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Abstract
Smart contracts are small computer programs, which are part of a blockchain and de-
scribe digital contracts. With them, one does not need to trust a third party, because
the contract acts accordingly by itself. Since smart contracts cannot be altered after
they are added to the blockchain, it is especially important that they behave correctly
in all cases. They also often handle a huge amount of money, where an error would be
fatal. Runtime monitoring checks the specification about the behavior of the program
during the runtime of the program. In comparison to static methods, which have to
take all possible executions into account, monitoring has the advantage that it only has
to check the current execution. Because of that, it has no problems with scalability,
and the monitor can directly act accordingly once it encounters a violation. One way to
express these specifications is with the stream-based monitoring language RTLola by
writing stream-equations. Input streams receive values from the state of the monitored
program. Output streams are then computed based on current, but also earlier values
from input streams and other output streams. A Trigger is a boolean expression, that
indicates a violation of the specification. We implemented a translator, which receives a
Solidity smart contract and a RTLola specification. It produces a new smart contract
that behaves the same but where a monitor checks the specification during the runtime
of the contract. Once a violation of the specification occurs, the monitor can directly
react to the error by executing specified code.
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Chapter 1
Introduction

Smart contracts are digital contracts given as a computer program that is part of a
blockchain. These digital contracts are used in various places: For example for managing
supply chains, to protect copyrights or in insurance applications [1]. One aspect that
a lot of these places have in common is that they often deal with a huge amount of
money. Because of that, smart contracts are a great target for attackers. In 2016
hackers were able to hack the smart contract "The DAO" due to a bug in the contract.
The hackers were able to steal cryptocurrency with a value of 60 Million Dollars [2].
Another incident took place in 2017, where cryptocurrency with an estimated value that
corresponds to up to 300 Million Dollars was permanently frozen due to a bug in the
Parity smart contract [3]. This bug was triggered accidentally by a developer searching
for bugs in the contract. These events show that the correctness of smart contracts is
very important since a mistake could easily cost millions of dollars. Besides that, another
problem with smart contracts is that the developer can not fix the contract after it is
published. Usually, a developer can provide a patched version when an error is found.
This is not possible with smart contracts: Since smart contracts are part of a blockchain,
they are immutable.

We propose a way to add runtime monitoring to smart contracts. We implemented
a compiler, that takes a Solidity smart contract as an input together with a RTLola
specification, and then produces another smart contract. This smart contract behaves
exactly the same as the input but includes a monitor that checks the specification at
runtime of the contract. Solidity [4] is a popular smart contract programming language
for the cryptocurrency Ethereum [5]. RTLola [6] is a stream-based monitoring lan-
guage. The monitor receives values from the state of the contract, the input streams.
Based on these values, the monitor can compute other values, the output streams. The
user can define triggers, that check for a violation of the specification. A trigger consists
of a boolean expression, and when the expression becomes true the monitor executes
user-specified code to handle the violation of the specification.
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1. Introduction

With runtime monitoring, even if the developer made a mistake in developing the
contract, the monitor would catch the error and prevent most damage from happening.
Compared to static analysis, monitoring has the advantage that it only has to analyze
one trace, the one of the current execution, instead of all traces. This often allows
checking more complex specifications. One disadvantage of monitoring is that it intro-
duces additional overhead during runtime. We analyze the overhead of our monitoring
approach with two example contracts. If the overhead introduced by the monitoring is
reasonable, it might be acceptable if in return not millions of dollars are lost due to a
bug in the contract.
This thesis is structured in the following way: In Chapter 3 we give all the background

information needed for the thesis. In this chapter, we introduce smart contracts and the
RTLola monitoring language. The chapter also explains how to analyze the RTLola
specification to calculate the dependency graph, the memory bound, and the evaluation
order. Chapter 4 deals with the idea behind our monitoring approach. We present how
the RTLola specification is formulated for a given contract and how that specification
is then transformed into a monitor in Solidity. Following that, we present some details
about the implementation of the compiler in Rust in Chapter 5. We then evaluate our
monitoring approach using two example contracts in Chapter 6. For the evaluation, we
measure the gas usage of the examples and calculate the overhead that is introduced by
the monitoring.
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Chapter 2
Related Work

