-off.

Acknowledgment. This work was partially supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS).

References

1Heller, C. and Reichel, R., “Enabling FlexRay for Avionic Data Buses,” IEEE/AIAA 28th Digital Avionics Systems
Conference (DASC), 2009.

2Paulitsch, M. and Hall, B., “FlexRay in Aerospace and Safety-Sensitive Systems,” IEEE Aerospace and Electronic
Systems Magazine, Vol. 23, No. 9, 2008, pp. 4–13.

3FlexRay Consortium, FlexRay Communications System Electrical Physical Layer Application Notes Version 2.1 Revision
B , 2006.

4Beyer, S., Böhm, P., Gerke, M., Hillebrand, M., Rieden, T. I. d., Knapp, S., Leinenbach, D., and Paul, W. J., “Towards
the Formal Verification of Lower System Layers in Automotive Systems,” ICCD ’05: Proceedings of the 2005 International
Conference on Computer Design, IEEE Computer Society, 2005, pp. 317–326.

5Schmaltz, J., “A Formal Model of Clock Domain Crossing and Automated Verification of Time-Triggered Hardware,”
7th International Conference on Formal Methods in Computer-Aided Design (FMCAD’07), edited by J. Baumgartner and
M. Sheeran, IEEE Press Society, November 11–14 2007, pp. 223–230.

6Schmaltz, J., “A Formal Model of Lower System Layers,” Formal Methods in Computer Aided Design (FMCAD’06),
IEEE Computer Society, 2006, pp. 191–192.

7Müller, C. and Paul, W., “Complete Formal Hardware Verification of Interfaces for a FlexRay-Like Bus,” CAV , edited
by G. Gopalakrishnan and S. Qadeer, Vol. 6806 of Lecture Notes in Computer Science, Springer, 2011, pp. 633–648.

8Gerke, M., Ehlers, R., Finkbeiner, B., and Peter, H.-J., “Model Checking the FlexRay Physical Layer Protocol,” Formal
Methods for Industrial Critical Systems (FMICS), Vol. 6371 of Lecture Notes in Computer Science, Springer-Verlag, 2010, pp.
132–147.

9Behrmann, G., David, A., and Larsen, K. G., “A Tutorial on Uppaal,” SFM , edited by M. Bernardo and F. Corradini,
Vol. 3185 of Lecture Notes in Computer Science, Springer, 2004, pp. 200–236.

10Nangate Inc., Nangate 45nm Open Cell Library Databook , 2009.
11FlexRay Consortium, FlexRay Communications System Protocol Specification Version 2.1 Revision A, 2005.
12Alkassar, E., Böhm, P., and Knapp, S., “Formal Correctness of an Automotive Bus Controller Implementation at Gate-

Level,” 6th IFIP Working Conference on Distributed and Parallel Embedded Systems (DIPES 2008), edited by B. Kleinjohann,
L. Kleinjohann, and W. Wolf, Vol. 271 of International Federation for Information Processing, Springer, 2008, pp. 57–67.

13Alkassar, E., Böhm, P., and Knapp, S., “Correctness of a Fault-Tolerant Real-Time Scheduler and its Hardware Imple-
mentation,” Sixth ACM & IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE’08),
IEEE Computer Society, 2008, pp. 175–186.

14Alur, R., Courcoubetis, C., and Dill, D. L., “Model-Checking for Real-Time Systems,” LICS , IEEE Computer Society,
1990, pp. 414–425.

15Alur, R. and Dill, D. L., “A Theory of Timed Automata,” Theoretical Computer Science, Vol. 126, No. 2, 1994, pp. 183–
235.

16Clarke, E. M., Grumberg, O., and Peled, D., Model Checking, MIT Press, 2001.
17Gerke, M., Ehlers, R., Finkbeiner, B., and Peter, H.-J., “Automatic Protocol Verification with Parametric Physical

Layers,” Tech. Rep. 86, SFB/TR 14 AVACS, 2012, ISSN: 1860-9821, www.avacs.org.
18Dill, D. L., “Timing Assumptions and Verification of Finite-State Concurrent Systems,” Automatic Verification Methods

for Finite State Systems, edited by J. Sifakis, Vol. 407 of Lecture Notes in Computer Science, Springer, 1989, pp. 197–212.
19“Real-time Architecture Analysis: A COTS Perspective,” Digital Avionics Systems Conference, 2002 , 2002, pp. 5D4–1

– 5D4–9.
20Knapp, S. and Paul, W., “Realistic Worst Case Execution Time Analysis in the Context of Pervasive System Verification,”

Program Analysis and Compilation, Theory and Practice: Essays Dedicated to Reinhard Wilhelm on the Occasion of His 60th
Birthday, edited by T. Reps, M. Sagiv, and J. Bauer, Vol. 4444 of Lecture Notes in Computer Science, Springer, 2007, pp.
53–81.

16 of 16

American Institute of Aeronautics and Astronautics


