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Abstract

Temporal logics are commonly used in verification and synthesis to formally specify
the desired behavior of a system. While the most popular temporal logics, LTL
and CTL?, can express properties on systems with finite data, they cannot specify
properties on systems with infinite data. This is because they discretize data and
encode it using atomic propositions. Temporal Stream Logic, TSL, on the other
hand, abstracts from concrete data by using predicates and functions instead of
atomic propositions. Therefore, it can express properties on systems with infinite data.
Recent years have shown that temporal logics sometimes do not suffice to specify the
desired behavior of a system because many important information flow properties in
software are hyperproperties. Hyperproperties specify relationships between multiple
execution traces and are commonly specified using temporal hyperlogics as standard
temporal logics like LTL or CTL? cannot reason about several traces. Popular
temporal hyperlogics are HyperLTL and HyperCTL?, which extend LTL and CTL?
with explicit quantification over traces. As they are based on LTL and CTL?, they
cannot specify hyperproperties on systems with infinite data. Therefore, information
flow properties in software with infinite data cannot be expressed using HyperLTL
or HyperCTL?. In this thesis, we introduce the hyperlogic HyperTSL which extends
TSL with explicit quantification over traces. Since it is based on TSL, HyperTSL
can express hyperproperties on software with infinite data. We identify a syntactical
fragment of HyperTSL, HyperTSL-, and develop a sound bounded synthesis approach
for the universal fragment of HyperTSL-. Furthermore, we present an application
of HyperTSL in the field of software doping, where we use the hyperlogic to spot
deliberate manipulation of software by the provider to perform against the best interest
of the user.
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Chapter 1

Introduction

Software surrounds us almost everywhere in our lives. Very often, it fulfills critical
functions, making it crucial that the software behaves as intended. In order to make
software realize the intended behavior, we use temporal logics that specify properties
on software traces. Linear Temporal Logic (LTL) [17] and Computational Tree Logic
(CTL?) [6] are two popular temporal logics that succeed in specifying trace properties
on software with finite data. Often, software needs to interact with its environment, for
instance, when it must rely on sensor data. As sensors constantly provide new inputs,
large amounts of data result. If software gets inputs from several sensors, the overall
amount of data grows even larger. Software thus does not only face the challenge of
fulfilling the specified properties but also must manage lots of data in the process. To
specify behavior of software with infinite data, we again need temporal logics. The
temporal logics LTL and CTL? can, however, not express properties on software with
infinite data, as they discretize data and encode it as atomic propositions. Temporal
Stream Logic, TSL, is a recently developed logic that allows expressing properties
on software with infinite data [10]. In contrast to LTL and CTL?, it abstracts from
concrete data and uses predicates and functions instead of atomic propositions to
represent data.

In addition to fulfilling a specification expressed in a temporal logic, we also want
software to fulfill certain security requirements, like not leaking data that is supposed
to remain secret. Many important properties of software can be expressed using trace
properties, which describe how a system should behave under specific circumstances
over time. Another type of properties on software that cannot be specified using trace
properties are hyperproperties. Hyperproperties are sets of sets of traces that relate
several executions and describe how they behave in comparison to each other. Many
important information flow and security properties on software are hyperproperties.
Observational determinism, for instance, is a hyperproperty stating that for all pairs
of traces, it must hold that if the observable inputs are the same then the observable
outputs are also the same [8]. This ensures that executions with the same observable
inputs but different secret inputs do not cause different observable outputs and through
that allow inferring secret information.
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While temporal logics like LTL and CTL? are very common specification languages
for describing standard system properties, they are not sufficiently expressive in some
cases. Both LTL and CTL? cannot express properties on software with infinite data,
as they represent data through atomic propositions. When it comes to expressing
hyperproperties, the two logics also fall short as they can only reason about one trace
at a time.
When describing software behavior, we likely need to reason about infinite data and
also specify behavior that relates several executions. While TSL can reason about
infinite data in software, it cannot specify hyperproperties. Therefore, in this thesis, we
introduce HyperTSL, which is a hyperlogic extending TSL to express hyperproperties.
HyperTSL is inspired by the popular hyperlogic HyperLTL.
HyperLTL uses explicit quantification over traces, where traces are denoted using
trace variables [2]. Atomic propositions occurring in HyperLTL formulas are indexed
with these trace variables, indicating from which trace they stem. Apart from a
quantifier prefix and indexed atomic propositions, HyperLTL formulas follow the same
syntactical structure as LTL formulas. For instance, a HyperLTL formula expressing
observational determinism [8] looks like this:

∀π∀π′. (iπ ↔ iπ′)→ (oπ ↔ oπ′) (1.1)

The indexed atomic proposition iπ denotes the observable inputs of trace π and iπ′
denotes the observable inputs of trace π′ and oπ and oπ′ denote the corresponding
observable outputs of traces π and π′, respectively. The formula states that for two
traces, if the observable inputs are always the same, then the observable outputs must
also always be the same. This hyperproperty enforces that secret inputs to a system
do not influence the observable outputs.
While HyperTSL is largely inspired by HyperLTL, another important component of
HyperTSL is TSL. Due to the fact that HyperTSL extends TSL, it inherits all the
advantages of the temporal stream logic: TSL abstracts from concrete data and can
thus express properties of software involving infinite data. It uses predicates that check
if certain conditions hold on an argument to guide the control flow. TSL uses a finite
number of cells to store values. Updates, which are of the form Jcell� valueK, are
used to store a value in a cell. In one time step, a cell can always only be assigned
one value. An update Jcell� valueK in a formula evaluates to true if it was indeed
the case that value was assigned to cell in that time step and nothing else. In
the respective next time step, value can be read from the cell and used for further
computations. To illustrate the use of the logic, we state two exemplary TSL formulas
that describe properties of a system that consumes energy from a battery if the input
is above a given threshold and that turns on an alarm when the battery value is below
a certain value.

(greater(needsEnergy, t)↔ Jbat� dec batK) (1.2)

(below15 (bat)↔ Jcritical� trueK) (1.3)
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The first formula states that whenever the value provided by the input stream
needsEnergy is greater than some predefined threshold t, then and only then the
cell bat is decremented by one. This means that energy was consumed. The second
formula states that whenever the battery value is below15, so below 15 %, then and
only then the cell critical is updated with true to indicate that the battery value is
critically low. Using cells, TSL can store data from a specific point in time and thus
make it accessible even several time steps later. Through predicates and functions,
TSL abstracts from concrete data and can therefore reason about data from infinite
domains. Hence, TSL is more expressive than LTL or CTL?.

With HyperTSL, we have a logic that combines the advantages of TSL with the
expressivity of a hyperlogic. Predicates and updates in a TSL formula are each
composed of different components which makes it not obvious how a hyperlogic for
TSL looks like. Especially for indexing predicate terms, there are several design
possibilities which is why we introduce HyperTSL and a fragment of it, HyperTSL-.
HyperTSL allows predicates over arguments from different traces, and HyperTSL-

only allows predicates to take arguments from the same trace. Similar to HyperLTL,
a HyperTSL formula starts with a quantifier sequence and uses trace variables as
indices to denote what trace a component stems from. In LTL, there are only atomic
propositions, so the straightforward approach is to index the atomic propositions. In
TSL however, predicates and updates consist of several components. Therefore, there
are different possibilities for indexing. For instance, we can treat a predicate and its
arguments as one atomic component and index it with a trace variable. We can do
the same for updates. This approach results in the logic HyperTSL-, which seems to
have the most in common with HyperLTL when it comes to atomic components.
Another approach is to treat predicates and their arguments separately. The result is
the hyperlogic HyperTSL, where each argument of a predicate is indexed individually.
A similar approach for updates, where the cell and the function term are indexed
individually, however, cannot be taken. The resulting logic would allow expressing
hyperproperties where a function term could be assigned to a cell from a different trace.
This would describe behavior that is not allowed by TSL itself. Therefore, the only
option is to see updates as atomic components and index them accordingly. We specify
a hyperproperty using HyperTSL on the system we specified by the Formulas 1.2
and 1.3:

∀π∀π′. equal(needsEnergyπ, needsEnergyπ′)
→ (Jcritical� trueKπ ↔ Jcritical� trueKπ′)

(1.4)

This hyperproperty expresses that for a pair of traces where the inputs provided by
needsEnergy are always the same, the critical cell is updated with true in exactly
the same time steps on both traces. To compare the values of needsEnergy from both
traces we use the uninterpreted predicate equal which, for this example, we treat as
the equality predicate.
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Using HyperTSL-, we can express a similar hyperproperty on the system, for instance:

∀π∀π′. ([greater(needsEnergy, t)]π ↔ [greater(needsEnergy, t)]π′)
→ Jcritical↔ trueKπ ↔ Jcritical↔ trueKπ′

(1.5)

In contrast to the previous hyperproperty, we cannot check for equality of the input
streams as this would require evaluating a predicate over arguments from different
traces. Instead, we can use the greater predicate to check whether the inputs are
greater than the threshold and, using an equivalence, we can state that if the inputs on
both traces always evaluate to the same value under the predicate greater then the
critical cells should also behave in the same way. Note that we only use predicates
that take arguments from one trace here, whereas in the previous formula (1.4), we
used a predicate that took arguments from two different traces. We suppose that
identifying HyperTSL- as a fragment of HyperTSL can be especially helpful when
considering problems such as synthesis. For instance, approximating HyperTSL- with
HyperLTL creates fewer challenges than approximating HyperTSL with HyperLTL, as
the basic components of a HyperTSL- formula are more similar to the components of
a HyperLTL formula because all information contained in one component comes from
one trace. For HyperTSL, however, the information contained in a basic component
is potentially composed from multiple traces. We further explore this subject in
Chapter 5.

An example where HyperTSL and HyperTSL- can express many useful hyperproperties
in addition to what is already specified in HyperLTL is found in software doping [4].
This is because due to predicates and updates, HyperTSL and HyperTSL- can express
hyperproperties on software with infinite data and are thus more expressive than
HyperLTL. Software doping describes scenarios where software is deliberately designed
to perform worse or against the best interest of the user, in order to be more profitable
for the company providing the software. Such behavior can only be discovered when
considering several executions and comparing the behavior. Examples of software
doping can be found in technical devices such as printers, phones, or laptops that do
not work anymore if attached to supplies of a different brand. This binds the user to
the company or makes him buy replacements earlier than needed, thus benefitting the
company. Another major example of software doping is the Diesel exhaust emission
scandal, where software was manipulated to produce low emissions when attached to
testing stations but emit high emissions when actually in use. In Section 4, we explore
the Diesel emission example further and use HyperTSL and HyperTSL- to express
hyperproperties that spot software doping prior to use.

TSL was initially designed for the synthesis of reactive systems [10]. Synthesis is
the process of constructing a system from a specification where the resulting system
is guaranteed to fulfill the specification by design. Synthesis is where we can see
another major advantage TSL has over LTL: It can express large LTL specifications
more concisely and allows for synthesizing specifications that could not be synthesized



1.1. Related Work 5

using LTL. However, higher expressivity of TSL in synthesis comes at the cost of
decidability. While the resulting system is guaranteed to fulfill the specification, there
is no guarantee of whether it fulfills certain hyperproperties as well. While a bounded
synthesis approach for HyperLTL already exists, there is not yet an approach for
synthesizing a TSL specification with hyperproperties. However, this possibility is
especially attractive since some LTL specifications could not be synthesized while the
same specification expressed in TSL could. In order to specify hyperproperties on
exactly these systems, a hyperlogic for TSL is needed, since HyperLTL does not fit
the underlying specification language. In this thesis, we present a bounded synthesis
approach for formulas in the universal (∀∗) fragment of HyperTSL-. The universal
fragment of HyperTSL- contains all HyperTSL- formulas, that contain only universal
quantifiers. We approximate the universal HyperTSL- formula through a universal
HyperLTL formula and try to construct a sound strategy based on existing bounded
synthesis approaches for HyperLTL. We can thus, not only use HyperTSL- to express
system specifications, but we can also directly construct systems that fulfill the desired
hyperproperties.

1.1 Related Work
HyperLTL, as introduced by Clarkson et al. [2], is a popular temporal hyperlogic.
Many important security and information flow properties, like noninterference or
observational determinism, can be specified using HyperLTL. HyperLTL synthesis
was explored by Finkbeiner et al. in [11]. While HyperLTL synthesis is in general
undecidable, some decidable fragments were identified and a bounded synthesis tool,
BoSyHyper, was implemented. Furthermore, model checking algorithms for HyperLTL
were developed by Finkbeiner et al. [9].

TSL, temporal stream logic, was introduced by Finkbeiner et al. [10]. The syntax,
semantics, and term notation we use for HyperTSL are based on the syntax, semantics,
and term notation of TSL. TSL was mainly developed for the synthesis of reactive
systems. Several specifications have been successfully synthesized, which was not
possible when using the standard temporal logic LTL. The synthesis approach described
by Finkbeiner et al. approximates the TSL formula to an LTL formula and tries to
construct a sound realizing strategy using standard LTL synthesis tools as, for instance,
the bounded synthesis tool BoSy. In this thesis, we describe a bounded synthesis
approach for universal HyperTSL- inspired by the bounded synthesis approach for
TSL used by Finkbeiner et al. [10]. While for TSL synthesis Finkbeiner et al. used an
approximation to LTL, for HyperTSL- synthesis we use an approximation to HyperLTL.
Synthesis for hyperproperties and especially for HyperLTL is described by Finkbeiner
et al. in [11]. We define HyperTSL realizability based on the notion of HyperLTL
realizability [11] and TSL realizability [10]. We adapt both the approximation and the
spuriousness checks that were used for TSL synthesis [10] to work for hyperproperties.
The spuriousness check looks for inconsistent predicate evaluations of two equal
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predicates by the strategy along a branch in the strategy tree. The hyper-spuriousness
check needs to do the same but this time for multiple branches. Our approach also
exploits that there is an already existing bounded synthesis tool for hyperproperties,
BoSyHyper [11]. As we describe a bounded synthesis approach, it is not complete.
The approximation from universal HyperTSL- to HyperLTL however is sound as we
prove in Proof 5.2.

1.2 Structure
This thesis is structured as follows: In Chapter 2, we lay the foundations regarding
the temporal logics we use in this thesis as well as HyperLTL synthesis. We extend
TSL to express hyperproperties and formalize the new hyperlogic HyperTSL and its
fragment HyperTSL- in Chapter 3. In Chapter 4, we present a use case for HyperTSL
and express hyperproperties in the context of software doping. We describe a bounded
synthesis approach for universal HyperTSL- and prove that the approximation we use
is sound in Chapter 5. We conclude in Chapter 6.



Chapter 2

Preliminaries

In this chapter, we lay the foundations to understand the construction of the hyperlogic
HyperTSL. We first have a look at LTL and HyperLTL to see how a hyperlogic is
constructed from a logic. Then, we shortly discuss HyperLTL synthesis and introduce
TSL.

2.1 LTL
Linear temporal logic, LTL, is a popular logic used in formal verification. It was
first introduced by Amir Pnueli in 1977 [17]. We have a look at LTL as described by
Finkbeiner et al. [8]. We assume time to be discrete and represent it through the
set N of natural numbers. Let AP be a finite set of atomic propositions. A trace
tr ∈ (2AP )ω fixes for each point in time which set of atomic propositions holds. The
set of all traces over AP is denoted by (2AP )ω.

Example 2.1
As an example, we fix AP = {a, b}. Then a trace tr over AP can be expressed by the
sequence tr(0)tr(1)tr(2) . . .. Assuming that in the first time step no atomic proposition
holds, then in the second one both hold and in the third one only a holds, it can be
rewritten to ∅{a, b}{a} . . .. This trace is illustrated in Figure 2.1.

∅ {a, b} {a} . . . . . . . . .

0 1 2 . . . . . . . . .

Figure 2.1: An LTL trace

Definition 2.1 (Trace Projection)
We define the projection of a trace tr over the set AP onto a set S with S ⊆ AP to
be the sequence ν ∈ (2S)ω such that ∀t ∈ N. ν(t) = tr(t) ∩ S.



