
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

BoSy: An Experimentation Framework for
Bounded Synthesis?

Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup

Saarland University, Saarbrücken, Germany
lastname@react.uni-saarland.de

Abstract. We present BoSy, a reactive synthesis tool based on the
bounded synthesis approach. Bounded synthesis ensures the minimality
of the synthesized implementation by incrementally increasing a bound
on the size of the solutions it considers. For each bound, the existence of a
solution is encoded as a logical constraint solving problem that is solved
by an appropriate solver. BoSy constructs bounded synthesis encodings
into SAT, QBF, DQBF, EPR, and SMT, and interfaces to solvers of the
corresponding type. When supported by the solver, BoSy extracts solu-
tions as circuits, which can, if desired, be verified with standard hardware
model checkers. BoSy won the LTL synthesis track at SYNTCOMP 2016.
In addition to its use as a synthesis tool, BoSy can also be used as an ex-
perimentation and performance evaluation framework for various types
of satisfiability solvers.

1 Introduction

The reactive synthesis problem is to check whether a given ω-regular specifica-
tion, usually presented as an LTL formula, has an implementation, and, if the
answer is yes, to construct such an implementation. As a theoretical problem,
reactive synthesis dates back all the way to Alonzo Church’s solvability ques-
tion [6] in the 1950s; as a practical engineering challenge, the problem is fairly
new. Tools for reactive synthesis started to come out around 2007 [5, 9, 11, 17].
The first SYNTCOMP tool competition took place at CAV 2014 and was origi-
nally restricted to safety specifications, and only later, starting with CAV 2016,
extended with an LTL synthesis track [14].

In this paper, we present BoSy, the winner of the 2016 LTL synthesis track.
BoSy is based on the bounded synthesis approach [12]. Bounded synthesis ensures
the minimality of the synthesized implementation by incrementally increasing a
bound on the size of the solutions it considers. For each bound, the existence
of a solution is encoded as a logical constraint solving problem that is solved
by an appropriate solver. If the solver returns “unsat”, the bound is increased
and a new constraint system is constructed; if the solver returns a satisfying
assignment, an implementation is constructed.

? Supported by the European Research Council (ERC) Grant OSARES (No. 683300).

From an engineering perspective, an interesting feature of the bounded syn-
thesis approach is that it is highly modular. The construction of the constraint
system involves a translation of the specification into an ω-automaton. Because
the same type of translation is used in model checking, a lot of research has gone
into optimizing this construction; well-known tools include ltl3ba [1] and spot [8].
On the solver side, the synthesis problem can be encoded in a range of logics,
including boolean formulas (SAT), quantified boolean formulas (QBF), depen-
dency quantified boolean formulas (DQBF), the effective propositional fragment
of first-order logic (EPR), and logical formulas with background theories (SMT)
(cf. [10]). For each of these encodings, there are again multiple competing solvers.

BoSy leverages the best tools for the LTL-to-automaton translation and the
best tools for solving the resulting constraint systems. In addition to its main
purpose, which is the highly effective synthesis of reactive implementations from
LTL specifications, BoSy is therefore also an experimentation framework, which
can be used to compare individual tools for each problem, and even to compare
tools across different logical encodings. For example, the QBF encoding is more
compact than the SAT encoding, because it treats the inputs of the synthesized
system symbolically. BoSy can be used to validate, experimentally, whether QBF
solvers translate this compactness into better performance (spoiler alert: in our
experiments, they do). Likewise, the DQBF/EPR encoding is more compact than
the QBF encoding, because this encoding treats the states of the synthesized sys-
tem symbolically. In our experiments, the QBF solvers nevertheless outperform
the currently available DQBF solvers.

In the remainder of this paper, we present the tool architecture, including
the interfaces to other tools, and report on experimental results1.