Closest to our approach is the runtime verification tool ContractLarva [7]. The tool takes
a smart contract written in Solidity and a specification as an input and modifies the smart
contract in a way, that the specification is checked during the runtime of the contract, just
like the approach shown in this thesis. But instead of giving the specification in RTLola,
ContractLarva takes a specification in the form of a dynamic event automaton. This
type of automaton has an internal state, and transitions are annotated with conditions
on specific events of the contract and conditions on the internal state of the monitor.
When taking a transition, the monitor can modify the internal state. Some states of the
contract are marked as bad states and when a bad state of the automaton is reached, the
monitor executes predefined code. For example, reverting the transaction or bringing the
contract into a specific state. ContractLarva extends the smart contract by a monitor
that keeps track of the current state of the automaton and adds triggers to the contract
such that the monitor is notified about specific events. Control-flow triggers activate
before or after a function is executed and data-flow triggers activate when a global
variable is assigned to. When describing the transition conditions, one can access the
function’s parameters, the global variables of the contract or monitor, and also the
old value of an assigned variable. One advantage of giving the specification in RTLola
stream-expressions instead of an automaton is that it most of the time feels more natural
to formulate the specification in stream expressions than to think about how to represent
the specification in states and transitions. Our approach currently does not support data-
flow triggers like ContractLarva does, but allows accessing a functions return values,
which is not possible with ContractLarva.

The RTLola language was already successfully used in different applications. The
stream-based monitoring language Lola [8], the language RTLola was derived from,
was extended with parameterized streams and used to analyze network traffic and detect
web application fingerprinting attacks [9]. It was also shown how Lola and RTLola can
be used to not only monitor unmanned aircrafts but also how to analyze their log files
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2. Related Work

by calculating statistics afterwards [10, 11, 12]. Besides that, RTLola was successfully
used to monitor web-based auction systems [13].
There are also other approaches for compilers that take a RTLola specification as an

input. Baumeister et al. [14] presented a compiler, that translates specifications given
in RTLola into synthesizable VHDL code. Hardware monitoring on an FPGA has the
advantage that it is highly parallel and consumes less power than software-based monitor-
ing. Finkbeiner et al. [15] presented a "verifying compiler", that translates specifications
given in Lola into very efficient, parallel implementations in Rust. The generated Rust
code contains annotations so that the functional correctness of the monitor can be auto-
matically verified. Especially when using a monitor to guarantee functional correctness,
it is essential that the monitor itself is correct. By using this compiler one can make
sure that it is correct by automatically verifying the correctness of the monitor.

Instead of stream-based languages, the specifications for earlier approaches of runtime
monitoring are often based on Linear Temporal Logic (LTL). The Temporal Rover [16]
is a commercial tool, that is capable of taking C, C++, Java, Verilog, or VHDL code
with an LTL based specification and modifies the code in a way, that it behaves exactly
the same besides that the specification is checked during the runtime. The specification
and the code that is executed once the specification is violated are written directly into
the source code as comments.
Nasa’s Java PathExplorer [17] also uses LTL-based specifications to automatically

instrument java bytecode and monitor the program for functional correctness. This tool
also adds deadlock and data race detection for concurrent programs and is mainly used
for deeper insight into the program’s execution during testing. It was successfully used
to detect a deadlock in 90,0001 lines of C++ code for a rover controller [17].
There also exist approaches for formal verification of smart contracts, so that the mon-

itor does not have to handle the errors once they come up. Instead, it is assured that the
contract is correct before committing it to the blockchain. Scilla [19] is an approach to
verify Smart Contracts by introducing an intermediate language, that separates commu-
nication and computation of the contract. By doing that, properties can be verified with
the proof assistant Coq [20]. Another approach of proving Smart Contract properties
with a proof-assistant was presented in [21]. There the authors showed how to translate
a subset of Solidity (excluding loops) or EVM bytecode to F∗ [22], a functional language
designed for verification.
There are also approaches introducing new programming languages in which it is

less likely for the programmer to make a mistake. An example of such a language
is Bamboo [23]. Bamboo is a programming language for smart contracts that can be
compiled to EVM bytecode. It is designed in a way that the programmer has to explicitly
state which functions can be called in which order. This prevents the programmer from
making a mistake when enforcing the order in which functions are allowed to be called
manually. Other languages of this type are the python-based Vyper [24] and the Flint
language [25].

1[18] states 35,000 lines
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Other approaches verify smart contracts symbolically. Securify [26] is one of the most
popular examples. It was used commercially and has verified over 18,000 contracts sub-
mitted by users. To do that, it analyzes the EVM bytecode and builds the dependency
graph. This graph then is translated to Datalog [27], which a Datalog solver can ana-
lyze for predefined patterns. The results are interpreted and a security report is built,
classifying each property as a violation, a warning (may be a false positive and has to be
manually checked), or compliant. This is one of the things that lets Securify stand out
in contrast to a lot of other symbolic analyzers. These combine the violation and the
warning category, resulting in the user having to check a lot more potential errors. Secu-
rify also does well compared to other symbolic analyzers on how much unsafe behaviors
are covered. [26]
Another example of a symbolic analyzer for smart contracts is Oyente [28], which

analyzes the contract by symbolic execution. Oyente has the problems that it produces
a lot of false positives, something that the ZEUS tool tries to improve. ZEUS [29]
translates a Solidity smart contract to LLVM bitcode, which is then analyzed by an
analyzer tool.
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Chapter 3
Preliminaries

In this chapter, we give an introduction to smart contracts and RTLola. Solidity, a
language to describe smart contracts for the Ethereum cryptocurrency, is introduced in
Section 3.1.3 followed by an introduction to the RTLola monitoring language.