8 Preliminaries

2.1.1 Syntax
Definition 2.2 (Syntax)
An LTL formula is constructed using the following grammar:

ϕ B a | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

LTL formulas contain atomic propositions, represented by the atomic proposition
a ∈ AP in the grammar, that are either true or false. Apart from the standard boolean
operators like negation (¬) and conjunction (∧), we also have the temporal operators
next ( ) and until (U). The temporal next operator ϕ expresses that after one time
step ϕ must hold, and the until operator ϕU ψ expresses that at some point in time
ψ must hold but up until this point ϕ must hold. Apart from the standard boolean
and temporal operators, we also have the following derived boolean and temporal
operators:

• ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), states that ϕ or ψ must hold

• ϕ→ ψ ≡ ¬ϕ ∨ ψ, states that ϕ implies ψ

• ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ), states that ϕ is equivalent to ψ, that is ϕ holds
if and only if ψ holds

• ϕ⊕ ψ ≡ (¬ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ), states that either ϕ or ψ holds

• ϕRψ ≡ ¬(¬ψ U ¬ϕ), states that either ψ always holds or that ψ holds until at
some point ψ ∧ ϕ hold, i.e., ϕ releases ψ

• ϕ ≡ true U ϕ, states that eventually ϕ will hold

• ϕ ≡ false Rϕ, states that ϕ always holds

• ϕW ψ ≡ ( ϕ) ∨ (ϕU ψ), states that either ϕ always holds or that eventually ψ
holds but up to this point ϕ holds

2.1.2 Semantics
Let tr ∈ (2AP )ω be a trace. The satisfaction of an LTL formula ϕ is evaluated with
respect to a trace tr and a point in time t ∈ N via the following semantics:
Definition 2.3 (Semantics)

tr, t |= a ⇔ a ∈ tr(t)
tr, t |= ¬ϕ ⇔ tr, t 6|= ϕ

tr, t |= ϕ1 ∧ ϕ2 ⇔ tr, t |= ϕ1 ∧ tr, t |= ϕ2

tr, t |= ϕ ⇔ tr, t+ 1 |= ϕ

tr, t |= ϕ1 U ϕ2 ⇔ ∃i ≥ t. tr, i |= ϕ2 ∧ ∀t ≤ j < i. tr, j |= ϕ1
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An atomic proposition a holds w.r.t. a trace tr and a point in time t iff it is contained
in the set of atomic propositions that hold on trace tr at time point t. In order to
check whether a formula ¬ϕ is satisfied by a trace and a point in time, we check
whether the formula ϕ is not entailed by the trace and the point in time. To satisfy
boolean conjunction, both conjuncts need to be satisfied. Therefore, both conjuncts
are checked separately for satisfaction given the trace and the point in time. For the
next operator, we check whether the formula following the operator is fulfilled one
time step later at t+ 1. An until formula ϕU ψ is satisfied by a trace tr and a time
point t, iff at some point in time ψ is satisfied and until this time point ϕ is satisfied.

A trace tr satisfies a formula ϕ iff tr, 0 |= ϕ.

2.2 HyperLTL
Hyperproperties are sets of sets of traces. While temporal logics describe sets of traces,
we need temporal hyperlogics to describe sets of sets of traces. Hyperlogics can relate
traces and specify behavior of traces with respect to other traces. They are thus more
powerful than standard temporal logics. The temporal logic LTL can only describe the
behavior of an individual trace. HyperLTL is a widely used hyperlogic that extends
LTL with explicit quantification over traces. Explicit quantification over traces allows
referring to specific traces in the formula and using indexed atomic propositions to
determine what trace an atomic proposition comes from. In the following, we have a
look at HyperLTL as introduced by Clarkson et al. [2].
2.2.1 Syntax
Definition 2.4 (Syntax)
A HyperLTL formula is constructed using the following grammar:

ϕ B ∃π.ϕ | ∀π.ϕ | ψ
ψ B aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

In the indexed atomic proposition aπ, the index π is a trace variable from the set of
traces variables V.
The syntax allows a sequence of quantifiers of arbitrary length before the formula
described by the second category of the syntax starts. All atomic propositions occurring
in the formula are indexed by trace variables indicating from which trace they stem.
A formula is closed if all trace variables that occur as indices in the formula were
introduced by a quantifier in the prefix. We have the same boolean and temporal
operators as for LTL.
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Example 2.2 (Observational Determinism)
Observational Determinism [8] is a popular hyperproperty stating that if on two traces
the observable inputs are the same, then the observable outputs must also be the
same. Using HyperLTL, it is expressed by the formula

∀π∀π′. (iπ ↔ iπ′)→ (oπ ↔ oπ′)

The indexed atomic propositions iπ and iπ′ are the observable inputs from the traces
π and π′ respectively and oπ and oπ′ are the observable outputs from the traces π and
π′, respectively.

2.2.2 Semantics
Let T be a set of traces. Let Π : V → (2AP )ω be a trace assignment that maps
trace variables to traces. Π∅ denotes the empty assignment. Π[π → tr] denotes the
assignment that is the same as Π except that the trace variable π now maps to trace tr.
Π(π) denotes the trace that is assigned to trace variable π in Π. Π(π)[i,∞] denotes the
trace that is assigned to π in Π starting at position i. The satisfaction of a HyperLTL
formula is evaluated with respect to a set of traces T , a trace assignment Π and a
time point t ∈ N as follows:

Definition 2.5 (Semantics)

T,Π, t |= aπ ⇔ a ∈ Π(π)(t)
T,Π, t |= ¬ψ ⇔ T,Π, t 6|= ψ

T,Π, t |= ψ1 ∧ ψ2 ⇔ T,Π, t |= ψ1 ∧ T,Π, t |= ψ2

T,Π, t |= ψ ⇔ T,Π, t+ 1 |= ψ

T,Π, t |= ψ1 U ψ2 ⇔ ∃i ≥ t. T,Π, i |= ψ2 ∧ ∀t ≤ j < i. T,Π, j |= ψ1

T,Π, t |= ∃π.ϕ ⇔ ∃tr ∈ T. T,Π[π → tr], t |= ψ

T,Π, t |= ∀π.ϕ ⇔ ∀tr ∈ T. T,Π[π → tr], t |= ψ

In order to tell if an atomic proposition aπ is entailed by the given trace set and
trace assignment at time point t, we must check whether it is contained in the set of
atomic propositions that results when looking up time point t in the trace that the
proposition stems from. This trace is obtained by looking up the trace variable π in
the trace assignment Π. For the boolean and temporal operators, we proceed as with
LTL until at some point we reach an indexed atomic proposition which we look up, as
previously described.
If we want to check whether a formula ∃π.ϕ that starts with an existential quantifier
is satisfied by the given trace set and trace assignment, we must check if there exists a
trace in the trace set T such that if we map the quantified trace variable π to that
trace, the formula is satisfied by the resulting trace assignment and the trace set. If
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we want to check whether a formula ∀π.ϕ that starts with a universal quantifier is
satisfied by the given trace set and trace assignment, we must check, if for each trace
in the trace set T , it holds that if we map the quantified trace variable π to that trace,
the formula is satisfied by the resulting trace assignment and the trace set.

A set of traces T satisfies a HyperLTL formula ϕ, denoted by T |= ϕ, iff T,Π∅, 0 |= ϕ.

2.3 HyperLTL Synthesis
In HyperLTL synthesis [11], the goal is to automatically construct a system that fulfills
a given specification expressed as a HyperLTL formula. This system is then guaranteed
to fulfill the expressed hyperproperties by construction. In order to construct such
a system, we need to construct a strategy that transforms inputs to system outputs
and satisfies the specification. Since a system transforms inputs to outputs, a strategy
f : (2I)+ → (2O), which is a mapping of sequences of sets of inputs to a set of outputs,
describes how a system reacts to inputs. It is represented by an infinite tree, the
so-called strategy tree f , that branches over all possible inputs and has nodes labeled
with the outputs.

f(∅) f({i})

f(∅∅) f(∅{i}) f({i}∅) f({i}{i})
. . . . . . . . . . . .

∅ {i} {i}∅

{i}∅

Figure 2.2: A strategy tree for a strategy f : (2I)+ → (2O) [7]

This means, given an input sequence w ∈ (2I)+ the corresponding output f(w) is the
label of the node in the tree that is reached when branching as described by the input.
If we collect all inputs and outputs along a path, we obtain a trace. Formally, the
trace corresponding to the infinite input sequence w = w0w1 . . . ∈ (2I)ω is defined as
(w0 ∪ f(w0)) (w1 ∪ f(w0w1))(w2 ∪ f(w0w1w2)) . . . ∈ (2I∪O)ω.
We lift the operator for set containment ∈ to the containment of a trace in a strategy.
A trace v = v0v1v2 . . . ∈ (2I∪O)ω is contained in a strategy tree induced by a strategy
f : (2I)+ → (2O) iff f((v0 ∩ I) . . . (vi ∩ I)) = vi ∩O for all i ≥ 0.
We call the set that results from collecting all the traces in a tree traces(f ) defined as
{v | v ∈ f}. While for LTL synthesis it suffices that each trace from this set fulfills
the specified formula individually, for HyperLTL synthesis the traces from this set
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must be in a specified relationship with each other.
If the set traces(f ) resulting from the strategy tree f satisfies the formula, we say that
the strategy f realizes the specification. A formula is realizable if and only if there
exists a strategy that realizes the specification. Following the definition by Finkbeiner
et al. [11], we formally define HyperLTL realizability:

Definition 2.6 (HyperLTL Realizability)
A HyperLTL formula ϕ over atomic propositions AP = I ∪O is realizable if there is a
strategy f : (2I)+ → (2O) that satisfies ϕ, that is traces(f ) |= ϕ.

The HyperLTL realizability problem is in general undecidable. However, certain
decidable fragments can be characterized, as done by Finkbeiner et al. [11]. They
classify the decidability results based on the structure of the quantifier prefix. The
realizability problem of a formula that contains only one universal quantifier is
equivalent to the LTL realizability problem and, thus, decidable. Once there is
more than one universal quantifier, the problem becomes in general undecidable.
Consequently, both the universal ∀∗ fragment and the ∀∗∃∗ fragment are undecidable
as well. However, the realizability of the linear ∀∗ fragment, i.e., all universal HyperLTL
formulas that can be represented by an equivalent formula that have a distributed form
and contain only two universal quantifiers, is decidable. The existential fragment ∃∗,
meaning a sequence of arbitrary length of existential quantifiers, is PSPACE-complete.
If the existential fragment is extended with one universal quantifier ∃∗∀1, it is still
decidable and lies within 3EXPTIME.

Finkbeiner et al. present an approach for bounded realizability of universal HyperLTL
formulas [11]. They also implement a bounded approach for finding counterexamples
if the strategy is unrealizable. Based on these two approaches, they implement
BoSyHyper, a prototype synthesis tool for hyperproperties expressed in universal
HyperLTL. The bounded approach and the tool were later extended to HyperLTL
formulas with one quantifier alternation by Coenen et al. [3]. BoSyHyper constructs a
strategy using a bounded synthesis algorithm if the formula is realizable and provides
a counterexample if the formula is unrealizable. Bounded synthesis [7] is an instance
of synthesis that focuses on finding small implementations. The idea behind this
approach is based on the fact that in practice, realizable specifications often have
reasonably small implementations. Bounded synthesis uses a precomputed maximal
bound on the number of states and only considers implementations with numbers of
states up to this bound. If up to this bound no implementation was found, then with
this bound none exists. BoSyHyper is based on the LTL tool for bounded synthesis
BoSy [11]. BoSyHyper splits the formula into an LTL formula and a part that contains
the hyperproperty in the shape of a HyperLTL formula. Due to this separation, two
constraint systems are created that are more concise than if it had been one. The
constraint system of the LTL formula can be created using BoSy and the constraint
system resulting from the hyperproperty is constructed using the bounded synthesis
approach for hyperproperties.
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2.4 TSL
In this section, we introduce the temporal stream logic TSL as defined by Finkbeiner
et al. [10]. We introduce the necessary definitions first. A value can be of arbitrary
type and stems from the set V of all values. V subsumes the boolean values, i.e.,
B ⊆ V . We use streams to express the constant flow of data over time. A stream
s : N→ V maps a point in time to a value. We use a stream for each data component
we want to represent. If there is for instance data from two different input sources,
each source is represented by an input stream. Apart from input streams, there are
output streams and computation streams, at which we have a more detailed look later.
A function f : V n → V computes a new value from n given values and stems from the
set of all functions of arbitrary arity denoted by F . Constants are expressed through
functions of arity 0 and stem from the set F ∩ V since they are values as well. A
predicate p : V n → B checks a property over n values. The set of all predicates of
arbitrary arity is denoted by P and is a subset of F , i.e., P ⊆ F .

A TSL formula describes properties on a reactive system that, given a finite number of
inputs I, produces a finite number of outputs O in every time step t. The inputs are
obtained from an infinite input stream, that for each time step provides new inputs.
Cells C are used to store values during the computation making them reusable as
inputs in the respective next step. The system uses functions without side-effects to
transform the values of the input streams in every time step and either pass them on
to an infinite output stream or to a cell where it can serve as input for, for instance,
another function computation.

In TSL there are functions f ∈ F and their compositions used to transform values,
and predicates p ∈ P that control the flow of data in the system. Both functions and
predicates are represented through a term-based notation.

Definition 2.7 (Term Notation)

Function Term:
τF B si | (f τ0

F τ1
F . . . τn−1

F )
Predicate Term:

τP B p (τ0
F τ1

F . . . τn−1
F )

Update: Jso � τF K

A function term τF can be obtained from an input or a cell value si ∈ I ∪ C or it can
be a function application recursively applied to function terms. A predicate term τP
is a predicate recursively applied to function terms. An update is either a function
term stored in a cell or passed on to an output so ∈ C ∪ O. The sets of function
and predicate terms and updates are denoted by TF , TP , and TU respectively, and
TP ⊆ TF .
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We use si, so, f, and p as symbolic representations of inputs and cells, outputs and
cells, functions, and predicates respectively. Furthermore, TSL uses uninterpreted
functions and predicates. Consequently, functions and predicates are not tied to a
specific implementation. We use F to denote the set of function literals and P to
denote the set of predicate literals. Literals like si, so, f, and p are used to construct
terms as described in the term notation. Again it holds that P ⊆ F. In order to give
meaning to the uninterpreted representation, we use an evaluation function 〈·〉 : F→ F .
Note that, since P ⊆ F and P ⊆ F , the evaluation function also provides, though
not explicitly stated, a semantic interpretation for predicate literals. Terms can be
compared syntactically with the equivalence relation ≡.