2 Tool Architecture

An overview of the architecture of BoSy is given in Figure 1. For a given bounded
synthesis instance, BoSy accepts a JSON-based input format that contains a
specification ϕ given in LTL, the signature of the implementation given as a
partition of the set of atomic propositions into inputs and outputs, and the
target semantics as a Mealy or a Moore implementation. In the preprocessing
component, the tool starts to search for a system strategy with ϕ and an envi-
ronment counter-strategy with ¬ϕ in parallel.2

After parsing, the LTL formula is translated into an equivalent universal
co-Büchi automaton using an external automata translation tool. Currently, we
support ltl3ba [1] and spot [8] for this conversion, but further translation tools
can be integrated easily. Tools that output SPIN never-claims or the HOA format
are supported.

1 BoSy is available online at https://react.uni-saarland.de/tools/bosy/.
2 The LTL reactive synthesis problem is not dual with respect to dualizing the LTL

formula only, but the target semantics has to be adapted as well. If one searches
for a transition-labeled (Mealy) implementation, a counterexample is state-labeled
(Moore) and vice versa.

https://react.uni-saarland.de/tools/bosy/

LTL, Signature, Mealy/Moore

Preprocessing

LTL

LTL to Automata
Translation
ltl3ba, spot

Automata

Implementation (AIGER, SMV, DOT)

Encoding

SMT SAT QBF DQBF / EPR

SMT
Solver
z3, cvc4

SAT
Solver
picosat,

cmsat

QBF Solver
rareqs, CAQE,

depqbf,

QuAbs, CADET

DQBF / EPR
Solver
idq /

eprover, vampire

Assignment Certificate

unsatisfiable
increase bound

Postprocessing

Fig. 1: Tool Architecture of BoSy

To the resulting automaton, we apply some basic optimization steps like
replacing rejecting terminal states with safety conditions and an analysis of
strongly connected components to reduce the size of the constraint system [12].

The encoding component is responsible for creating the constraint system
based on the selected encoding, the specification automaton, and the current
bound on the number of states of the system. The component constructs a
constraint system using a logic representation which supports propositional logic,
different kinds of quantification, and comparison operators (between natural
numbers). Our implementation contains the following encoding options. These

encodings differ in their ability to support the symbolic encoding of the existence
of functions. We refer the reader to [10] for details.

– A propositional backend for SAT, where all functions are unrolled to con-
junctions over their domain.

– An input-symbolic encoding employing QBF solvers, where functions with
one application context are symbolically represented.

– Two encodings (state-symbolic, symbolic) using DQBF/EPR solvers, where
functions, which are used in multiple contexts, are encoded symbolically.

– An SMT encoding resembling the original bounded synthesis encoding [12].

This constraint system is then translated to a format that the selected solver
understands, and the solver is called as an external tool. We support SAT solvers
that accept the DIMACS input format and that can output satisfying assign-
ments, currently PicoSAT [3] and CryptoMiniSat [24]. We have three categories
of QBF solving tools: QDIMACS/QCIR solver that can output top-level as-
signments (RAReQS [16], CAQE [21], and DepQBF [18]), QDIMACS prepro-
cessors (Bloqqer [4]), and certifying QDIMACS/QCIR solver that can provide
boolean functions witnessing satisfiable queries (QuAbS [25], CADET [20], and
CAQE [21]). For the remaining formats, i.e., DQDIMACS (iDQ [13]), TPTP3,
and SMT (Z3 [19], CVC4 [2]), we only require format conformance as witness
extraction is not supported, yet.

After the selected solver with corresponding encoding has finished processing
the query and reports unsatisfiable, the search strategy determines how the bound
for the next constraint encoding is increased. Currently, we have implemented a
linear and an exponential search strategy. In case the solver reports satisfiable,
the implementation will be extracted in the postprocessing component. The
extraction depends on the encoding and solver support, we currently support it
for SAT and QBF.

In case of the encoding to SAT, the solver delivers an assignment, which is
then translated to our representation of the synthesized implementation. The
transition function and the functions computing the outputs are represented as
circuits.