3.1. Smart Contracts
Since smart contracts are based on blockchains, we will introduce blockchains first. The
section after that is about smart contracts in general. Finally, we introduce the smart
contract programming language used in this thesis: Solidity.

3.1.1. Blockchains
Blockchains allow storing data immutable in a distributed system with no single point of
failure [30]. In 1990 Haber and Stornetta [31] first introduced the concept of a blockchain
as a way to time-stamp digital documents. Today, blockchains are used in various
applications, for example as a music copyright system [32], for supply-chain tracing [33,
34], electronic voting [35], and even to help tackle the corona pandemic [36]. The most
popular application was proposed by Satoshi Nakamoto in 2008 [37] for an electronic
cash system, introducing the cryptocurrency Bitcoin.
A blockchain is a decentralized ledger. Decentralized in this context means, that every

participant has a copy of the blockchain and is notified about updates to the blockchain
through a peer-to-peer network. A blockchain is a chain of data, where each part of the
chain, the blocks, contains the hash of the previous block (see Figure 3.1). The data
that is stored in the blocks is different depending on what the blockchain is used for.
In case of a cryptocurrency, the data contains transaction information. A blockchain
also contains a way to reach a consensus about the correctness of the blocks. The most
popular way to do that is to include a proof-of-work in every block. A proof-of-work is
some piece of information that is hard to compute, but easy to check. This makes it
difficult to add new blocks to the blockchain. One way to implement this proof-of-work
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3. Preliminaries

Blockn−1 Blockn Blockn+1

Hash Blockn−2 Hash Blockn−1 Hash Blockn

Datan−1 Datan Datan+1

Noncen−1 Noncen Noncen+1

Figure 3.1.: A simplified version of three blocks from a blockchain. Each block contains
the hash of the block before.

is to find a number, a nonce, so that the hash of the block with that nonce in it, starts
with a defined number of zeros. This is hard to find as it is only possible by trying
many different numbers, but it is easy to check, by computing the hash of the block.
When someone wants to add new data to the blockchain, they broadcast this data in
the network. Miners then collect this data and compete against other miners trying to
solve the cryptographic puzzle of finding the proof-of-work first. After generating a valid
block, the miner broadcasts the new block into the network and receives some amount of
cryptocurrency as a reward for generating the block. Others in the network are able to
check the validity of the block, by checking the hash of the previous block and validating
that the proof-of-work is correct. [37]

The reason for introducing the proof-of-work in the blockchain is to make it very hard
to modify a block. To modify a block, one would not only have to recompute all the
following blocks but also do the proof-of-work for all these blocks all over again. Since
everyone in the network has a copy of the blockchain, the attacker would need to do
this on at least half of the copies of the blockchain in the network until others start to
believe that the attackers version is the real version. [37]

There also exist other ways to verify the correctness of the blocks on the blockchain.
One alternative is proof-of-stake, where a randomly chosen verifier verifies a new block.
To become a verifier, one has to deposit some cryptocurrency that is locked during the
time the verifier is active. The more cryptocurrency the verifier deposits, the more likely
it is that they are chosen to verify a node. The verifier would not verify faulty blocks,
because they would lose more of their deposited currency than they could gain. It has
the advantage, that it does not require the huge amounts of energy that are required to
mine new blocks by using proof-of-work [38]. The most famous cryptocurrencies, Bitcoin
and Ethereum, burn about 1 Million Dollars of electricity and hardware costs every day
for mining new blocks [38] and Bitcoin alone consumes each year about as much power
as the country Belgium [39]. The cryptocurrency Ethereum plans to make the transition
from proof-of-work to proof-of-stake in 2021/22 [40].
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3.1. Smart Contracts

In summary, it can be said that blocks in a blockchain are immutable and irreversible.
It is a distributed system with no single point of failure and no central authority that
has to be trusted. [30]

3.1.2. Smart Contracts

A smart contract is a digital contract in form of a computer program that is part of a
blockchain. The idea to formulate contracts digitally by embedding them in hardware
or software was proposed by Nick Szabo in 1993 [41] and became popular with the
introduction of the Ethereum cryptocurrency [5]. Instead of trusting the participants or
a third party to act according to the contract, the smart contract enforces the contract
itself by its own execution. When adding the smart contract to the blockchain, the
contract becomes valid, and cannot be changed or retracted.
In comparison to traditional contracts, smart contracts have the advantage, that the

code of a smart contract exactly defines what the contract is going to do transparently to
everyone participating. There is no way to interpret a sentence in two different ways like
it is the case with contracts written in natural language on paper. Another advantage
is the speed at which smart contracts operate. It can take a person days to manually
process a traditional contract, while smart contracts are much faster. Smart contracts
also are really secure, since they use modern cryptography. [42]