To describe the reactive system more precisely, we have a closer look at input and
output streams. A momentary input i ∈ I→ V assigns inputs i ∈ I to values v ∈ V
and thus describes what value the input has. In the following, we denote I→ V by I
for readability reasons. Input streams are infinite streams that consist of an infinite
sequence of momentary inputs ι ∈ Iω, one per point in time. Similarly, we define
momentary outputs o ∈ O→ V to assign a value v ∈ V to each output o ∈ O, where
from now on O = O→ V . Output streams ρ ∈ Oω are infinite streams that consist of
an infinite sequence of momentary outputs. In order to reason about how the input
streams are transformed to output streams, we use the notion of a computation σ,
which is used to describe the behavior of cells. Capturing the behavior of each cell
describes the behavior of the entire system since every function transformation is
stored in a cell and those are only performed when the predicates guided the control
to do so. Since TSL abstracts from data, it also abstracts from actually computing the
values of function applications, allowing us to specify a computation without fixing a
semantics for function literals. A computation thus only determines the function terms
that are used to compute outputs and cell updates. A computation is composed of
computation steps c ∈ (O ∪ C)→ TF that assign cells so ∈ (O ∪ C) to function terms
τF ∈ TF . Let C = (O ∪ C)→ TF . A computation step describes the behavior of the
system with regard to the control flow at a single point in time. Since a computation
σ ∈ Cω is used to transform an infinite input stream to an infinite output stream,
it is as well an infinite sequence of computation steps where each step transforms a
momentary input to a momentary output. However, in order to obtain an output
stream, we need a concrete interpretation for functions and predicates in addition to
the input stream. That is because a momentary output assigns outputs to concrete
values that stem from function terms. Thus, in order to get a concrete value, we
need to evaluate predicates and functions. As already stated, let 〈·〉 : F→ F be some
function evaluation. We assume that every cell c ∈ C contains some initial value
for each stream at the initial point in time expressed through a predefined constant
initc ∈ F ∩ V .
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In order to obtain a concrete value for a function term at a certain point in time t, we
use the evaluation function η〈·〉 : Cω × Iω × N× TF → V :

Definition 2.8 (Evaluation Function η)

η〈·〉(σ, ι, t, si) =


ι(t)(si) if si ∈ I
initsi if si ∈ C ∧ t = 0
η〈·〉(σ, ι, t− 1, σ(t− 1)(si)) if si ∈ C ∧ t > 0

η〈·〉(σ, ι, t, f τ0 . . . τm−1) = 〈f〉 η〈·〉(σ, ι, t, τ0) . . . η〈·〉(σ, ι, t, τm−1)

As we can see, the evaluation function η〈·〉 takes a computation σ ∈ Cω, an input
stream ι ∈ Iω, a time point t ∈ N, and a function term τF ∈ TF as arguments and
computes the value that the function term evaluates to at point t under σ and ι. Since
a function term can either be constructed from inputs, cells, or functions recursively
applied to function terms, we get four different cases. The function term τF can be of
the form si and is then either constructed from inputs or cells. If it stems from the
set of inputs I, then we simply look at the value assigned to si by the input stream
at time t. If si is constructed from a cell, then we need to make yet another case
distinction with regard to the time point t.
If t = 0, we are at the initial time point of the computation and there are not yet
any values to have been stored in the cell, meaning that it still contains its initially
assigned value initsi .
In the other case where t > 0, we know that time has already passed and that possibly
new function terms were stored in cell si. Therefore, we need to “trace back” how the
current content was constructed. This is done by recursively computing the result of
the evaluation function from one time step before and replacing si by the function
term that is mapped to si by the computation one step before. This computation
terminates since t decreases in each step and will eventually reach 0 so that the
second case will be entered. The function term τF can also be a function application
recursively applied to a set of function terms. If we want to evaluate a function term
where a function literal is applied to a set of function terms, we do that by evaluating
the literal and applying it to its evaluated arguments. Note that, since P ⊆ F and
TP ⊆ TF , this case covers predicate terms.

Using the evaluation function η〈·〉, we can construct the concrete output stream
ρ〈·〉,σ,ι ∈ Oω of a system:

ρ〈·〉,σ,ι(t)(o) = η〈·〉(σ, ι, t, σ(t)(o)), for all t ∈ N, o ∈ O.

Output streams map points in time to momentary outputs. Thus, if we provide the
output stream with a time point t and an output o, we receive the value that the
output has at that point. This value is computed through evaluating the function
term that the computation maps to the output at time point t.
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2.4.1 Syntax
We now have a look at how to construct formulas using TSL.

Definition 2.9 (Syntax)
A TSL formula ϕ is generated using the following grammar:

ϕ B τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

Atomic components, represented by τ are either a predicate term or an update that
expresses the control flow at the respective time point. Furthermore, we have the
standard boolean operators, negation and conjunction, and the standard temporal
operators next and until. Further boolean and temporal operators can be derived like
for LTL.
2.4.2 Semantics
Let 〈·〉 : F → F be an evaluation function, ι ∈ Iω an input stream, and σ ∈ Cω a
computation. Then the satisfaction of a TSL formula ϕ w.r.t. to a computation σ
and an input stream ι is defined inductively over t ∈ N via the following semantics:

Definition 2.10 (Semantics)

σ, ι, t |=〈·〉 p τ0 . . . τn ⇔ η〈·〉(σ, ι, t, p τ0 . . . τn)
σ, ι, t |=〈·〉 Js� τK ⇔ σ(t)(s) ≡ τ
σ, ι, t |=〈·〉 ¬ϕ ⇔ σ, ι, t 6|=〈·〉 ϕ
σ, ι, t |=〈·〉 ϕ1 ∧ ϕ2 ⇔ σ, ι, t |=〈·〉 ϕ1 ∧ σ, ι, t |=〈·〉 ϕ2

σ, ι, t |=〈·〉 ϕ ⇔ σ, ι, t+ 1 |=〈·〉 ϕ
σ, ι, t |=〈·〉 ϕ1 U ϕ2 ⇔ ∃i ≥ t. σ, ι, i |=〈·〉 ϕ2 ∧ ∀t ≤ j < i. σ, ι, j |=〈·〉 ϕ1

In order to evaluate a predicate at a certain time point, we use the evaluation function
and compute whether the predicate holds on the given function terms. We use the
evaluation function since we want to know the concrete boolean value that the predicate
evaluates to.
In contrast, when evaluating an update, we can stay on the symbolic level since we just
want to check syntactically whether the control flow of the system was as expected.
Since the computation σ captures the behavior of the cells and thus describes the
control flow, we syntactically compare the function term that we want to update the
cell s with, with the function term that we find for s at time point t in the computation
using the equivalence relation ≡.
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In order to check whether ¬ϕ is satisfied by a computation and an input stream, we
check whether the formula ϕ is not entailed by the computation and the input stream.
The boolean and temporal operators are evaluated as for LTL.
A computation σ and an input stream ι satisfy a TSL formula ϕ denoted by σ, ι |=〈·〉 ϕ
iff σ, ι, 0 |=〈·〉 ϕ.



Chapter 3

HyperTSL

In this chapter, we present a hyperlogic for TSL called HyperTSL. Like other hyperlog-
ics, it allows explicit quantification over traces and indexes atomic components in order
to specify to which trace they belong. There are two major design decisions that need
to be taken when constructing HyperTSL from TSL. The first one is concerned with
the function evaluation 〈·〉 and whether it can be chosen for each trace individually
or whether it must be the same for all traces. For HyperTSL, we decide to use the
same evaluation function for all traces, as the traces all stem from the same system.
As predicates are a subset of functions, we also use the same evaluation function for
predicates on all traces. The second design decision for HyperTSL is concerned with
how terms are indexed. There are different options for indexing terms with trace
variables, as unlike in LTL, the basic components of a TSL formula are not atomic.
The basic components of a TSL formula are predicate terms and updates which each
consist of several components. In a HyperTSL formula, we can also have multiple
predicate terms and updates that stem from different traces. We thus need to find an
appropriate way of indexing predicate terms and updates with trace variables. For
predicates terms, we can see the predicate literal and its arguments as one atomic
component or we can see the arguments as individual components. If we choose to
see the predicate literal and its arguments as one atomic component, then we index
the entire predicate term with a trace variable which means that all arguments come
from this trace. If we choose to see the predicate and its arguments as individual
components, we must index each argument individually. This allows predicates to
take arguments from different traces. This is dramatically more expressive. A similar
approach for updates, where a cell and the value that it is assigned are seen as indi-
vidual components and thus indexed differently, can however not be taken. Indexing
the components of an update individually would allow expressing hyperproperties,
where we could assign a value from one trace to the cell of another trace. This would
describe behavior that is neither desirable for the hyperlogic nor allowed in TSL. As
indexing the components of an update individually entails undesired behavior, the only
option is to see updates as atomic components and index them accordingly. As there
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is only one possibility for indexing updates and two possibilities for predicate terms,
we can derive a hyperlogic and identify a syntactic fragment of it. Depending on what
approach is chosen for predicate terms, which immediately affects function terms as
well, hyperlogics with different expressivity result. We choose the approach where
we index each argument of a predicate term individually for HyperTSL. Choosing
the approach where predicate terms are atomic components, results in a fragment of
HyperTSL, which we call HyperTSL- and which we explore further in Section 3.3.

We introduce an indexed term notation for HyperTSL. The indices used in a HyperTSL
formula stem from the set of trace variables V. The set of indexed predicate terms
TP,V , and the set of indexed updates TU,V are a subset of the set of all indexed terms
TV . Furthermore, it holds that since predicate terms are a subset of function terms in
TSL, indexed predicate terms are a subset of indexed function terms in HyperTSL,
TP,V ⊆ TF,V . Indexed terms τπ ∈ TV , where π ∈ V , are constructed using the following
term-based notation:

Definition 3.1 (Indexed Terms)

Indexed Function Term:
τF,π B siπ | f (τ0

F,π τ
1
F,π . . . τn−1

F,π )
Indexed Predicate Term:

τP,π B p (τ0
F,π τ

1
F,π . . . τn−1

F,π )
Indexed Update: Jso � τF,πKπ

Where we restrict that all components of an indexed function term occurring in an
update must be from the same trace as the update itself.

In an indexed term τπ, π ∈ V is the trace variable that indicates the trace that the
term stems from. Indexed function terms are either an indexed input or a cell, or
constructed from functions that are recursively applied to a set of indexed function
terms. Indexed predicate terms are predicates applied to a set of indexed function
terms. The definition of indexed function and predicate terms syntactically allows
function computations and predicate evaluations to take arguments from different
traces. We further explore this feature when defining the semantics. Indexed updates
Jso � τF,πKπ are updates indexed with a trace variable π but with the restriction that
all indexed function terms occurring in the indexed function term τF,π must be indexed
by the same trace variable π as the update itself. This syntactically enforces that all
indexed function terms in an update stem from the same trace as the update itself.
Therefore, a cell can only store function terms that stem from the same execution. At
first sight, it might seem as if it would suffice to only use non-indexed function terms
for HyperTSL as function terms in an update must be from the same trace as the
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update. However, as predicate terms are a subset of function terms, predicates can
also occur in an update, for instance Jc� p (xπ, yπ)K. Therefore, in order to comply
with the definition of indexed predicate terms, we must use indexed function terms in
an update and cannot just use standard function terms, even though all components
must be from the same trace. Furthermore, indexed function terms can occur in
indexed predicate terms. Recall that since TP,π ⊆ TF,π, we can also assign predicate
terms to cells in updates and we can nest predicate terms though not explicitly stated.
All the imposed restrictions on function terms, thus, also hold for predicate terms in
the same contexts. We omit parentheses for predicates and functions with only one
argument. Next, we define the syntax of HyperTSL. A HyperTSL formula is generated
using the following grammar:

Definition 3.2 (Syntax)

ϕ B ∃π.ϕ | ∀π.ϕ | ψ
ψ B τπ ∈ TP,V ∪ TU,V | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

The function term τπ ranges over the set TP,V of indexed predicate terms or TU,V of
indexed updates and the trace variable π ranges over the set of trace variables V.
Indexed predicate terms and indexed updates evaluate to true or false. Note that τπ
cannot be an indexed function term from the set TF,V \ TP,V since the components
of a HyperTSL formula must evaluate to a truth value. A HyperTSL formula starts
with a sequence of quantifiers of arbitrary length, containing existential or universal
quantifiers, followed by a formula from the second category of the grammar. Like for
TSL, we have the standard boolean connectives, i.e., negation, and conjunction, as
well as the temporal operators next and until. Other boolean and temporal operators
can be derived as for LTL. HyperTSL subsumes TSL, as we can build a formula with
only one universal quantifier and then choose the last option in the first category of
the grammar, which is equivalent to a TSL formula.
A HyperTSL formula is closed if all trace variables that occur as indices in the formula
were introduced by a quantifier in the prefix. In the following, we only consider closed
formulas.

3.1 Traces
Hyperproperties are evaluated over a set of traces. In order to be able to evaluate a
hyperproperty expressed in HyperTSL on a system, we must first specify the traces on
which the hyperproperties are evaluated. Intuitively, a trace is a sequence that for each
point in time provides a momentary insight into the system behavior. For LTL, the
momentary internal state of a system is expressed through a set of atomic propositions,
which encode both the momentary input and output of the system. As both inputs
and outputs are represented by atomic propositions, an LTL trace stems from the set
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of all traces over AP , (2AP )ω (see Figure 3.1). In order to be able to represent the
momentary internal state of a system specified in TSL, we need both the momentary
inputs and momentary outputs. While the inputs can be accessed through the input
stream, it is not so easy to obtain the outputs since we need to fix a function evaluation
that gives meaning to the symbolic representation of the functions and predicates
used to compute the outputs. Since we do not want to fix a function evaluation this
early, we cannot use the output stream to depict the behavior of the system. Another
way to depict the behavior of the system is through a computation. A computation
captures the behavior of each cell and, thus, depicts the control flow and the behavior
of the system for each point in time. An input stream and a computation suffice to
compute an output stream once a concrete function evaluation is chosen. Therefore,
an input stream and a computation suffice to depict the momentary internal state of
a system execution. Using only the computation and the input stream to describe an
execution trace leaves enough room for choosing whatever function evaluation fits our
purposes best since, after all, the function evaluation in combination with the control
flow is what makes the system realize the desired behavior. A HyperTSL trace is thus
a pair (σ, ι) of a computation σ ∈ Cω and an input stream ι ∈ Iω. For comparison,
Figure 3.1 illustrates what a HyperLTL trace πL and a trace π in HyperTSL look like.

HyperLTL

trace πL
{a} {a, b} . . . {} {b} . . .

. . .

0 1 . . . t t+1 . . .

HyperTSL

i 7→ 5 i 7→ 2 . . . i 7→ 5 i 7→ 7 . . .

. . .

trace π ×

c 7→ i c 7→ add i c c 7→ i c 7→ add i c

. . .

0 1 . . . t t+1 . . .

Figure 3.1: A HyperLTL trace and a HyperTSL trace

On the HyperLTL trace πL, the atomic proposition a holds in the first time step, a
and b hold in the second time step, no atomic proposition holds in time step t and
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b holds again in t+ 1. On the HyperTSL trace π the input stream assigns 5 to the
input i and the computation assigns the input i to the cell c in the first time step.
This means that in the first time step, cell c stores the value of i, which is 5. In the
second time step, the input stream provides the value 2 for i and cell c stores the
result of adding the current input value 2 and the stored value 5. In time steps t and
t+ 1 the behavior is similar to what we just described.
We fix the type of the HyperTSL trace assignment that maps trace variables to traces
as Π : V → (Cω ×Iω). Let #1 and #2 be the projections that return the first and the
second component of a pair respectively.
In order to evaluate indexed terms, we need an evaluation function to take care of
the potentially different traces, that the values stem from. Consider the predicate
term p (f(xπ, xπ′)). If we tried to evaluate this term using the evaluation function
η〈·〉 we would need to commit to one trace before unfolding the definition of η〈·〉 for
predicate terms. Then we could unfold the definition of η〈·〉 for function terms, but
when evaluating the arguments of the function term, xπ and xπ′ , we encounter the
problem that we are already committed to a specific trace, while the arguments come
from two potentially different traces. We define an evaluation function µ〈·〉 : (V →
(Cω × Iω)) × N × TV → V that given a trace assignment Π and a point in time t
evaluates an indexed term τπ.