In case of the QBF-encoding, we take a two-step approach for synthesis. The
QBF query has the quantifier prefix ∃∀∃ [10]. In synthesis mode, the query is
solved by a combination of QBF preprocessor and QBF solver. From a satisfiable
query, the assignment of the top-level existential quantification is extracted [23]
and then used to reduce the original query by eliminating the top level existential
quantifier. The resulting query, now with a ∀∃ prefix, is then solved using a
certifying QBF solver that returns a certificate, that is a circuit representing the
witnessing boolean functions. This certificate is then translated into the same
functional representation of the synthesized implementation as in the SAT case.

This common representation of the implementations allows the translation
into different output formats. From our representation, it is possible to translate
the implementation into an AIGER circuit as required by the SYNTCOMP rules,
to a SMV model for model checking, or to a graphical representation using the
DOT format.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

10−2

10−1

100

101

102

103

instances

t
im

e
(
s
e
c
.)

symbolic (DQBF)

state-symbolic (DQBF)

SMT

propositional (SAT)

input-symbolic (QBF)

Fig. 2: Number of solved instances within 1 hour among the 195 instances from
SYNTCOMP 2016. The time axis has logarithmic scale. The experiment was
run on a machine with a 3.6 GHz quad-core Intel Xeon processor.

Further encodings can be integrated as extra components in the tool. Such an
encoder component has access to the automaton, the semantics, and the input
and output signals. The encoder must provide a method solve that takes as
its parameter a bound and returns whether there is an implementation with
the given bound that realizes the specification. The method is implemented by
building the constraint system and solving it using a theory solver. One can
either use our logic representation or build the textual solver representation
directly. If the component supports synthesis, it implements a second method
extractSolution that is called if solve returns true. It returns a representation
of the realizing implementation as described above. In order to integrate new
solver formats, one has to provide a translator from our logic representation to
this format.

3 Experimentation

The reactive synthesis competition has a library of LTL benchmarks that can be
transformed into the BoSy file format using the organizers’ conversion tool [15].
The tool runsolver [22] is used in our experiments to get predictable timing re-
sults and to set appropriate time and memory limits. Figure 2 compares the per-
formance of the different encodings for determining realizability on the SYNT-
COMP benchmark set. Notably, the encoding employing QBF solving performed
better than the SAT-based one and both solve more instances than the original
SMT encoding. The two encodings using DQBF are not yet competitive due to
limited availability of DQBF solvers.

Different configurations of BoSy may not only result in varying running times,
but may also effect the quality of the synthesized implementation. A measure-

realizabilitysynthesis

load balancer

5 clients
Mealy

ltl3ba

98 states

spot

27 states

propositional

PicoSAT: 53 sec.
CryptoMiniSat: 177 sec.

input-symbolic

RAReQS: 7 sec.
CAQE: 7 sec.

propositional

PicoSAT: 59 sec., 728 gates
CryptoMiniSat: 192 sec, 1171 gates

input-symbolic

QuAbS: 66 sec., 174 gates
CAQE: 66 sec., 412 gates

propositional

PicoSAT: 548 sec.
CryptoMiniSat: 1055 sec.

input-symbolic

RAReQS: 13 sec.
CAQE: 22 sec.

propositional

PicoSAT: 655 sec., 997 gates
CryptoMiniSat: 1061 sec., 1224 gates

input-symbolic

QuAbS: 611 sec., 254 gates
CAQE: 663 sec., 1921 gates

Fig. 3: The diagram shows the result on solving time and implementation quality
for different configurations of BoSy on a sample specification.

ment of the quality of the implementation that has also been used in the reactive
synthesis competition is the size of the implementation, measured in the number
of gates in the circuit representation. The correctness of an implementation, i.e.,
whether the synthesized solution actually satisfies the original specification can
be verified by model checking. One can either encode the solution as a circuit
and use an AIGER model checker, or one can use the SMV representation and
model check it with NuSMV [7].