3.1.3. Solidity

Solidity [4] is the most used programming language for smart contracts and is used
by the cryptocurrency Ethereum [5]. A Solidity contract contains data and functions.
Everyone can call these functions, and the functions can modify the data of the contract.
Executing a smart contract consumes "gas", for which the participant calling a function
has to pay. This prevents the contract from running too long.
We introduce the Solidity programming language with some examples. The following

example contract is able to store a number:
contract example {
int number;

function setNumber(int num) public {
number = num;

}

function getNumber() public view returns (int) {
return number;

}
}

The contract example contains two functions and one global variable number of type
int. The setNumber function sets the number of the contract to the number given as
an argument. The getNumber function returns the number stored in the contract at the
moment when the function is called. Both functions are marked public, which means

9



3. Preliminaries

that everyone can execute them. Every new call to the function overwrites the old
number. The getNumber function is marked as view because it does not change the state
of the contract.

Most of the time it is not desirable for everyone to be able to call every function. To
prevent this, it is possible to access the address of the party calling a function. If this
address does not correspond to the person that is allowed to call the function, one can
act accordingly, for example reverting all the changes made by that function call. This
is possible because a function in a smart contract can either be executed completely or
not at all. When calling revert() somewhere inside a function, the contract is broughtrevert
back to the state it was in before that function was called.

In the last example, everyone was able to change the number stored in the contract.
We now modify the contract in a way, such that only the creator of the contract is able
to change the number, but everyone is still able to read the number:

contract example {
int number;

address creator;

constructor() public {
creator = msg.sender;

}

function setNumber(int num) public {
number = num;
if(msg.sender != creator) revert();

}

function getNumber() public view returns (int) {
return number;

}
}

This example adds a constructor function to the contract. The msg.sender variable
always holds the address of the one calling a function. These addresses identify all users
and contracts. When the creator of the contract calls the constructor function, the
contract stores the address of that person. This way, when executing the setNumber
function, the contract checks that the person calling that function really is the same
person that also called the constructor function. In the example above, this check is
done after assigning the global variable. But since function calls are either executed
completely or not at all, the variable does not change if the person calling the function
is not the creator of the contract.
Each Solidity program has its own wallet and can also own and transfer Ether, the

currency of Ethereum, to other accounts. It is possible to attach Ether to function calls,
what is then transferred to the wallet of the contract. We now change the example

10



3.2. RTLola

contract in a way, that Ether has to be paid to the creator of the contract in order to
change the number:

contract example {
int number;
address payable creator;

uint COST = 5 ether;

constructor() public {
creator = msg.sender;

}

function setNumber(int num) public payable {
number = num;
require(msg.value == COST);
creator.transfer(COST);

}

function getNumber() public view returns (int) {
return number;

}
}

The setNumber function is marked as payable, which means that the caller of that payable function
function is able to attach Ether to the function call. Also, the variable of the address of
the creator has to be marked as payable so that the contract is able to send currency
to that address. The require() function is a shortcut for the if-expression used in the
example above: if the expression is not fulfilled, the transaction is reverted. The function
call is only valid if the Ether that was sent with the function call is exactly the amount
it costs to change the number. The attached Ether is now in the wallet of the contract.
With the call to creator.transfer(), the contract sends that fee, which currently resides
on the wallet of the contract, to the wallet of the creator of the contract.

3.2. RTLola

RTLola [6] is a stream-based monitoring language. A RTLola specification consists
of input streams, output streams and triggers. A stream is a finite sequence of values of stream
a specific type. The input streams receive values describing the state of the monitored
program. The output streams are defined by stream-expressions and computed based
on current, but also previous values of the input streams and output streams (see Fig-
ure 3.2). A trigger is a boolean stream-expression, where the expression becoming true trigger
indicates a violation of the specification.
In contrast to the stream-based monitoring language Lola [8], where RTLola was

derived from, RTLola the ability to handle real-time streams. Lola, on the other
hand, expects all streams to be synchronized by a global clock, something that is often
not realistic in real-time applications.

11



3. Preliminaries

Monitored System Runtime
Monitor

RTLola
Specification

Figure 3.2.: The monitor constantly receives values from the monitored system, the
input streams. Based on current and older values of these streams, the
monitor then computes new values, the output streams.