Definition 3.3 (Evaluation Function µ〈·〉 for HyperTSL)

µ〈·〉(Π, t, si,π) =


#2(Π(π))(t)(si) if si ∈ I
initsi if si ∈ C ∧ t = 0
µ〈·〉(Π, t− 1, index π (#1(Π(π))(t− 1)(si))) if si ∈ C ∧ t > 0

µ〈·〉(Π, t, f τπ0 . . . τπn−1) = 〈f〉 µ〈·〉(Π, t, τπ0) . . . µ〈·〉(Π, t, τπn−1)

where the function index : V → TF → TF,V is defined as:

index π si = si,π

index π (f τ0 . . . τn−1) = f (index π τ0) . . . (index π τn−1)

As we can see, the evaluation function µ〈·〉 takes a trace assignment Π, a time point
t ∈ N, and an indexed function term τF,π ∈ TF,V as arguments and computes the value
that the indexed function term evaluates to at point t. Since an indexed function
term can either be constructed from inputs, cells, or functions recursively applied to
function terms, we get four different cases. The indexed function term τF,π can be of
the form si,π and is then either constructed from inputs or cells. If it stems from the
set of inputs I, then we simply look at the value assigned to si by the input stream of
trace π at time t. The input stream that belongs to trace π is obtained by looking
up the trace variable π in the trace assignment Π and then projecting on the second
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component of the trace. If si,π is constructed from a cell, then we need to make yet
another case distinction with regard to the time point t.
If t = 0, we are at the initial time point of the computation and there are not yet any
values to have been stored in the cell, meaning that it still contains its initially assigned
value initsi . The initial value of a cell is independent of traces as the execution has
not even started, which is why we simply return the initial value of the cell.
In the other case, where t > 0, we know that time has already passed and that possibly
new function terms were stored in cell si. Therefore, we need to “trace back” how the
current content was constructed. This is done by recursively computing the result of
the evaluation function from one time step before and replacing si by the function
term that is mapped to si by the computation one step before. The computation that
contains the matching information is obtained by projection on the first component
of the trace that is mapped to trace variable π in Π. As the function term that is
stored in the cell, can itself be composed of other function terms and is evaluated
by µ〈·〉 again, we must index the function term with the trace variable of the trace
we are currently on, in order to match the type of the evaluation function. To do so,
we use the function index which given a trace variable and a function term returns
the indexed function term, which results when indexing each argument component
of the function term with the given trace variable. Each argument of the function
term can be indexed with the same variable because we only allowed function terms
in updates to take arguments from the same trace. The indexed function term τF,π
can also be a function application recursively applied to a set of indexed function
terms. If we want to evaluate a function term where a function literal is applied to
a set of function terms, we do that by evaluating the literal and applying it to its
evaluated arguments. Note that, since P ⊆ F and T,V ⊆ TF,V , this case covers indexed
predicate terms as well. While, conceptually, the evaluation function µ〈·〉 is similar
to the evaluation function η〈·〉 for TSL (see Definition 2.8), the difference is, that η〈·〉
uses a concrete trace to evaluate a function term, while here, we do not commit to
one trace but instead take the entire trace assignment to evaluate a function term.
For HyperTSL, we must provide the evaluation function with the trace assignment, as
indexed function terms can be nested, and thus arguments of indexed function terms
can come from different traces. Therefore, we cannot directly determine what trace is
needed to evaluate a component of an indexed function term.
The satisfaction of a HyperTSL formula is evaluated with respect to a trace assignment
Π : V → (Cω × Iω) and a set of traces T at a time point t as follows:
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Definition 3.4 (Semantics)

Π, T, t |=〈·〉 p (τπ0 . . . τπn−1) ⇔ µ〈·〉(Π, t, p (τπ0 . . . τπn−1))
Π, T, t |=〈·〉 Js� τKπ ⇔ #1(Π(π))(t)(s) ≡ τ
Π, T, t |=〈·〉 ¬ϕ ⇔ Π, T, t 6|=〈·〉 ϕ
Π, T, t |=〈·〉 ϕ1 ∧ ϕ2 ⇔ Π, T, t |=〈·〉 ϕ1 ∧ Π, T, t |=〈·〉 ϕ2

Π, T, t |=〈·〉 ϕ ⇔ Π, T, t+ 1 |=〈·〉 ϕ
Π, T, t |=〈·〉 ϕ1 U ϕ2 ⇔ ∃i ≥ t : Π, T, i |=〈·〉 ϕ2 ∧ ∀t ≤ j < i : Π, T, j |=〈·〉 ϕ1

Π, T, t |=〈·〉 ϕ ⇔ ∃i ≥ t : Π, T, i |=〈·〉 ϕ
Π, T, t |=〈·〉 ϕ ⇔ ∀i ≥ t : Π, T, i |=〈·〉 ϕ
Π, T, t |=〈·〉 ∃π.ϕ ⇔ ∃(σ, ι) ∈ T : Π[π → (σ, ι)], T, t |=〈·〉 ϕ
Π, T, t |=〈·〉 ∀π.ϕ ⇔ ∀(σ, ι) ∈ T : Π[π → (σ, ι)], T, t |=〈·〉 ϕ

As already mentioned, predicates can take arguments from different traces, where
every argument is indexed by the trace it stems from. Therefore, when evaluating a
predicate term under a trace assignment Π and a trace set T at a time point t, we
check whether the evaluation function µ〈·〉 evaluates the predicate to true given the
trace assignment Π and the time point t. As the arguments of a predicate can be
from different traces, it is possible that each argument comes from a different trace.
Since the evaluation function µ〈·〉 gets the entire trace assignment, it can evaluate the
arguments of the predicate term on the matching traces, as the traces are accessible
through the trace assignment. Eventually, the arguments of the predicate term will
have been broken down to either a cell or an input stream which must be from one
specific trace. Therefore the evaluation terminates at some point. For indexed updates,
we required that every indexed function term occurring in the update must be indexed
by the same trace variable as the update. In order to evaluate an update, we access
the computation at time point t and compare the function term that is assigned to cell
s with the function term that is assigned by the update using the syntactic evaluation
function ≡. The computation is obtained by looking up the trace variable in the trace
assignment. The semantics for boolean and temporal operators is recursively defined
as for HyperLTL. When there is an existential quantification over a trace π, then a
specific pair (σ, ι) is picked from T and the trace assignment is updated such that
the mapping of all trace variables that are not π remain the same, but π now maps
to the specific pair. Note that for existential quantification, such a trace must exist.
When there is a universal quantifier, it must be that all traces from the set fulfill the
property. Given a concrete function evaluation 〈·〉 : F→ F , a set of traces T satisfies
a formula ϕ w.r.t. 〈·〉 iff Π∅, T, 0 |=〈·〉 ϕ.
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3.2 Battery Example
In this example, we illustrate the use of HyperTSL by expressing hyperproperties
regarding the behavior of a battery using HyperTSL. We first describe properties of
such a battery system using TSL. We consider a reactive system that uses sunlight
to charge its battery and that consumes energy depending on the inputs it gets from
the input stream consume. It needs constant sunlight to charge its battery, expressed
through the input stream sun and starts to lose energy whenever the sunlight input
drops below a certain threshold t. Whenever this is the case, the current value of the
battery bat is decremented by one. The value of the battery can range between 0
and 100, where it is “empty” at 0 and fully charged at 100. Once it is below 15, an
alarm should go off, signaling low energy of the system. Whenever the sunlight input
is above the given threshold, the battery is charging, meaning its value is incremented
by one in every time step. If the alarm was on and the battery gets recharged to
be above 15, the alarm should be turned off. We describe the system using TSL as
follows:

I = {sun, consume}
O = {bat, alarm}
C = {bat, alarm}
TP = {below15, less, greater, equal, p}
TF = TP ∪ {t, inc, dec, dec2, on, off, min, max}

We use uninterpreted functions and predicates, but we give the function literals and
predicate literals a semantics for the example in order to specify understandable prop-
erties. We use the functions inc(x) and dec(x) for incrementation and decrementation
respectively. The function dec2(x) decrements the value x by two instead of the usual
one. The functions min(x, y) and max(x, y) determine the minimum and maximum of
two values x and y respectively and are used to keep the bat values in the range of
0 to 100. In TSL, constants are expressed through zero-ary functions. We use the
constant t for the fixed threshold and on and off to describe the state of the alarm.
We use the predicate below15(bat) to determine whether the battery value is below
15 and the predicates less(x, y), greater(x, y), and equal(x, y) to compare values x
and y. The predicates less, greater, and equal have the expected meaning. Lastly,
we have the predicate p consume that determines whether energy is consumed because
of the input stream consume. We can now specify the desired properties.
In order to accurately model the described charging behavior, we must make a case
distinction on whether energy is consumed or not, and whether the sun value is less,
equal, or greater than the threshold. If the sun value is greater than the threshold
and no energy is consumed, we want the bat value to be incremented. If the battery
is fully charged, i.e., it is at 100, and still gets energy, the battery value stays at 100.

(greater(sun, t) ∧ ¬(p consume)→ Jbat� min(100, inc bat)K) (3.1)
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If the sun value is less than the threshold and no energy is consumed, the bat value
should be decremented. The value of a battery cannot be negative so we use max to
assure that the value assigned to bat is greater or equal to 0.

(less(sun, t) ∧ ¬(p consume)→ Jbat� max(0, dec bat)K) (3.2)

If the sun value is equal to the threshold and no energy is consumed, the bat value
should not change at all.

(equal(sun, t) ∧ ¬(p consume)→ Jbat� batK) (3.3)

If the sun value is greater than the threshold and energy is consumed, the bat value
does not change either. This is since the battery would charge because the greater
predicate holds, but at the same time energy is consumed, which means the bat value
decreases.

(greater(sun, t) ∧ p consume→ Jbat� batK) (3.4)

If the sun value is less than the threshold and energy is consumed we must decrement
the current bat value by two. The value is decremented by two since we need to
account for the loss of energy by consumption and by lack of sunshine.

(less(sun, t) ∧ p consume→ Jbat� max(0, dec2 bat)K) (3.5)

If the sun value is equal to the threshold and energy is being consumed, we decrement
the bat value by one.

(equal(sun, t) ∧ p consume→ Jbat� max(0, dec bat)K) (3.6)

An alarm should be turned on if the battery value gets critically low. We check whether
this is the case using below15 and if the predicate evaluates to true, we update the
alarm cell with on, otherwise with off. We must cover both cases explicitly, since
otherwise, if for one case nothing is specified, the cell could update itself with its
current value, Jalarm� alarmK and for instance, if alarm was previously on, it would
still be on in the next step, even though bat was not critically low.

(below15 bat→ Jalarm� onK) (3.7)

(¬below15 bat→ Jalarm� offK) (3.8)

Using HyperTSL, we can now specify, for instance, the following hyperproperties on
a system that satisfies these TSL properties. We can express determinism of the
system using a hyperproperty. Determinism means that for two traces, whenever the
inputs are the same, the outputs are also the same. For us, this means, if the inputs
provided by sun and consume are the same on both traces respectively, assuming same
initial battery values, then the resulting outputs alarm and bat are the same as well.
We use the uninterpreted predicate equal to compare the sun and bat values from
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different traces. This hyperproperty holds on any system that satisfies the above TSL
specification.

∀π∀π′. (equal(sunπ, sunπ′) ∧ p consumeπ ↔ p consumeπ′)
→ (Jalarm� onKπ ↔ Jalarm� onKπ′ ∧ equal(batπ, batπ′))

(3.9)

Note that if the system had additional secret inputs and some secret output, the above
property would state observational determinism (see Example 2.2).
In the next formula, we state that if for a pair of traces that have the same initial
battery value and either only consume energy or do not consume energy at all during
some predefined time, and they get charged and unloaded in exactly the reverse way
for the same amount of time steps each during this predefined time, then the battery
values will be equal after these time steps. As an example, the hyperproperty considers
9 time steps.

∀π∀π′.
(

equal(batπ, batπ′) ∧
( 9∧
i=0

(p consumeπ ∧ p consumeπ′)

∨
9∧
i=0

(¬p consumeπ ∧ ¬p consumeπ′)
)

∧ (
4∧
i=0

i greater(sunπ, t) ∧ i less(sunπ′ , t))

∧ (
9∧
i=5

i greater(sunπ′ , t) ∧ i less(sunπ, t))
)

→ 10 equal(batπ, batπ′)

(3.10)

The notation i denotes a sequence of i consecutive operators, e.g., 2 ϕ means
ϕ. This hyperproperty also holds on a system that fulfills the above TSL proper-

ties.
Next, we state that if the sun supply is the same for both systems, while the consump-
tion is different at all times, then it cannot be that the battery is incremented at the
same time on both traces.

∀π∀π′. equal(sunπ, sunπ′) ∧ (p consumeπ ⊗ p consumeπ′)
→ (¬(Jbat� inc batKπ ∧ Jbat� inc batKπ′))

(3.11)

This hyperproperty also holds on a system that fulfills the above TSL properties.
Furthermore, we can express the hyperproperty that the input provided by consume
does not influence the battery value. This means that whenever the sun values are
the same, the battery value should also be the same.

∀π∀π′. equal(sunπ, sunπ′)→ equal(batπ, batπ′) (3.12)
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This hyperproperty does not hold on the specified system, as the value of consume
influences the bat values as well.
Lastly, we use the fact that updates have a truth value for specifying hyperproperties.
If we want to state that whenever the sun values are the same, then the alarm values
also always have the same value, we could use the equal predicate for comparing the
alarm values as in Formula 3.12. But instead, we can check whether alarm is updated
with on in exactly the same time steps on both traces. This check has the same effect
as an equality predicate would have since we always either assign on or off to alarm.

∀π∀π′.( equal(sunπ, sunπ′))→ (Jalarm� onKπ ↔ Jalarm� onKπ′) (3.13)

The specified hyperproperty does not hold on the system, as like for Formula 3.12 the
value of consume influences the bat value and, thus, also the value stored in the cell
alarm.

3.3 HyperTSL-

HyperTSL- is a fragment of HyperTSL. For HyperTSL we choose to index the argu-
ments of a predicate individually, and for HyperTSL- we choose to index the entire
predicate as an atomic component. While indexing the arguments of predicate terms
individually allows expressing a wider range of predicate terms, higher expressivity
of HyperTSL can cause more challenges compared to HyperTSL- when it comes to
problems such as model checking or synthesis. For synthesis, for instance, finding an
approximation of HyperTSL- formulas to HyperLTL formulas is more intuitive as the
concept of atomic components is more similar for HyperTSL- and HyperLTL than for
HyperTSL and HyperLTL, as we see in Chapter 5. Even though HyperTSL- is only a
fragment of HyperTSL, it still allows expressing many useful hyperproperties that are
not expressible using HyperLTL. We introduce a term notation that realizes the index
restriction on predicate terms.

Definition 3.5 (Indexed Term Notation)

Function Term[-]:
τF B si | f (τ0

F τ1
F . . . τn−1

F )
Indexed Predicate Term[-]:

τP,π B [p (τ0
F τ1

F . . . τn−1
F )]π

Indexed Update[-]: Jso � τF Kπ

The restriction we imposed for updates now also holds for predicates, i.e., the trace
variable indexing the predicate term determines the trace of the arguments. All
arguments of the predicate come from this trace which is why we do not need to index
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the arguments. In consequence, we do not need to index function terms either, as they
can only occur as arguments of a predicate or in an update and, thus, their trace is
determined. As TP ⊆ TF , an indexed predicate term can occur in an update but must
be indexed with the same trace variable as the update. Predicates can also be nested,
where again the outermost trace variable determines the index of the predicate terms
occurring as arguments. As they must be from the same trace, we can omit the index
when predicate terms occur as arguments and just use standard predicate terms.

While a HyperTSL- formula is constructed from the same grammar as a HyperTSL
formula and has the same semantics, the case for predicate evaluation can be simplified
as we know that the arguments all come from the same trace. Using the same
semantics rule as for HyperTSL, we would use the evaluation function µ〈·〉 to evaluate
the predicate. We would then treat a predicate of the form [ p (τ0 . . . τn−1) ]π as
if it was p (τ0,π . . . τn−1,π) where each argument was indexed with the same trace
variable π. This case can be simplified, as we have the additional information, that
all arguments of the predicate come from the same trace. Therefore, we do not
need the entire trace assignment at hand, when evaluating the components of the
predicate. The concrete trace π suffices. Therefore instead of using µ〈·〉 we can use
η〈·〉 (see Definition 2.8) and provide it with the computation and input stream of
trace π. The computation and the input stream are obtained by looking up the trace
variable π in Π and then projecting on the first and second component respectively.
Apart from predicate evaluation, a HyperTSL- formula is evaluated using the same
semantics as for HyperTSL as provided in Section 3.4. We define the satisfaction of
predicates in a HyperTSL- formula with respect to a trace set T -, trace assignment
Π- : V → (Cω × Iω), and a time point t ∈ N as follows:

Definition 3.6 (Semantics HyperTSL-)

Π-, T, t |=〈·〉 [ p (τ0 . . . τn−1) ]π ⇔ η〈·〉 (#1(Π-(π)),#2(Π-(π)), t, p (τ0 . . . τn−1))

We use the evaluation function η〈·〉 and provide it with the computation and input
stream that form the trace we obtain when looking up π in the trace assignment Π-. As
we see, predicate evaluation in the HyperTSL- fragment is contained in the semantics
of the full hyperlogic. Nevertheless, for readability reasons and clarity we use the
semantics as defined in Definition 3.6 for HyperTSL- predicate terms. This simplified
semantics is especially helpful in proofs to reduce notation overhead as we see in
Chapter 5. While traces for HyperTSL and HyperTSL- are of the same type, we
annotate HyperTSL- trace sets and assignments with a minus, in order to make it
clear whether we are reasoning about the HyperTSL- fragment or the full logic.