For a sample benchmark, a parametric load-balancer [9] instantiated with 5
clients, we provide experimental results for different configurations of BoSy in
Fig. 3. The two automaton conversion tools produce significantly different au-
tomata, where the state space of the automaton produced by spot is only one
third of the one produced by ltl3ba. Consequently, the constraint system gener-
ated for the ltl3ba version is larger and thereby the running time worse compared
to the spot version. This impact is stronger on the propositional encoding than
on the input-symbolic one for realizability. An observation that also translates
to other benchmarks is that the size of the implementation is usually smaller
using the input-symbolic encoding. On the other hand, extracting solutions is
cheaper in the propositional case as only assignments are extracted.

References

1. Babiak, T., Kret́ınský, M., Rehák, V., Strejcek, J.: LTL to Büchi automata trans-
lation: Fast and more deterministic. In: Proceedings of TACAS. LNCS, vol. 7214,
pp. 95–109. Springer (2012)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of CAV. LNCS, vol. 6806, pp.
171–177. Springer (2011)

3. Biere, A.: Picosat essentials. JSAT 4(2-4), 75–97 (2008)

4. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Proceed-
ings of CADE-23. LNCS, vol. 6803, pp. 101–115. Springer (2011)

5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.: Acacia+, a tool for LTL
synthesis. In: CAV. Lecture Notes in Computer Science, vol. 7358, pp. 652–657.
Springer (2012)

6. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
Journal of Symbolic Logic 28(4), 289–290 (1963)

7. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Proceedings of CAV. LNCS, vol. 2404, pp. 359–364. Springer (2002)

8. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A framework for LTL and ω-automata manipulation. In: Proceedings of
ATVA. LNCS, vol. 9938, pp. 122–129 (2016)

9. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: TACAS. Lecture Notes in
Computer Science, vol. 6605, pp. 272–275. Springer (2011)

10. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Proceedings of TACAS. LNCS, vol. 10205, pp. 354–370. Springer
(2017)

11. Filiot, E., Jin, N., Raskin, J.: An antichain algorithm for LTL realizability. In:
CAV. Lecture Notes in Computer Science, vol. 5643, pp. 263–277. Springer (2009)

12. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6), 519–539 (2013)
13. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF

solving. In: Proceedings of POS@SAT. EPiC Series in Computing, vol. 27, pp.
103–116. EasyChair (2014)

14. Jacobs, S., Bloem, R., Brenguier, R., Khalimov, A., Klein, F., Könighofer, R., Kre-
ber, J., Legg, A., Narodytska, N., Pérez, G.A., Raskin, J., Ryzhyk, L., Sankur, O.,
Seidl, M., Tentrup, L., Walker, A.: The 3rd reactive synthesis competition (SYNT-
COMP 2016): Benchmarks, participants & results. In: Proceedings of SYNT@CAV.
EPTCS, vol. 229, pp. 149–177 (2016)

15. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Proceedings of SYNT@CAV. EPTCS, vol. 229, pp. 112–132 (2016)

16. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

17. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD. pp.
117–124. IEEE Computer Society (2006)

18. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2-3),
71–76 (2010)

19. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of
TACAS. LNCS, vol. 4963, pp. 337–340. Springer (2008)

20. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Proceedings of SAT.
LNCS, vol. 9710, pp. 375–392. Springer (2016)

21. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Proceedings of FM-
CAD. pp. 136–143. IEEE (2015)

22. Roussel, O.: Controlling a solver execution with the runsolver tool. JSAT 7(4),
139–144 (2011)

23. Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified boolean
formulas. In: Proceedings of DATE. pp. 1–6. European Design and Automation
Association (2014)

24. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Proceedings of SAT. LNCS, vol. 5584, pp. 244–257. Springer (2009)

25. Tentrup, L.: Solving QBF by abstraction. CoRR abs/1604.06752 (2016)

	BoSy: An Experimentation Framework for Bounded Synthesis