The following example is a specification for a token transfer contract. The account
of each user contains an amount of tokens. The user can then make a transaction,
transferring a specific amount of tokens to another account.

input amount : Int64
output balance := balance.offset(by:-1).defaults(to:0) + amount
trigger balance < 0 "account can not get overdrawn"

The input stream amount receives a new value whenever a transaction takes place. If
tokens are transferred to the account, the value in the amount stream is positive, if tokens
are transferred from the account, the value is negative. To keep track of the current
balance of the account, the specification defines an output stream balance. Whenever
the amount stream receives a new value, the balance stream also calculates a new value,
since the balance stream directly accesses the amount stream. Such access is called a
synchronous access. The monitor calculates the new balance by taking the previous valuesynchronous access
of balance, i.e. the balance before the transaction, and adding the number of transferred
tokens. Since this previous value potentially could not exist, e.g. if the monitoring was
just started and there is no previous value, a default value is given. This default value
is used when the accessed value does not exist. Because the default value is zero in this
case, every account has a balance of zero when the monitoring starts. The trigger checks
if the current balance is below zero. If the balance is below zero, the trigger-expression
becomes true, which indicates a violation of the specification because the user is not
allowed to overdraw their account.
Activation conditions define when the monitor calculates a new value for an outputactivation condition

stream. An activation condition consists of a boolean expression over stream names.
Only if all streams of a conjunction in the activation condition receive a new value,
that stream also generates a new value. Likewise for a disjunction: If any stream in
the disjunction receives a new value, then the output stream generates a new value. In
the example above, the activation condition is not given explicitly. In that case, the
activation condition is calculated based on the synchronous access to the amount stream.
But sometimes it is also necessary to give the activation condition explicitly:

output count @amount := count.offset(by:-1).defaults(to:0) + 1

12



3.2. RTLola

The count stream is only incremented by one if the amount stream receives a new value.
That stream, therefore, counts the number of transactions that took place.
A stream access can also be asynchronously. To demonstrate this, we define a

statements stream. The monitor should add the current balance to the statements
stream, whenever the input stream create_statement receives the value true:

input create_statement : Bool
output statements @create_statement :=
if create_statement then
balance.hold().defaults(to:0)

else
statements.offset(by:-1).defaults(to:0)

If the value in create_statement is true, the statements stream accesses the newest
value of the balance stream asynchronously with the hold()-operator. The difference asynchronous access
to a synchronous access is, that the asynchronous access does not require the balance
stream to receive a new value in exactly that moment. Instead, the monitor simply
accesses the newest value of that stream. Because this value potentially could also not
exist, a default value is given here as well. If the create_statement stream receives a
false value, the last balance in the statements stream is simply repeated.
All the output streams shown so far in this chapter are event-based. The monitor event-based streams

calculates new values for these streams when the activation condition is satisfied. The
other type of output stream is a periodic stream. That type of stream is evaluated in a periodic stream
fixed frequency:

output statements @1Hz :=
balance.hold().defaults(to:0)

As an alternative to statements stream shown above, here the monitor does not add the
current balance to the statements stream when a signal is given, but in a fixed frequency.
Once a second, the current balance of the account is added to the statements stream.

RTLola can also aggregate over a sliding window. In the following example, the sliding window
output stream count_sec contains the amount of transactions that took place in the last
second:

output count_sec @1Hz := amount.aggregate(over: 1s, using: count)

Once a second, the monitor evaluates this stream. Every time the stream is evaluated,
the monitor counts all the values that were added to the amount stream in the last second.
For this to work, the monitor has to know at what time the inputs arrive. RTLola
supports two different modes to allow that: an online and an offline mode. In the online
mode the monitor automatically adds the timestamp of the time when the data arrives.
In the offline mode, the monitor analyzes a csv-file, where the timestamps are already
included in the file.

3.2.1. Type system
Every stream in a specification has two types: The first type is the value type that value type
defines which type of values are contained in the stream. These types include types
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such as Bool, Int64 and UInt64. The user has to state the value types explicitly when
defining an input stream. The value type is inferred automatically for an output stream.
The second type of a stream is the stream type. This type defines when the monitorstream type
calculates a new value for that stream. For event-based output streams, the stream type
consists of a boolean expression over stream names. For such an event-based output
stream, the stream type is either given explicitly with the activation condition, or is
inferred automatically from the synchronously accessed streams. For a periodic stream,
the stream type corresponds to the period in which the monitor computes a new value. [6]

3.2.2. Evaluating RTLola
This section presents the dependency graph of a RTLola specification and how that
dependency graph can be used to determine in which order the monitor has to evaluate
the streams. Our compiler does not support the full RTLola language. Because of
that, the following definitions are simplified. We present the definitions for the subset of
RTLola without sliding windows and periodic streams. The interested reader can find
the definitions for the full RTLola language presented by Schwenger in [43].
The dependency graph of a RTLola specification is a weighted and directed multi-Def. dependency

graph graph, where every vertex corresponds to a stream from the specification. For a syn-
chronous stream access from a stream s to s′ with offset w, the graph contains an edge
(s, w, s′). In the dependency graph, input streams never have outgoing edges, since they
never depend on other streams. Triggers on the other hand never have incoming edges,
since no stream can access a trigger.
For the monitor to be able to evaluate a RTLola specification, the specification has

to be well-formed: A RTLola specification is well-formed, if there is no cycle in theDef. well-formed
specification dependency graph with a total weight of zero. If that would be the case, the streams

in the cycle would influence the new value of each other, making it impossible for the
monitor to evaluate them.