The hyperproperties we expressed in Section 3.2 so far all contain predicates that take
arguments from different traces. However, for many important hyperproperties, it
suffices to only evaluate predicates over arguments of one trace. For instance, we can
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state the hyperproperty that if on both traces the sun values are always equal to the
threshold t and the two traces consume energy in the same way, then the bat values
on both traces are always decremented at the same time.

∀π∀π′.( ([equal(sun, t)]π ∧ [equal(sun, t)]π′
∧ [p consume]π ↔ [p consume]π′))

→ (Jbat� dec batKπ ↔ Jbat� dec batKπ′)

(3.14)

Furthermore, we can state that if on both traces the battery is constantly charging
and the energy consumption is the same, then all incrementations of battery values
happen at the same time.

∀π∀π′.( ([greater(sun, t)]π ∧ [greater(sun, t)]π′
∧ [p consume]π ↔ [p consume]π′))

→ (Jbat� inc batKπ ↔ Jbat� inc batKπ′)

(3.15)

Intuitively, both hyperproperties express that if the inputs behave similarly with
regards to certain aspects, then the control flow behavior will be the same. Both
hyperproperties hold on the system we specified.

HyperTSL and HyperTSL- allow expressing hyperproperties involving infinite data
that were not expressible using HyperLTL. Furthermore, both allow a very intuitive
description of the control flow in software, as thanks to predicates and updates the
properties resemble control flow statements and assignments like in software code.
HyperTSL allows expressing many powerful hyperproperties as predicates can take
arguments from different traces. Thus it is, for instance, very useful for comparing
values from different traces and specifying hyperproperties that describe the desired
behavior based on whether the values were less, greater or equal to each other. Since
functions and predicates are uninterpreted, we can specify a hyperproperty that
describes a general behavior, which can be refined by choosing concrete function and
predicate implementations and, thus, results in several hyperproperties specifying
different instances of a general behavior. Even though the HyperTSL- fragment does
not allow predicates with arguments from different traces, it can express many useful
hyperproperties. It can use predicates to specify similar behavior of traces, for instance,
that on both traces a certain predicate holds in the same time points. Again, by
giving the predicates a different semantics, many instances of the same hyperproperty
can be derived. While for HyperTSL we can directly compare values and for instance
check for equality using an equal predicate, this is not possible for HyperTSL-. If
the same effect as for an equality predicate with arguments from different traces is
to be achieved with HyperTSL-, this needs to be encoded by an equality predicate
that in each time step compares some fixed value x with the values value that should
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be checked for equality on each trace respectively. If the values are from a finite
domain with n elements, this can be encoded as a sequence of n conjuncts of the
form

∧n
x=0([equal (value, x)]π ↔ [equal (value, x)]π′). If the values are not from a

finite domain, an equality predicate for values from different traces cannot be encoded
in HyperTSL-. This shows that HyperTSL- is less expressive than HyperTSL when
it comes to directly comparing values with possibly infinite domains from different
traces.



Chapter 4

Use Case: Diesel Scandal

In 2015, Diesel cars produced by the Volkswagen company were discovered to produce
emissions high above the allowed values. Yet all the cars had been admitted to the
road as they produced acceptable emissions in prior testing [19]. The software used in
the exhaust control systems of the cars was manipulated to produce low emissions in
testing scenarios, while producing 4 to 7 times higher emissions when on the road [14].
Worldwide, 11 million cars were affected of which 2.8 million in Germany alone [18].
The estimated cost of emission-related health issues and premature deaths entailed
by the higher than standard emissions in the US and Europe in the years 2009 to
2015 is at 39 billion US Dollars [15]. The Diesel scandal is only one example of
software doping. Software doping is a highly relevant topic that D’Argenio et al. have
formalized in [4]. They define robust cleanness, or “doping-freedom” of a program,
which intuitively means that two executions with similar inputs should produce
similar outputs. Whether two inputs are “similar” is defined based on the distance
that they are apart. Based on the allowed distance for similar inputs, the allowed
distance for similar outputs is calculated. D’Argenio et al. state robust cleanness
as a hyperproperty using HyperLTL and discretize the distance by using predefined
values [4]. Hyperproperties expressing robust cleanness can be used for spotting doped
software. In general, software doping describes the deliberate manipulation of software
by the manufacturer in order to make it perform worse in certain scenarios such that
it works in the best interest of the company but not anymore in the best interest of
the user or society [4]. Other examples of software doping can be found in lock-in
strategies that bind a customer to a company by building devices in ways such that
additional supplies only work if they are from the same company. For instance, certain
laptops refuse to charge when attached to a technically compatible charger from a
different brand. Furthermore, some printers only work with cartridges from the same
company, even though they are technically compatible with cartridges from other
companies as well. Sometimes software in printers is also manipulated such that
printers demand cartridge replacement even though the cartridge is not yet completely
empty [4]. This way, more cartridges must be bought than would be technically needed
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and the company profits. The Diesel scandal is a form of software doping that got
a lot of attention in and after 2015 as it affected many people and the environment.
It is especially shocking that it took such a long time for the manipulation to be
discovered. A way of ensuring that emission regulation software in cars performs as
desired at all times, and not only when attached to testing stations is needed. One
way of spotting software doping before use is to use logic to specify the behavior of a
doping-free system, as done by D’Argenio et al. [4]. Here, “doping-free” means that
on similar inputs the system produces similar outputs in all cases, and not only when,
for instance, attached to testing stations. In other words, the system is robustly clean.

In this chapter, we use HyperTSL to express hyperproperties that allow spotting doped
software at the example of an emission regulation system, as the ones manipulated
in the Diesel scandal. HyperTSL can express hyperproperties involving infinite data
and can, thus, express instances of doping-freedom that cannot be expressed with
HyperLTL. Furthermore, as HyperTSL uses uninterpreted functions and predicates,
it allows expressing general hyperproperties that can be specialized for specific car
models by using different function and predicate implementations.
In the following section, we gather some background knowledge on the test that cars
have to pass in order to be admitted to the road, which is used to classify emission
production as allowed or unallowed. Then, in Section 4.2, we specify properties of an
emission regulation system using TSL. In Section 4.3, we use HyperTSL to specify
instances of robust cleanness and other useful hyperproperties to spot software doping
on the system that fulfills the properties as defined in Section 4.2.

4.1 The NEDC
In order to ensure that all exhaust regulation systems used in cars have a similar
standard and produce emissions as low as possible, there is a test cycle that cars
must take before being classified as allowed. This test cycle is the New European
Driving Cycle (NEDC) [1, 5] which aims at representing the typical usage of a car in
Europe. It is designed to help assess the emission levels of car engines and classify
them as allowed or unallowed. The cycle is usually run while the car is attached to a
specific test bench in order to eliminate external factors of inaccuracy such as weather
conditions and road friction and to make the test cycle easily reproducible [1, 5, 12].
The cycle is composed of two main parts: the Urban Driving Cycle (UDC), and the
Extra Urban Driving Cycle (EUDC) [5, 12]. The UDC is used to model the typical
driving conditions that cars face in a busy city: frequent and abrupt starts and stops
and a maximum speed of 50 km/h. In order to model driving conditions outside of
the city, the EUDC represents the conditions for higher-speed driving. For the EUDC,
the maximum speed is limited to 120 km/h [5, 12]. For both parts of the cycle, it is
explicitly specified at what speed the car must drive for how long and in what gear.
The NEDC was criticized for not being able to represent real-life driving conditions,
due to these strict instructions [16]. In reality, hardly anyone can exactly time when
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to shift gear and at what exact moment to break. Furthermore, there might also
be other influential factors such as the driving style of the vehicle operator. It is,
for instance, acceptable to use both the second or the third gear when driving 30
km/h. Cars should not only perform well when attached to a test bench or driving
the exact values of the NEDC cycle, which we denote as NEDCvalue in the following,
but also under standard driving conditions deviating from those checked in the test
scenarios. Executions with driving values similar to those of the NEDC cycle should
result in emissions similar to those described by the cycle. As we see, this property
is an instance of robust cleanness. The Diesel exhaust emission scandal shed a light
on the problem of specifying behavior on exhaust controlling software, which in the
Diesel case was tailored to fit certain conditions. The cars passed the NEDC test, as the
software was doped and designed to perform well on the test bench, yet when slightly
deviating from the values used in the cycle emissions would heavily increase [19]. This
type of manipulation falls under the previously mentioned notion of software doping.
It is a negative property that cannot be spotted when only considering one execution
of a test drive. One can only notice it when comparing several executions to each other
and checking whether executions with similar speed and driving behavior produce
similar emissions. This is because speed and driving behavior, such as the gear that is
used for a specific speed and inclination, directly influence emission production.

4.2 Specifying the System
In this section, we specify properties that describe the behavior of an exhaust emission
system. They can be checked either in real-time against the behavior of the car’s
emission control system or against the log data of the car’s emission system produced
after a test drive. The exhaust emission system we describe models the emission
production of a vehicle in each time step based on the speed that the car is driving, as
well as the gear and road inclination. The gear and inclination need to be considered
as it can make a large difference in emission production what gear is being used and
whether someone is driving up a hill or on a plain road. The necessary information to
compute the emissions for each time step is obtained through the inputs speed, gear,
and inclination. We define the context of an execution as the triple containing
the values provided by speed, gear, and inclination. Storing these values allows re-
accessing them in the next time step and is needed to evaluate the produced emissions.
As we want the system to provide us with the amount of produced emissions for each
time step, the computed value is available through the output cell emissions. Since
the system aims at ensuring that emissions are sufficiently low, we want to be notified
if emissions are critically high. Using the output cell critical, we constantly know
whether emissions are too high. Furthermore, the system stores relevant information
such as the runtime, the distance that has already been covered, and the average
speed using a cell for each parameter.
While we are interested in the emissions produced per time step, it is also useful to
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know the average emission value. This allows specifying hyperproperties where the
average emissions are compared under the aspect of the driving style. For instance, it
can be the case that two runs have the same average, while one of them has peaks
and low points in emissions and the other has constant emissions. High speeds and
coldstarts of cars often cause a temporary increase in emission [1], and a test run
showing frequent starts and sections of high speed is more likely to have higher average
emissions than a run that covers the same distance but with few stops and starts and
mostly constant speed. As we also want to represent these two factors, we use the cell
maxSpeed to store the maximum speed of the run so far and the cell coldstart that
keeps track of how long it has been since the last start.
The cell coldstart is used to account for the fact that it is allowed to produce slightly
higher emissions for a short time after a coldstart, as naturally, the car needs more
power to get from standing still to moving than if it was just increasing the speed a
little while already in motion. This cell is especially useful for modeling urban driving
behavior. We first define the set of inputs I, the set of outputs O, and the set of
cells C, as well as the set of predicates TP and the set of functions TF .

I = {speed, gear, inclination}
O = {emissions, critical}
C = {emissions, critical, context, maxSpeed, coldstart,

runtime, distance, avg_speed, avg_emission}
TP = {too_high, greater, equal}
TF = TP ∪ {compEm, compDist, compAS, compAE, inc}

We use uninterpreted functions and predicates when describing system properties
and hyperproperties. However, in the following, we give them a semantics in or-
der to make the properties and hyperproperties understandable. The function
compEm(speed, gear, inclination) calculates the emissions that are produced with
regard to the current speed and other factors such as the gear and the road
inclination. The function compDist(distance, speed) calculates the distance that
is already covered based on the distance that has already been covered until the
previous time point and the speed. The function compAS(distance, runtime) com-
putes the average speed of the execution using the already covered distance and the
time that has passed, stored in runtime. In each time step, the average emissions
are computed by the function compAE(avg_emission, emissions, runtime) based on
the previous average avg_emission, the current emissions, and the runtime. The
predicate greater(x, y) checks if the first argument x is greater than the second
argument y. The predicate equal(x, y) checks for equality of the two arguments.
In order to check whether the emissions that are produced are justified given the
context and the time coldstart that it has been since the last start, we use the
predicate too_high(emissions, context, coldstart). If emissions are too high, it
evaluates to true.
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We can now specify the desired behavior of an exhaust control system using TSL. We
want the cell context to always be updated with a triple containing the values from
the inputs speed, gear, and inclination. Storing these values allows re-accessing
them in the next time step and is necessary for several other properties we want to
specify.

Jcontext� (speed, gear, inclination)K (4.1)

As we want to know the emissions that are produced in each step, we update the cell
emissions with the amount of emissions that is produced based on speed, gear and
inclination in each time step. Emissions are computed using the function compEm.

Jemissions� compEm(speed, gear, inclination)K (4.2)

Note that we use the inputs directly to compute the emissions instead of using the
triple stored in context. Using context would give us the context values from the
previous time step, because the update takes one time step. We use the direct inputs
in order to always have the context match the emissions. This means in each time
step, the triple that is stored in context contains the values that caused the emissions
stored in emissions. We could use what is stored in context to compute the emissions
and assign compEm (context) to emissions, but then we would need an additional
cell to store the context values from one time step before, as the cell emissions and
context would always have an offset of one. We soon express a property for which
we need both the emissions value and the context value from the same time step.
Next, we specify a formula that increments the runtime in each step. This allows
keeping track of how long the execution has taken.

Jruntime� inc runtimeK (4.3)

We compute the distance that has already been covered in the execution using the
function compDist which takes the distance that was calculated in the previous step
and the speed we get as input.

Jdistance� compDist(distance, speed)K (4.4)

The cell coldstart is used to keep track of how long it has been since the last coldstart.
If it is the case that the speed was at 0 km/h in one time step, meaning the car was
standing still, and unequal to zero in the next one, then this means that the car just
started again and it has been zero time steps since the last start.

(equal(speed, 0) ∧ ¬equal(speed, 0)↔ Jcoldstart� 0K) (4.5)

If and only if there was not a new coldstart, coldstart is incremented by one.

(¬(equal(speed, 0) ∧ ¬equal(speed, 0))↔ Jcoldstart� inc coldstartK)
(4.6)
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We update the cell critical with true whenever the emissions produced are higher
than allowed. To determine if the emissions are higher than allowed we use the predicate
too_high, that compares the actual emissions with what would be appropriate given
the context.

(too_high(emissions, context, coldstart)↔ Jcritical� trueK) (4.7)

Note that too_high needs the emissions, but also the context that they were computed
from in order to determine whether the emissions are appropriate given the context.
This is why in Formula 4.2, we compute the emissions from (speed, gear, inclination)
instead of context such that the values that are stored in emissions and context
always match.
Even though there is an equivalence in the formula, we must explicitly cover the
case where too_high does not hold. This is because without the case distinction it
would be allowed to update the cell with its current value, Jcritical� criticalK, if
too_high does not hold. But if in the previous step, the cell was updated with true,
then it contains the value true in the next time step again, even though too_high
did not hold. Therefore, we need a property stating that if and only if too_high does
not hold, we update the critical cell with false. As this distinction covers all cases,
there is no more possibility for updates of the form Jcritical� criticalK to occur.

(¬too_high(emissions, context, coldstart)↔ Jcritical� falseK) (4.8)

We compute the average speed of the execution using distance and runtime and
store it in cell avg_speed.

Javg_speed� compAS(distance, runtime)K (4.9)

The cell avg_emission is updated with the average emissions produced in the exe-
cution, computed by using the function compAE which needs the average amount of
emissions computed so far, as well as the emissions of the current time step and the
runtime.

Javg_emission� compAE(avg_emission, emissions, runtime)K (4.10)

As seen in the last two properties, the way we compute the average speed differs from
the way we compute the average emissions. The average emissions could be computed
from the sum of all emissions produced so far and the runtime. But then, we would
need an extra cell to store the sum of all momentary emissions. We use an approach
where we can compute the average emissions even without an extra cell using the
average computed so far, the current emissions, and the runtime. Lastly, we want to
store the maximum speed driven so far. Therefore, the cell maxSpeed is updated with
the speed value if and only if it is the case that the value of speed is greater than the
maximum speed stored so far.

(greater(speed, maxSpeed)↔ JmaxSpeed� speedK) (4.11)
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Here again, to be exhaustive, we must cover the case where the current speed is not
greater than the maximum speed so far.

(¬greater(speed, maxSpeed)↔ JmaxSpeed� maxSpeedK) (4.12)

In the next section, we specify hyperproperties to spot software-doping.

4.3 Specifying Hyperproperties
Naturally, different types of driving behavior cause different levels of emission pro-
duction. However, there are certain general properties that a system should meet in
order to be doping-free. In their paper, D’Argenio et al. specify what it means for
software to be doping-free [4]. They introduce the notion of robust cleanness, which
intuitively describes the property that small deviations in inputs should not result in
huge deviations in outputs.
In the Diesel scandal, driving conditions that only slightly deviated from the NEDC
values would cause emissions that heavily deviated from those produced under exact
testing conditions. In reality, most likely no one drives under the exact conditions
described by the cycle. For doped software, this may entail higher than allowed
emissions though the software was declared conforming. Robust cleanness allows
accounting for the fact that inputs that have a reasonably small distance should result
in outputs with a reasonably small distance to each other. D’Argenio et al. introduce
two notions of distance. The first one specifies the distance of two inputs, which is
classified as acceptable based on a reference parameter stating the allowed deviation
from the norm. The second notion specifies the allowed distance of two outputs
depending on how much the inputs deviated. A program S is robustly clean if for all
pairs of inputs, if the two inputs differ less than the allowed deviation from the norm,
then the outputs produced by S under the respective inputs have a difference within
an allowed range to each other [4]. D’Argenio et al. express robust cleanness as a
HyperLTL formula. When using HyperLTL however, all the values from the NEDC
that are relevant for the instance of robust cleanness that should be expressed must
be discretized. This becomes difficult once data from an infinite domain is involved.
Furthermore, what is considered a “small distance” must be fixed as a concrete value in
advance whereas when using HyperTSL, uninterpreted predicates allow altering what
is defined as a “small distance” after specifying the hyperproperty. In the following,
we express instances of robust cleanness using HyperTSL. While we are interested in
the behavior of traces where inputs are within an allowed deviation from the values
defined by the NEDC to spot manipulation like in the Diesel scandal, we are also
interested in the behavior of traces where the input parameters have a small distance
to each other even though neither of them might be within the allowed distance from
the NEDC values. Therefore, we specify hyperproperties that aim at spotting doped
software by considering the exact NEDC values and slight deviations thereof, as well as
hyperproperties where we compare values to each other without knowing their relation
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to the NEDC values. Unlike for HyperLTL, we can use uninterpreted functions and
predicates and, thus, do not need to use predefined values that specify the allowed
distances for instance. Instead, we can choose function and predicate implementations
afterward and alter their restrictiveness at will.

We introduce the following uninterpreted functions and predicates and again provide a
semantics to make the hyperproperties we want to express more understandable. The
function devNEDC(x) calculates how much the given value x deviates from the respective
value of the NEDC cycle. It is thus defined as devNEDC(x) = NEDCvalue− x. This
function is available for all parameters of the cycle. We make the functions distinct by
indexing the function name with an abbreviation of the name of the value it checks. The
function contextDev(s, g, i) = (devNEDCS (s), devNEDCG (g), devNEDCI (i)) is used to
check how much the speed s, the gear g and the inclination i deviate from the
respective NEDC values. It returns a triple where in each position we have the deviation
of the component from the respective NEDC values. The predicate smallDist(x, y)
checks if the two arguments x and y only have a small distance to each other. The
predicate smallDist(x, y) is available for all parameters of the cycle. We make the
predicates distinct by indexing their names with an abbreviation of the name of the
value they check. Whether a distance is small or not can be for instance defined
depending on the model of the car or other specific parameters. For which values
the predicate evaluates to true can thus be modified for each car model as desired.
This is a major advantage of HyperTSL: uninterpreted functions and predicates allow
specifying hyperproperties with some general structure, that can later be refined
depending on how the concrete implementation for functions and predicates is chosen.
In the case of software doping, this allows specifying one hyperproperty that can be
used for different car models, for instance, by changing the predicate implementation
that classifies what is to be considered a small distance when comparing gears.

The following hyperproperties help to spot undesired behavior in a car’s exhaust emis-
sion controller. We first express some hyperproperties using HyperTSL and afterward
have a look at hyperproperties expressed in HyperTSL-. The first hyperproperty
describes an instance of robust cleanness. The cell context contains all the relevant
input information that influences the emissions. For all pairs of traces, it must always
hold that if the contexts are similar, meaning their pairwise respective values only
have a small distance, then the emissions should also only have a relatively small
distance.

∀π∀π′. (smallDistC(contextπ, contextπ′)
→ smallDistE(emissionsπ, emissionsπ′))

(4.13)

An example is given by the contexts (30 km/h, 2, 7◦) and (30 km/h, 3, 7◦). The
emissions that are produced for these two contexts should only differ within a reasonably
small range. What “reasonably” small means can be defined individually depending
on how restricted the system should be in its behavior.
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The next hyperproperty expresses something similar to Formula 4.13, but this time
with respect to the NEDC values. It is also an instance of robust cleanness. It must
always be the case that if the two traces have a similar but still acceptably small
deviation from the values provided by the test cycle, the emissions also must have a
similar, still acceptable deviation from the NEDC emission values.

∀π∀π′. (smallDistC(contextDev(contextπ), contextDev(contextπ′))
→ smallDistE(devNEDCE(emissionsπ), devNEDCE(emissionsπ′)))

(4.14)

As an example, consider two traces where the contexts always deviate from the NEDC
contexts only in a speed difference of 5 km/h. The other context parameters are
the same. The trace π has a speed of NEDCspeed + 5 km/h and trace π′ a speed of
NEDCspeed − 5 km/h. Assume the smallDistC predicate is fulfilled. The emissions
should now behave accordingly. How much they are allowed to deviate from the
expected values and how large the deviations are allowed to be with respect to each
other can depend on the car model or on how strict one wants the emissions to be
limited.

The next hyperproperty accounts for the fact that after a coldstart, it is allowed to
produce more emissions than usual for some predefined time. Initially, the contexts
must be similar, and on one of the two traces, there is a coldstart, while for the
predefined number of time steps there is no new coldstart on either trace and the
contexts are similar. After this predefined time, emission production must go back to
normal if the contexts are similar again. This allows for higher emission production
after a coldstart, but does not enforce it. We specify the hyperproperty using 5 as the
predefined time.

∀π∀π′.
( 5∧
i=0

i smallDistC(contextπ, contextπ′)

∧ (Jcoldstart� 0Kπ ⊕ Jcoldstart� 0Kπ′)

∧
5∧
i=1

i (¬Jcoldstart� 0Kπ ∧ ¬Jcoldstart� 0Kπ′)

→ 5 (smallDistE(emissionsπ, emissionsπ′))
)

(4.15)

This hyperproperty can be adapted to be more strict by changing the predefined
number of time steps. For instance, by choosing 0 as the predefined time where higher
emission production would be accepted, we can express that coldstarts should not
produce higher emissions than standard driving behavior. This is a property that
might, for instance, hold on cars that are designed to be especially efficient when
starting.
The next hyperproperty states that it should always be the case that if both the
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average emissions and average speeds are similar, then it must also be that the two
traces have similar maximum speed values and that the last start has been at about
the same time ago. The hyperproperty is based on the assumption that driving at
a significantly higher speed and stopping and starting more frequently have a large
impact on the emission production.

∀π∀π′. (smallDistAS(avg_speedπ, avg_speedπ′)
∧ smallDistAE(avg_emissionπ, avg_emissionπ′)
→ smallDistMS(maxSpeedπ, maxSpeedπ′)
∧ smallDistCS(coldstartπ, coldstartπ′))

(4.16)

If the hyperproperty is not fulfilled, it is worth checking why the average emissions are
roughly the same. If it is, for instance, the case that the average speed and average
emissions are about the same, yet the maximum speeds or the time after the last
coldstarts differ a lot, then in at least one trace there must be some source of higher
emission production that might be an indication of software doping.

While the previous hyperproperties were all expressed using HyperTSL, we now
express some hyperproperties using HyperTSL-. We use the following uninterpreted
functions and predicates which we give the following semantics for this example. The
constant dev defines how much the inputs are allowed to deviate from the NEDC values
and is chosen depending on how restrictive the system should be. The function
outdev(dev) computes how much the outputs are allowed to deviate from the NEDC
values depending on how much the inputs deviated. The predicate allowedC(dev, c)
determines if the context deviation c is within the allowed input deviation range. The
predicate allowedDev(y, devNEDC(x)) checks if the actual deviation of the value x from
the NEDC values complies with the allowed distance y. It is available for all parameters
of the cycle and depending on the value it checks uses the matching devNEDC predicate.
The goodStyle(context) predicate, checks if the driving behavior represented by the
context would be classified as a “good style”. We define a good driving style for our
example as follows: The speed matches the gear and inclination and aims at producing
optimal emissions.

The first hyperproperty we express using HyperTSL- is again an instance of robust
cleanness. It states that for all pairs of traces, if contexts always only deviate within
the predefined allowed range dev from the NEDC values on both traces in the same
time steps, then the produced emissions should also always deviate within the allowed
range outdev(dev) in the same time steps as well.

∀π∀π′. ([allowedC(dev, contextDev (context))]π
↔ [allowedC(dev, contextDev (context))]π′)

→ ([allowedDevE(outdev(dev), devNEDCE(emissions))]π
↔ [allowedDevE(outdev(dev), devNEDCE(emissions))]π′)

(4.17)
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The next hyperproperty uses the predicate goodStyle to decide whether the gear
chosen for the given speed and inclination is appropriate and aims at a good driving
style and at producing low emissions. Generally, it should be the case that exhaust
control systems are designed to produce optimal emissions. An appropriate driving
style can be beneficial for low emission production. Under this assumption, the
hyperproperty states that if it is the case that on both traces the driving behavior
is the same with respect to the style and the starts and stops happen at the same
time, then the critical cells on both traces should also only be updated with true
in exactly the same time steps.

∀π∀π′. (([goodStyle(context)]π ↔ [goodStyle(context)]π′)
∧ (Jcoldstart� 0Kπ ↔ Jcoldstart� 0Kπ′))

→ (Jcritical� trueKπ ↔ Jcritical� trueKπ′)

a (4.18)

As we have seen, both HyperTSL- and HyperTSL can express many useful hyperprop-
erties that specify doping-free behavior. When software reasons about infinite data,
we cannot use HyperLTL to specify hyperproperties. Software in cars often relies on
multiple sensors and the provided data is often from infinite domains. Therefore, when
specifying behavior on this type of software, we need to use HyperTSL. One reason to
use HyperTSL even for software with finite data is that functions and predicates are
uninterpreted. Therefore, hyperproperties can be specified and later refined depending
on the concrete function and predicate implementation that is chosen.



Chapter 5

Synthesis

In synthesis, a system is constructed from a specification. The resulting system is
guaranteed to fulfill the properties defined by the specification by construction. While
LTL synthesis is very useful, it has some deficits when it comes to large specifications
involving huge amounts of data. Since LTL expresses data using atomic propositions,
infinite domains are not expressible. To overcome this problem, Finkbeiner et al.
introduce the logic TSL [10] which succeeds in expressing large specifications with
infinite data. TSL abstracts from concrete data and uses predicates and functions to
reason about the control flow in a system. Due to its higher expressivity, TSL can
describe specifications reasoning about infinite data. Therefore, scenarios that could
not be synthesized using LTL as specification language could be synthesized using
TSL [10]. However, expressivity of TSL in comparison to LTL comes at the cost of
decidability.
While synthesis from an LTL or TSL specification constructs a system that is guaran-
teed to fulfill the specification, there is no guarantee whether the system will also fulfill
certain hyperproperties. Synthesis from hyperproperties, more specifically HyperLTL
synthesis, is described by Finkbeiner et al. in [11]. While systems can be synthesized
based on a specification expressed in LTL and HyperLTL, there is not yet a possibility
to synthesize systems from a TSL specification and guarantee that they fulfill certain
hyperproperties as well. Especially hyperproperties reasoning about infinite data,
which cannot be specified using HyperLTL, can thus not be synthesized so far.
Therefore, in this chapter, we introduce synthesis for HyperTSL-. Similar to TSL syn-
thesis, which is based on an approximation to LTL, HyperTSL- synthesis is based on
an approximation to HyperLTL. Synthesis for HyperTSL and synthesis for HyperTSL-

are undecidable, as TSL synthesis is already undecidable.
We present a bounded synthesis approach for the universal HyperTSL- fragment of
HyperTSL. We first explain, why we restrict ourselves to the HyperTSL- fragment
of HyperTSL and later explain, why we restrict ourselves to the universal fragment
of HyperTSL-. Intuitively, finding an approach for the HyperTSL synthesis problem
is more challenging than for the HyperTSL- synthesis problem. This is because for
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HyperTSL- synthesis, we can encode components that contain information about one
trace by atomic propositions in HyperLTL which also contain information about one
trace, while for HyperTSL synthesis we would need to encode components that contain
information about multiple traces by components in HyperLTL which can only contain
information about one trace. For the HyperTSL- fragment, we find an approximation
to HyperLTL as we explore later. We have a quick look at the approximation challenge
for HyperTSL: In HyperTSL, predicates can take arguments from different traces.
Therefore, the arguments of a predicate are indexed with several, potentially different
trace variables. Finding a HyperLTL encoding for a predicate of this form becomes
difficult. Predicates can no longer be seen as atomic components, and the approach of
introducing one atomic proposition with a trace variable as index becomes impossible
without completely changing the actual meaning of the predicate term. While this
loss of semantics can be reverted when approximating a formula of the HyperTSL-

fragment, finding a straightforward way of restoring the meaning for a HyperTSL
formula is rather difficult. Furthermore, bounded synthesis of the HyperTSL- fragment
is especially attractive since already existing approaches can be adapted and used.
For HyperTSL synthesis a new approach might be needed. Before we have a look at
the general structure of the bounded synthesis process for HyperTSL-, we define the
necessary concepts for HyperTSL- synthesis and provide some intuition.

In synthesis, the aim is to construct a strategy that describes with what output a
system answers to an input. The input-output combinations resulting from the strategy
must fulfill the specification. Since for HyperTSL- the inputs are the predicates that
hold and the outputs are the computation steps that result, a HyperTSL- strategy f
has the type f : (2TP )+ → C. It is represented by a strategy tree that branches on
all inputs and that has nodes labeled with the output with which the system reacts.
Figure 5.1 shows a strategy tree for one predicate p.

f(∅) f({p(x)})

f(∅∅)
. . . . . . . . .. . .

f(∅{p(x)}) f({p(x)}∅) f({p(x)}{p(x)})

∅

∅ {p(x)} {p(x)}∅

{p(x)}

Figure 5.1: Strategy tree f of a HyperTSL- strategy f : (2TP )+ → C

A strategy realizes a specification if the set of traces that can be collected from the
strategy tree satisfies the specification. A HyperTSL- formula is realizable if a strategy
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exists such that the set of traces resulting from the tree satisfies the formula. We
formally define HyperTSL- realizability as follows:
Definition 5.1 (HyperTSL- Realizability)
A HyperTSL- formula ϕ is realizable if there exists a strategy f : (2TP )+ → C, such
that for every function assignment 〈·〉 : F → F , the set of traces obtained from all
combinations of inputs and corresponding computations generated by the strategy
satisfies the formula. Formally:

∃f : (2TP )+ → C. ∀〈·〉 : F→ F . {(σ, ι) | ι ∈ Iω ∧ ∀t ∈ N.
σ(t) = f({τP ∈ TP | η〈·〉(σ, ι, 0, τP )} . . . {τP ∈ TP | η〈·〉(σ, ι, t, τP )})} |=〈·〉 ϕ

As we see in the definition, it is important that the strategy works for all function
evaluations, as we work with uninterpreted functions and predicates. The traces that
are contained in the set are all pairs of input-computation combinations such that for
each input, the corresponding computation is constructed from the strategy. Each
computation step σ(t) is defined as the computation step returned by the strategy
when given the sequence of the sets of all predicates that hold given the input stream
and computation so far.