Example 3.2.1. To demonstrate the dependency graph, consider the following RTLola
specification:

input a : Int64
output b := a + c
output c := b.offset(by:-2).defaults(to:0)
trigger c + a.offset(by:-1).defaults(to:0) > 0

Figure 3.3 depicts the dependency graph for this specification. Since the only cycle
in the dependency graph b, c does not have a total weight of zero, this specification is
well-formed. 4

The monitor has to update the streams in the correct order. Therefore, we define
an evaluation order: The evaluation order ≺ of a RTLola specification with the de-Def. evaluation

order pendency graph DG = (V,E) is a partial order on streams. It satisfies the following
rules:

1. ∀i, j : ini ≺ outj : Every input stream is evaluated before any output stream.
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Figure 3.3.: The dependency graph for the specification in Example 3.2.1.

2. (s, 0, s′) ∈ E ⇒ s′ ≺ s: If a stream s accesses a stream s′ synchronously without
an offset, then s′ ≺ s.

3. si ≺ sj ∧ sj ≺ sk ⇒ si ≺ sk: ensures transitivity.

Next, we define the evaluation layers, which the compiler uses to determine in which
order the monitor has to update the streams:

Definition 1 (Evaluation Layer [43])
The evaluation layers define the order in which the streams are evaluated. If a stream Def. evaluation layer

is in layer k, then all the streams that stream depends on are in a lower evaluation layer:

Layer(si) := 1 + max{Layer(sj) | sj ≺ si}

All input streams are in the lowest layer 0.

All streams that reside in the same activation layer do not depend on each other and
could be evaluated in parallel. When a stream s is in a lower layer than another stream
s′, then s has to be evaluated earlier than s′.

Example 3.2.2. The evaluation order of the specification in Example 3.2.1 is the tran-
sitive closure of the relation ≺ with

a ≺ b , a ≺ c , a ≺ t1 Rule 1

a ≺ b , c ≺ b , c ≺ t1 Rule 2

and has the following evaluation layers:

Layer(a) = 0

Layer(c) = 1

Layer(b) = Layer(t1) = 2.
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Figure 3.4.: Example for the evaluation of the specification in Example 3.2.1 when
adding the value 3 to the input stream.

First, the monitor evaluates the input stream a, followed by the stream c. Followed
by that, the monitor evaluates output stream b and the trigger. The order in which b
and the trigger are evaluated does not matter, since they do not depend on each other.
They can also be evaluated in parallel. 4

The evaluation order only considers synchronous accesses without an offset. The order
in which the monitor accesses previous values of streams does not matter, since all these
values already exist. Nevertheless, for the accesses with an offset to access the correct
value, a pseudo evaluation phase takes place before the monitor calculates the actualpseudo evaluation
values. During that phase, all the streams that receive a new value, first receive a
pseudo value. After that, the monitor evaluates the streams and replaces these pseudo
values with the actual ones. The evaluation order ensures that a stream never accesses
the pseudo value of another stream.

Example 3.2.3. Figure 3.4 demonstrates the evaluation of the specification in Exam-
ple 3.2.1 when adding the value 3 to the input stream.
First, all streams that receive a new value (in this case all the streams) receive a pseudo

value. In the following steps, the monitor replaces these pseudo values with the correct
values. First, the input stream a receives the value 3. In the next evaluation layer, the
output stream c generates the new value, by accessing b with an offset of 2. Without
the pseudo evaluation phase, the monitor would access b at the wrong position: It would
not access the 5 but the value before that. Finally in layer 2, the monitor calculates the
value for the output stream b by summing the newest values of a and c. In parallel to
the update of b, the monitor checks the trigger condition of the trigger (not depicted in
the figure). 4

3.2.3. Storage Requirement
The storage requirement of a stream specifies how many values of that stream the monitor
needs for a successful evaluation. This number is constant in the length of the trace,
and can therefore be used by the compiler to determine how many values the monitor
has to store for each stream.
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Definition 2 (Storage Requirement [43])
The storage requirement κ(s) of a stream s in a RTLola specification with the de- Def. storage

requirementpendency graph DG = (V,E) defines how many values of that stream are needed for the
evaluation:

κ(s) := max{w | (s′, w, s) ∈ E}+ 1

The storage requirement of a stream is the maximal offset of an access to that stream.
In addition, the monitor has to store the current value of every stream, so that other
streams can access the current value. The storage requirement of a trigger is special.
Since a trigger is never accessed, the monitor does not has to store any value of a trigger
at all.