For the synthesis approach we describe, we only consider universal HyperTSL- formulas,
as we overapproximate the HyperTSL- formula with an HyperLTL formula. We explain
why this overapproximation requires us to restrict HyperLTL to the universal fragment
when looking at the approximation in detail. We now first explain the general
structure of bounded HyperTSL- synthesis,which follows the graphical representation
in Figure 5.2, before having a detailed look at each step. First, we approximate the
universal HyperTSL- formula using HyperLTL. To do so, we encode predicate terms
and updates as atomic propositions. Naturally through this, the semantics of updates
and predicates used in the HyperTSL- formula get lost and need to be restored at
some point. The semantics of predicates is restored during the synthesis process by
iteratively adding constraints to the formula. The semantics of updates is restored
by adding a constraint to the HyperLTL encoding before the synthesis process starts.
The approximated HyperLTL formula, thus, is a conjunction of the update restoration
and the HyperLTL encoding and can be synthesized using standard HyperLTL tools
for bounded synthesis, such as BoSyHyper. If the tool returns that the formula is
realizable, we know that the HyperTSL- formula is also realizable. If the result is
that the formula is not realizable, the tool provides a counter strategy. This counter
strategy must be checked for spuriousness as it can be that this result was caused
by an imprecise approximation and does not necessarily mean that the HyperTSL-

formula is not realizable. It is rather an indication that the HyperLTL formula must
be refined in order to precisely express the original predicate semantics. If the counter
strategy is indeed spurious, we need to add a refinement to the formula and use the
synthesis tool again. If, however, the check reveals that the counter strategy is not
spurious, then the HyperTSL- formula is not realizable.
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HyperTSL--Formula

HyperLTL-Approximation

Bounded Synthesis

realizable unrealizable: Counter Strategy

Check Spuriousness

not realizable
noyes

add refinement

Figure 5.2: Structure of HyperTSL- Synthesis

We now have a more detailed look at the individual steps of the synthesis process.
In order to approximate a HyperTSL- formula with a HyperLTL formula, we must
transform the individual components. Quantifiers, as well as the initial structure of
the formula, remain the same, but predicates and updates must be translated into a
suitable HyperLTL encoding, i.e., into atomic propositions. We formally define the
syntactic conversion.

Definition 5.2 (Syntactic Conversion)
We define the syntactic conversion of a HyperTSL--formula ϕ- inductively as follows:

SynCon([p τF1 . . . τFn ]π) = p_τF1_τF2_ . . ._τFnπ

SynCon(Js� τF Kπ) = s_up_τFπ

SynCon(∀π.ϕ) = ∀π.SynCon(ϕ)
SynCon(ϕ1 ∧ ϕ2) = SynCon(ϕ1) ∧ SynCon(ϕ2)
SynCon( ϕ) = SynCon(ϕ)
SynCon(¬ϕ) = ¬SynCon(ϕ)
SynCon(ϕ1 U ϕ2) = SynCon(ϕ1) U SynCon(ϕ2)

SynCon of a set that contains predicate terms or updates is the set that results when
applying SynCon to each element. SynCon of a sequence of sets is the sequence that
results when applying SynCon to each set. We define Ŝ = SynCon(S) to be the
syntactic conversion of a set S.
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An update Js� τF Kπ is encoded by a unique atomic proposition indexed with the
same trace variable π. The same transformation is applied to indexed predicate
terms, where each term is encoded by a unique atomic proposition indexed with the
same trace variable. For formulas containing quantifiers or operators, the syntactic
conversion is moved inwards until applied to a predicate or an update. The formula
we obtain after these steps is denoted by SynCon(ϕ-).
Example 5.1 (Example Syntactic Conversion)
We have a look at an example formula ϕ- which also serves as our running example
throughout this section. The formula states that if on a pair of traces, the cell x is
always updated with y in exactly the same time steps on both traces, if the predicate
p y also holds in exactly the same time steps on both traces, and if it eventually
evaluates to true on one trace, then eventually p x holds on both traces.

ϕ = ∀π∀π′.
(

(Jx� yKπ ↔ Jx� yKπ′) ∧ ([p y]π ↔ [p y]π′) ∧ [p y]π
)

→ ([p x]π ∧ [p x]π′)

The formula is realizable by updating x with y as soon as p y holds on trace π. The
syntactic conversion of the formula looks as follows:

∀π∀π′.
(

(x_up_yπ ↔ x_up_yπ′) ∧ (p_yπ ↔ p_yπ′) ∧ p_yπ
)

→ (p_xπ ∧ p_xπ′)

Naturally, through this transformation, we lose the semantics of predicates and updates.
The semantics of predicates will be partially restored during the synthesis process
by adding refinements to the formula. The semantics of updates is restored by an
additional constraint that is added before the synthesis process starts. Let TP,V and
TU,V be the finite sets of indexed predicate terms and updates respectively which appear
in the HyperTSL- formula. Let Q be the set containing exactly the trace variables
that occur in a HyperTSL- formula. For every indexed update that occurs in the
formula, we partition TU,V into ]π∈Q]so∈C∪O T

so
U,π where ] is the disjoint union of sets.

Intuitively, T so
U,π denotes the set containing all updates to a cell so on trace π. For every

cell c ∈ C we define T c
U,π/id = T c

U,π∪{Jc� cK}, for o ∈ O we define T o
U,π/id = T o

U,π and
TU,π/id =

⋃
so∈C∪O T

so
U,π/id. Lastly, we define TU,Q/id =

⋃
π∈Q TU,π/id. The meaning of

updates is restored by the constraint that on each trace and for each cell in any given
time point exactly one update for this cell holds. This constraint is necessary, because
updates are encoded as atomic propositions that could technically be all true at the
same time.
Definition 5.3 (Restoration of Update Semantics)
Let Q be the set of all trace variables that occur in the formula. We define the
constraint for update restoration as follows:

(
∧
π∈Q

∧
so∈C∪O

∨
τ∈T so

U,π/id

(τ ∧
∧

τ ′∈T so
U,π/id\{τ}

¬ τ ′ ))
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Example 5.2 (Example Update Restoration)
Restoring the update semantics of our formula ϕ yields:

((Jx� yKπ ∧ ¬ Jx� xKπ ∨ ¬ Jx� yKπ ∧ Jx� xKπ)
∧ (Jx� yKπ′ ∧ ¬ Jx� xKπ′ ∨ ¬ Jx� yKπ′ ∧ Jx� xKπ′))

The final HyperLTL formula approximating the HyperTSL- formula is a conjunction
of the syntactically converted formula and the syntactic conversion of the previously
defined semantics restoration. The HyperLTL formula is constructed over the input
propositions TP,V and output propositions TU,Q/id as follows.

Definition 5.4 (Approximation)

ϕHLTL = SynCon(ϕ-) ∧ SynCon( (
∧
π∈Q

∧
so∈C∪O

∨
τ∈T so

U,π/id

(τ ∧
∧

τ ′∈T so
U,π/id\{τ}

¬ τ ′ )))

Example 5.3 (Example Approximation)
Combining the syntactic conversion of the formula and the syntactic conversion of the
restoration of the update semantics we get:

∀π∀π′.
(

(x_up_yπ ↔ x_up_yπ′) ∧ (p_yπ ↔ p_yπ′) ∧ p_yπ
)

→ (p_xπ ∧ p_xπ′)
∧ ((x_up_yπ ∧ ¬ x_up_xπ ∨ ¬ x_up_yπ ∧ x_up_xπ)
∧ (x_up_yπ′ ∧ ¬ x_up_xπ′ ∨ ¬ x_up_yπ′ ∧ x_up_xπ′))

As we see, the approximated HyperLTL formula overapproximates the HyperTSL-

formula. The trace set resulting from the HyperTSL- strategy tree according to the
realizability definition depends on input streams and on how predicates evaluate
under these input streams. There are certain sequences of predicate evaluations in
the strategy tree, that can never be in the resulting trace set because there is no
input stream that could cause such predicate evaluations. Meanwhile, in the trace
set of the HyperLTL strategy tree, however, there exist such sequences, as the atomic
propositions are independent, and thus all combinations of atomic propositions can
be obtained. An example would be to have the branch p_i ¬p_i p_i ¬p_i . . . in
the HyperLTL tree, while in the HyperTSL- tree, there is no input sequence that
can cause this alternating predicate evaluation, p(i) ¬p(i) p(i) ¬p(i) . . ., because
predicates always evaluate the same under the same arguments at all time points.
Therefore, there are more traces in the trace set resulting from the HyperLTL tree
than in the trace set resulting from the HyperTSL- strategy tree. The set of traces
obtained from the HyperTSL- tree according to the realizability definition can thus
be seen as a “subset” of the trace set from the HyperLTL tree. Therefore, we must



49

restrict ourselves to the universal fragment of HyperLTL, as otherwise, we might find
a realizing strategy for the approximation, which is not a realizing strategy for the
original HyperTSL- formula. The problem shows when considering a formula with
existential quantification, like:

∃π. ((p_i→ ¬p_i) ∧ (¬p_i→ p_i))

The trace p_i ¬p_i p_i ¬p_i . . . and the trace ¬p_i p_i ¬p_i p_i . . . are the
only traces fulfilling the formula and are both contained in the HyperLTL trace set. In
the trace set collected from the HyperTSL- strategy tree according to the realizability
definition, however, no such traces exist, as no input stream could cause such predicate
evaluations. For universal quantification, there is no problem, as we pick an arbitrary
HyperTSL- trace from the HyperTSL- trace set, and find out whether the property
holds based on whether the corresponding HyperLTL trace fulfills the property. In
this direction, from HyperTSL- to HyperLTL, however, we can be sure to always find
a corresponding trace.

Now that the universal HyperTSL--formula is converted into a universal HyperLTL-
formula, we can use the HyperLTL synthesis tool BoSyHyper, which works for universal
HyperLTL with up to one quantifier alternation [3]. This tool returns a HyperLTL
strategy if the formula is realizable, and a counter strategy in the form of an infinite
tree if it is unrealizable. We have a more detailed look at both cases.

If the formula is realizable, the tool returns a HyperLTL strategy of the type
h : (2T̂P )+ → (2T̂U/id) where T̂P and T̂U/id are the finite sets of syntactically con-
verted predicate terms and updates respectively. Since the HyperLTL formula that
resulted from syntactically converting the HyperTSL--formula and adding constraints,
is realizable, the original HyperTSL--formula is realizable as well, as we show in
Proof 5.2. A strategy is realizable iff the set of traces collected from the strategy
tree satisfies the formula. Therefore, in order to get an understanding of how such
a strategy for HyperTSL- can be constructed from a HyperLTL strategy, we first
specify what it means for HyperLTL and HyperTSL- traces and trace assignments to
be corresponding.
Definition 5.5 (Corresponding Traces)
A HyperLTL trace tr over AP = T̂P ∪T̂U/id that is the result of a syntactic conversion,
and a HyperTSL- trace ts = (z, ι) are corresponding with respect to a function
evaluation 〈·〉, denoted by tr ∼〈·〉 ts, iff they show the same behavior regarding
predicates and updates, i.e.:
The computation z ∈ Cω of the HyperTSL- trace has the following relationship to the
syntactically converted updates of the HyperLTL trace:

z(t)(s) = τF

where τF is the unique element such that SynCon(Js� τF K) ∈ tr(t). Furthermore, let
ν̂ ∈ (2T̂P )ω be the projection of tr onto T̂P and let ν ∈ (2TP )ω such that ν̂ = SynCon(ν).
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Additionally, we require that the input stream ι ∈ Iω is such that

∀t ∈ N. ν(t) = {τP ∈ TP | η〈·〉(z, ι, t, τP )}.

To determine whether a HyperTSL- trace and a HyperLTL trace are corresponding,
we must check whether the input sequence and the computation that generate the
HyperTSL- trace, match the encoded predicates and updates of the HyperLTL trace.
This means, the input sequence and computation of the HyperTSL- trace must be
such that for each time step they generate the same set of predicates that hold as on
the HyperLTL trace and such that the computation assigns the same cells to function
terms as the updates in the HyperLTL trace. It can be the case that one HyperLTL
trace corresponds to several HyperTSL- traces since different input streams ι ∈ Iω can
generate the same sequence of predicate sets. A HyperTSL- trace, however, only ever
has exactly one corresponding HyperLTL trace. It can also be, that for a HyperLTL
trace, no corresponding HyperTSL- trace exists.

Satisfaction of a formula is checked with respect to a trace set and a trace assignment.
In order to check whether a HyperTSL- formula is satisfied by the HyperTSL- trace
set if and only if the formula’s HyperLTL equivalent is satisfied by the HyperLTL
trace set, we must check whether the trace assignments map the same trace variables
to the same traces, i.e., the two trace assignments are corresponding.

Definition 5.6 (Corresponding Trace Assignments)
A HyperLTL trace assignment ΠL : V → (2T̂P )+ ∪ (2T̂U/id) and a HyperTSL- trace
assignment Π- : V → (Cω×Iω) are corresponding with respect to a function evaluation
〈·〉, denoted by ΠL ∼〈·〉 Π-, iff the same trace variables only map to traces that are
corresponding, that is:

∀π ∈ V. ΠL(π) ∼〈·〉 Π-(π)

A trace variable π in the Π- trace assignment must thus map to a trace that corresponds
to the trace that π maps to in the HyperLTL trace assignment ΠL.

Lemma 5.1 (Evaluation of Corresponding Traces)
Let τπ ∈ TP,V ∪ TU,V be a predicate term or an update and SynCon(τπ) the atomic
proposition that results from the syntactic conversion. Let tr be a HyperLTL trace
that resulted from a syntactic conversion and let ts be a HyperTSL- trace such that tr
and ts are corresponding. Let TL be a HyperLTL trace set and T - a HyperTSL- trace
set. Let ΠL and Π- be corresponding HyperLTL and HyperTSL- trace assignments as
defined by Definition 5.6. For the corresponding traces tr and ts, it holds that given a
function evaluation 〈·〉, they evaluate the same in their respective semantics, that is:

∀t ∈ N. ΠL[π → tr], TL, t |= SynCon(τπ)⇔ Π-[π → ts], T -, t |=〈·〉 τπ
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Proof (Evaluation of Corresponding Traces) We make a case distinction over
the indexed predicate term τπ ∈ TP,V ∪ TU,V .

• Assume τπ ∈ TP,V that is τπ = τPπ

Π-, T -, t |=〈·〉 τPπ
Def. 3.6⇐===⇒ τP ∈ {τP ∈ TP | η〈·〉(#1(Π-(π)),#2(Π-(π)), t, τP )}
Def. 5.5⇐===⇒ SynCon(τP ) ∈ ΠL(π) (t)
Def. 2.5⇐===⇒ ΠL, TL, t |= SynCon(τPπ)

• Assume τπ ∈ TU,V that is τπ = Js� τF Kπ

Π-, T -, t |=〈·〉 Js� τF Kπ
Def. 3.4⇐===⇒ #1(Π-(π)) (t) (s) = τF
Def. 5.6, 5.5⇐======⇒ SynCon(Js� τF K) ∈ ΠL(π) (t)
Def. 2.5⇐===⇒ ΠL, TL, t |= SynCon(Js� τF Kπ) �

We now construct a HyperTSL- strategy from a HyperLTL strategy as follows: An
input sequence for a HyperTSL- strategy is denoted as ν and the corresponding input
sequence for HyperLTL is denoted as ν̂ where the relation ν̂ = SynCon(ν) holds.

Definition 5.7 (HyperTSL- Strategy Construction)
Let h : (2T̂P )+ → (2T̂U/id) be a HyperLTL strategy and ν(0) . . . ν(t) ∈ (2TP )+ be
an input sequence for a HyperTSL- strategy at time point t. Let z ∈ Cω be the
computation such that

z(t)(c) = τF ,

where c ∈ C, t ∈ N, and τF is the unique element such that SynCon(Jc � τF K) ∈
h(ν̂(0) . . . ν̂(t)). The HyperTSL- strategy f : (2TP )+ → C is constructed from the
HyperLTL strategy h as follows:

f(ν(0) . . . ν(t)) = z(t)
Proposition 5.1 (Corresponding Trace for a HyperTSL- Strategy)
Let h : (2T̂P )+ → (2T̂U/id) be a HyperLTL strategy and f : (2TP )+ → C be the
HyperTSL- strategy that was constructed from h. It holds that for each trace in the
trace set traces(f ), that is constructed as by Definition 5.1, there is a corresponding
trace in the trace set traces(h). Formally:

∀ ts ∈ traces(f ). ∃ tr ∈ traces(h). tr ∼〈·〉 ts
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We prove that the approximation is sound and that we can indeed construct a
HyperTSL- strategy from a HyperLTL strategy.

Lemma 5.2 (Soundness)
If the HyperLTL formula ϕHLTL that results from the syntactic conversion of a universal
HyperTSL- formula ϕ- is realizable, then the HyperTSL- formula ϕ- is realizable as
well.

Proof (Soundness) Assume ϕHLTL is a universal HyperLTL formula with
ϕHLTL = SynCon(ϕ-) and ϕHLTL is realizable. Then there exists a winning strat-
egy h : (2T̂P )+ → (2T̂U/id) that realizes the HyperLTL formula. Therefore, it holds that
Π∅, traces(h) |= ϕHLTL. We want to show that ϕ- is then also realizable, meaning there
exists a strategy f : (2TP )+ → (C) such that for all function assignments 〈·〉 : F→ F ,
the set traces(f ) satisfies the formula, that is Π∅, traces(f ) |=〈·〉 ϕ-. Let 〈·〉 be some
function assignment. We construct the strategy f from h as in Definition 5.7. In the
following we denote traces(f ) by T - and traces(h) by TL.

Let ϕ- be of the form ∀1π1 . . . ∀nπn.ϕ′- where ϕ′- is a quantifier-free formula. We
construct the trace assignment Π- from the empty assignment and based on ΠL as
follows: Assume we find ∀π at the beginning of the HyperTSL- formula prefix. We
know that the HyperLTL formula has the same quantifier prefix as the HyperTSL-

formula and, thus, also starts with ∀π. Let ts ∈ T - over AP = TP ∪TU be an arbitrary
HyperTSL- trace. Let tr ∈ TL over AP = T̂P ∪ T̂U be a corresponding HyperLTL
trace, which exists by Proposition 5.1 , that is tr ∼〈·〉 ts. Since the HyperLTL strategy
h is winning, π can be assigned to tr in ΠL and h still has a winning strategy for the
remaining formula. We proceed with the next quantifier. This results in the trace
assignments Π- and ΠL that are corresponding as defined in Definition 5.6.

In order to prove Π∅, TL |= ϕHLTL ⇒ Π∅, T - |=〈·〉 ϕ-, we prove a stronger claim:

Π-, T -, t |=〈·〉 ϕ- ⇔ ΠL, TL, t |= ϕHLTL

for all trace assignments Π- and ΠL, where Π- and ΠL are corresponding as by
Definition 5.6.
We show by structural induction over the structure of a quantifier free formula ϕ- that
∀t ∈ N. Π-, T -, t |=〈·〉 ϕ- ⇔ ΠL, TL, t |= SynCon(ϕ-).

• Case ϕ- = τPπ

Π-, T -, t |=〈·〉 τPπ
Lem. 5.1⇐====⇒ ΠL, TL, t |= SynCon(τPπ)

• Case ϕ- = Js� τF Kπ

Π-, T -, t |=〈·〉 Js� τF Kπ
Lem. 5.1⇐====⇒ ΠL, TL, t |= SynCon(Js� τF Kπ)
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• Case ϕ- = ¬ψ

Π-, T -, t |=〈·〉 ¬ψ
Def. 3.4⇐===⇒ Π-, T -, t 6|=〈·〉 ψ
IH⇐⇒ ΠL, TL, t 6|=〈·〉 SynCon(ψ)
Def. 2.5, 5.2⇐======⇒ ΠL, TL, t |=〈·〉 SynCon(¬ψ)

• Case ϕ- = ψ

Π-, T -, t |=〈·〉 ψ

Def. 3.4⇐===⇒ Π-, T -, t+ 1 |=〈·〉 ψ
IH⇐⇒ ΠL, TL, t+ 1 |= SynCon(ψ)
Def. 2.5⇐===⇒ ΠL, TL, t |= SynCon(ψ)
Def. 5.2⇐===⇒ ΠL, TL, t |= SynCon( ψ)

• Case ϕ- = ψ1 ∧ ψ2

Π-, T -, t |=〈·〉 ψ1 ∧ ψ2
Def. 3.4⇐===⇒ Π-, T -, t |=〈·〉 ψ1 ∧ Π-, T -, t |=〈·〉 ψ2
IH⇐⇒ ΠL, TL, t |= SynCon(ψ1) ∧ ΠL, TL, t |= SynCon(ψ2)
Def. 2.5, 5.2⇐======⇒ ΠL, TL, t |= SynCon(ψ1 ∧ ψ2)

• Case ϕ- = ψ1 U ψ2

Π-, T -, t |=〈·〉 ψ1 U ψ2
Def. 3.4⇐===⇒ ∃i ≥ t : Π-, T -, i |=〈·〉 ψ2 ∧ ∀t ≤ j < i : Π-, T -, j |=〈·〉 ψ1
IH⇐⇒ ∃i ≥ t : ΠL, TL, i |= SynCon(ψ2) ∧

∀t ≤ j < i : Π-, T -, j |= SynCon(ψ1)
Def. 2.5⇐===⇒ ΠL, TL, t |= SynCon(ψ1) U SynCon(ψ2)
Def. 5.2⇐===⇒ ΠL, TL, t |= SynCon(ψ1 U ψ2) �

We thus know that, if the HyperLTL approximation of the HyperTSL- formula is
realizable, then the HyperTSL- formula is realizable as well.
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If the HyperTSL- formula is not realizable, the tool returns a counter strategy. A
counter strategy, just like a normal strategy, is an infinite tree, but instead of mapping
predicate sequences to a set of computation steps, it maps a sequence of computation
steps to a set of predicate terms. Formally the type of a counter strategy q is
q : C+ → 2TP . A counter strategy for the approximation is checked for spuriousness to
determine whether it is a counter strategy for the HyperTSL- formula as well. There
are several scenarios in which a counter strategy for a HyperTSL- strategy can be
spurious. A counter strategy for a HyperTSL- strategy can be spurious if there are
two computations such that the two corresponding branches evaluate differently on
equal predicate terms at two points in time. For instance: According to the strategy
the predicate p_xπ holds at time point t and p_xπ′ does not hold at time point t′
even though according to the evaluation function they should evaluate the same at the
respective time points. This scenario contains the case where we can have spurious
behavior on only one trace, if we choose the same trace for π and π′. In addition
to that, it can be that there is a branch given a computation or two branches given
two computations such that two predicate terms that are constructed using the same
predicate but that take different arguments, evaluate differently according to the
strategy, even though the arguments were the same when evaluated at two points in
time. For instance: According to the strategy p_xπ holds at time point t on trace
π and p_yπ does not hold at time point t even though x and y have the same value
and predicates should always evaluate the same under equal values. Combining the
above, a counter strategy q is spurious if there are two branches such that two equal
predicate terms evaluate differently according to the strategy at two points in time.
Example 5.4 (Spurious Counter Strategy)
A spurious counter strategy for our example formula as stated in Example 5.1 would
be to always have p_y hold on a trace, while on the same trace p_x never holds. This
makes the HyperLTL formula, as stated in Example 5.3 evaluate to false, and thus
causes an unrealizability result. But there is a computation where we can update
x with y as soon as p y holds. We see that the counter strategy is spurious in this
scenario, as x and y are the same now and, thus, the predicate should evaluate the
same on equal values.

The set of predicates that holds at a certain time point on a branch in a strategy tree,
depends on the input stream and computation that belong to this branch. We define
when an input stream matches a computation and a strategy as follows:
Definition 5.8 (Matching Input Streams)
An input stream ι ∈ Iω matches the branch created by a strategy q : C+ → 2TP under
a computation σ ∈ Cω, denoted by q o o (σ, ι), iff

∀t ∈ N. q(σ(0) . . . σ(t)) = {τP ∈ TP | η〈·〉(σ, ι, t, τP )}

We express spuriousness of a HyperTSL- counter strategy as follows:
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Definition 5.9 (Hyper-Spuriousness)
We define a property pred : TP,V → TP,V → B that checks whether two predicate
terms are constructed from the same predicate under potentially different arguments
and on potentially different traces.

pred ([p τF1 . . . τFn ]π) ([p τ ′F1 . . . τ ′Fn ]π′) = >
pred __ __ = ⊥

In the following, we use τπ to denote a predicate term of the form [p τF1 . . . τFn ]π and
τ without index if we mean the respective term but without index, that is p τF1 . . . τFn .
A counter strategy q : C+ → 2TP for HyperTSL- is spurious if the following holds:

∃ σ1, σ2 ∈ Cω. ∃ ι1, ι2 ∈ Iω. ∃ t, t′ ∈ N. ∃τπ, τ ′π′ ∈ TP,V .
pred τπ τ ′π′
∧ τ ∈ q(σ1(0) . . . σ1(t− 1)) ∧ τ ′ < q(σ2(0) . . . σ2(t′ − 1))
∧ ∀〈·〉 : F→ F . q o o (σ1, ι1) ∧ q o o (σ2, ι2) ∧ η〈·〉(σ1, ι1, t, τ) = η〈·〉(σ2, ι2, t

′, τ ′)

The first conjunct checks that the two predicate terms we consider are constructed
from the same predicate. The second conjunct checks whether the two predicate
terms evaluate differently according to the strategy at any two time points, i.e., one
predicate holds and the other one does not. The first two conjuncts q o o (σ1, ι1) and
q o o (σ2, ι2) after the introduction of the evaluation function by a universal quantifier
in the last line, ensure that the input streams we consider match the computations
and in consequence cause the same sets of predicates to hold as specified by the
counter strategy. This check is necessary to provide the evaluation function η〈·〉 with
the input streams that belong to the computation, and not just any inputs streams,
as the matching ones are needed to evaluate the two predicate terms. Finally, the
last conjunct checks whether the evaluation function would actually evaluate the
predicates equally. Note that this definition covers all previously mentioned cases, as
the predicate pred covers the case where the predicate terms are exactly the same, but
also where they take different arguments as well as the fact that they can stem from
different traces. Since the definition introduces the computations σ1 and σ2 using an
existential quantifier, for the case where we only check spuriousness of a single branch,
we can just choose the same computation both times.

If the check evaluates to true we know that the counter strategy is spurious. This is
because when using HyperLTL as approximation language, the semantics of predicates
get lost. Especially the fact that a predicate should always evaluate to the same
value when given the same argument gets lost and is, as we have seen, the reason for
spuriousness. This result indicates that there is still a chance for the formula to be
realizable. We, therefore, need to add constraints to the approximation of the formula
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in order to restore the desired behavior of predicates, which is to always evaluate the
same on equal arguments. These additional constraints restrict the atomic propositions
such that they present the predicates more accurately and eliminate the previously
found spurious behavior. When trying to eliminate the spurious behavior caused by the
counter strategy we described in Example 5.4, intuitively this specific spurious counter
strategy can be avoided by adding the formula ∀π. p_yπ ∧ x_up_yπ → p_xπ to the
approximation as stated in Example 5.3. This way, it is ensured that if p_yπ holds
and the cell x was updated with y on trace π, then p_xπ also holds. This refinement is
not constructed automatically and there might be further spurious counter strategies
even after adding this refinement. After the refinement, we again try to construct a
realizing strategy for the formula again. This procedure is repeated until we either
get a realizability result, or until we find a non-spurious counter strategy, or until the
predefined bound is reached. If a non-spurious counter strategy is found, this means
that the formula is indeed unrealizable and the synthesis process terminates.



Chapter 6

Conclusion

In this thesis, we constructed a hyperlogic for temporal stream logic, HyperTSL,
for expressing hyperproperties about infinite data and identified a fragment of it,
called HyperTSL-. Both HyperTSL and its fragment HyperTSL- extend TSL with
explicit quantification over traces and allow expressing hyperproperties on systems
described in TSL. We defined syntax and semantics and an indexed term notation
for HyperTSL and HyperTSL-. HyperTSL- is a syntactic fragment of HyperTSL,
which differs in how predicate terms are indexed. For HyperTSL, the arguments of
predicate terms can be seen as individual components and are indexed individually,
and for HyperTSL-, the predicate and its arguments are seen as one component. The
arguments of a predicate in a HyperTSL formula can thus be from different traces,
while in a HyperTSL- formula the arguments of a predicate must all come from the
same trace. Furthermore, we used the hyperlogics to express hyperproperties on two
systems described in TSL. While the first system was rather small to illustrate the use
of the hyperlogic, we also presented a larger use case in Chapter 4. There, we specified
hyperproperties on an exhaust emission control system in order to spot doped software.
The use case was inspired by the Diesel scandal in 2015. In Chapter 5, we presented a
bounded synthesis approach for the universal fragment of HyperTSL-. The approach
we presented is sound, which we showed in Proof 5.2.

HyperTSL is more expressive than HyperLTL. HyperTSL allows expressing hyper-
properties involving infinite data, as it abstracts from concrete data using predicates
and functions. Expressing these hyperproperties is not possible using HyperLTL.
Furthermore, as HyperTSL uses predicates, functions, and updates, it allows an
intuitive description of the control flow in a system. As we have seen, it can express
many useful hyperproperties in the field of software doping, e.g., robust cleanness, and
there are more examples of software doping where it can be used. While synthesis
for HyperTSL and HyperTSL- is undecidable, we could still provide a sound bounded
synthesis approach for universal HyperTSL-.
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6.1 Future Work
For future work, the first step would be to extend the theoretical bounded synthesis
approach we presented to also work for existential HyperTSL- formulas. Afterward,
the approach could be implemented and used to synthesize formulas expressed in
HyperTSL-. Furthermore, it would be interesting to explore HyperTSL synthesis and
if possible provide an approach as well. A first challenge for HyperTSL synthesis lies
in characterizing realizability for HyperTSL. If existing HyperLTL tools should be
exploited like for HyperTSL- synthesis, another challenge in specifying a synthesis
approach for HyperTSL lies in finding a suitable HyperLTL encoding for predicate
terms that take arguments from different traces. Predicate terms that take arguments
from different traces would need to be encoded as atomic propositions in a way that
allows re-inferring from what trace the individual arguments came. Moreover, the
encoding should be sound. Perhaps an approximation language other than HyperLTL
could be found.

Another interesting topic which we did not cover in this thesis is the model checking
problem for both HyperTSL and HyperTSL-. In model checking, an already existing
system is checked against a specification. Model checking is especially interesting
for HyperTSL specifications that cannot be synthesized using the bounded synthesis
approach. As the synthesis approach is not complete, there might still exist a system
that realizes the formula. If such a system is constructed using a different approach,
model checking can be used to determine whether it really fulfills the specification
given in HyperTSL. The first question that comes up is how to treat functions and
predicates in HyperTSL model checking because in TSL and HyperTSL, functions
and predicates are uninterpreted. If for HyperTSL model checking functions and
predicates should already have an interpretation, we need to include theories in the
logic. TSL modulo theories was explored by Heim in [13] and can function as a starting
point for HyperTSL modulo theories. The decidability results that he established
for TSL modulo theories present a lower bound for the decidability of HyperTSL
modulo theories. The next challenge for HyperTSL model checking would be to define
automata that can represent the HyperTSL formula.
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