Example 3.2.4. The streams in the specification in Example 3.2.1 have the following
storage requirements:

κ(a) = 2

κ(b) = 3

κ(c) = 1

κ(t1) = 0

The monitor only has to store the last two values of the input stream a for a successful
evaluation. For the output stream b it has to store three values, for c one value and no
value at all for the trigger. 4
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Chapter 4
General Overview

This chapter presents the compilation from a smart contract together with a specification
into a safe smart contract. As long as the specification holds, the safe smart contract
behaves the same as the input contract but is checked against the specification during
its runtime. First, we give an overview of the compilation. Then, the details on how the
combination of the input contract and the specification results in the output contract
are presented. The details about the implementation of the compiler in Rust follow in
the next chapter.

4.1. Smart Contract Specifications in RTlola

The compiler takes a smart contract in the form of a Solidity file, and a RTLola
specification as an input. To be able to write a specification in RTLola for a given
contract, the user has to construct input streams based on the contract:

Specification
RTLola

Smart Contract
Solidity

Compiler
Smart Contract

with included Monitor
Solidity

determines
input

streams

In our setup, for each function in the contract, the user can include a set of corre-
sponding input streams in the specification. Whenever the function is called, the monitor
produces new values for the input streams based on that function call. The monitor ob-
serves every function in the input contract, that has at least one input stream associated
with it.
We need a naming convention, to be able to conclude which input stream belongs to

which part of the contract: Suppose there is a function called 〈function-name〉 in the
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input contract. Then, the user can include the following input streams in the specifica-
tion:

• 〈function-name〉__〈parameter-name〉: When the function is called, the new value
of the stream is the value of the function argument 〈parameter-name〉.

• 〈function-name〉__〈return-value-name〉: When the function is called, the new value
of the stream is the value 〈return-value-name〉 returned by that function call.

• 〈function-name〉: This input stream of type Bool always receives the value true
when the function is called. This stream never contains a value of false. When
no one called that function, then no value is added to that stream.

Besides that, it is possible to include artificial input streams in the specification. Theartificial input
streams values to these artificial input streams are automatically forwarded when someone calls

a function:

• current_time: UInt256: The new value for this input stream is the current time
at which the function was called.

• msg_sender: UInt256: The new value for this input stream is the address of the
party calling the function.

• attached_value: UInt256: The new value for this input stream is the amount of
money that the caller attached to a payable function call.

• called_function: String: The new value for this input stream is the name of the
function that was called.

The difference between the 〈function-name〉 stream and the called_function stream
is that the 〈function-name〉 stream only receives a value if someone actually called that
function. This allows for the 〈function-name〉 stream to be included in the activation
condition. Especially for streams without any arguments or return values, this is very
useful. But we also need the called_function stream, when calls to different functions
influence the new value of an output stream in different ways.
By using the presented input streams, the monitor is now able to observe the execution

of the contract. But once a violation of the specification occurs, there has to be a way for
the monitor to react to the error. To be able to do that, each trigger of the specification
is associated with a trigger function. A trigger function is a function in the contracttrigger function
that the monitor executes when a trigger is checked and the trigger condition is satisfied.
Each trigger needs a message, to indicate to which trigger function that trigger belongs.
This message has to be either 〈trigger-function〉 or 〈trigger-function〉:〈trigger-message〉.
The monitor executes the function 〈trigger-function〉, whenever the trigger activates. It
is also possible for the same trigger function to be associated with multiple triggers. If
the trigger function does not already exist in the input contract, the compiler creates
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contract example {

int256 last_arg1;

function example_function(int256 arg1, int32 arg2) public returns(bool equal,int256
sum){
equal = arg1 == last_arg1;
last_arg1 = arg1;
return (equal,arg1+int256(arg2));

}
}

Listing 4.1: The example contract used for this chapter.

1 input example_function__arg1 : Int256
2 input example_function__arg2 : Int32
3 input example_function__equal : Bool
4 input example_function__sum : Int256
5

6 output sum := example_function__arg1 + cast(example_function__arg2)
7

8 trigger (example_function__arg1 == example_function__arg1.offset(by:-1).defaults(to:0))
!= example_function__equal "wrong_bool: the return boolean does not correspond to
the equality of the argument and the previous argument"

9

10 trigger sum != example_function__sum "wrong_sum: the return value does not correspond
to the sum of the arguments"

Listing 4.2: The specification for the example_function in Listing 4.1.

that function automatically. In that case, the trigger function contains a placeholder,
which the user has to fill out afterward.
The monitor is capable of monitoring parameters and return values of type boolean,

signed, and unsigned integer. The type of the stream for a Solidity type directly cor-
responds to the appropriate RTLola type. The one exception is the Solidity address
type. The monitor converts the address to an unsigned integer, and it can therefore be
used as an input to an UInt256 input stream.
We use the contract in Listing 4.1 as an example contract for this chapter. This

contract contains one function with two arguments. The global variable last_arg1
contains the first argument to the function the last time the user called that function.
The first return value is a boolean indicating whether the first argument is the same as
it was the last time someone called that function. The second return value is just the
sum of the two function arguments.
Listing 4.2 depicts the specification for that function. First, the specification defines

input streams that capture the values of the function. In this example, there is one input
stream for each argument and one input stream for each return value of that function.
Next, the specification defines an output stream, which keeps track of the sum of the
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arguments to the function (line 6). The cast-operator adapts the type of the second
argument to also be of type Int256. Whenever someone calls the example_function,
the monitor adds the values of the arguments arg1 and arg2 to the corresponding input
streams. Equally, the monitor adds the return values of the function to the two other
input streams. When someone calls the function, the activation condition of the sum
stream is satisfied, since the streams of both arguments receive a new value at the same
time. Because of that, the monitor calculates the new value for the sum stream too. The
first trigger in the specification (line 8) checks, that the equal return value is true iff the
first function parameter is the same as the last time someone called that function. If the
trigger condition is satisfied, which indicates a violation of the specification, the monitor
executes the trigger function wrong_bool. The second trigger checks that the returned
sum is equal to the sum of the function parameters (line 10). The monitor executes the
wrong_sum function if this trigger activates.

4.2. Compiling the Specification to a Monitor
To compile the RTLola specification into the output contract, we require the following
steps:

• Implement each stream and trigger in Solidity code.

• Add the corresponding values to the input streams whenever someone calls a func-
tion.

• Update the output streams according to the new values in the input streams and
check the trigger conditions.

In this section, we present these steps in detail.

4.2.1. Implementing Streams
For every stream, the monitor has to store the last values of that stream. The number
of values that the monitor has to keep is determined by the storage requirement of that
stream (see Definition 2). The monitor stores these values in a ring buffer, implemented:Def. 2, p. 17
as an array of the type that corresponds to the type of the stream:

int256[2] example_function__arg1_buffer;
int256 example_function__arg1_current;
bool[2] example_function__arg1_valid;

This buffer stores the last two values of the example_function__arg1 input stream, since
the memory requirement of that stream is equal to two. Since the newest value does
not always reside at the same index, the *_current variable stores the index of the
newest element in the buffer. The *_valid buffer indicates, which elements of the array
are valid entries. The monitor uses that information to determine whether to use the
default value when accessing a value that does not always exist. When the monitoring
starts, all entries are invalid.
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3 8 5 9 3 8 5 9 3 8 1 9

shift update

Figure 4.1.: The value 1 is added to a stream with a memory bound of 4. The last four
values are 5,9,3,8 (with 8 as the newest value). Due to the evaluation order,
the monitor never accesses the old value 5 before it is overwritten with the
new value for the stream.

To make space for a new value, the compiler adds the shift_* function for every
stream:

function shift_example_function__arg1() private {
example_function__arg1_current =

(example_function__arg1_current + 1) % 2;
}

This function increments the index of the current value in the buffer.
Depending on whether the stream is an input or an output stream, the way the monitor

adds new values to a stream differs. For an input stream, the compiler generates an
update function, which takes the new value for the stream as an argument and places it
at the correct position in the buffer:

function update_example_function__arg1(int256 example_function__arg1) private {
example_function__arg1_buffer[example_function__arg1_current] =

example_function__arg1;
example_function__arg1_valid[example_function__arg1_current] = true;

}

To add a new value to the stream, the monitor first has to shift the stream, and then call
the update function with the new value (see Figure 4.1 for an example). The compiler
separates the code for shifting the current index and adding a new value to the buffer
so that a pseudo evaluation phase is possible, where the monitor first shifts all streams,
and then adds the correct values.

For an output stream, the compiler also adds an update function. In contrast to that
for an input stream, this update function does not take the new value as an argument.
Instead, the monitor calculates the new value based on the stream expression defining
that output stream:

function update_sum() private {
sum_buffer[sum_current] =

example_function__arg1_buffer[example_function__arg1_current]
+ int256(example_function__arg2_buffer[example_function__arg2_current]);

sum_valid[sum_current] = true;
}
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4.2.2. Accessing other Streams

The stream expressions of output streams access other streams in different ways. We
now present how the compiler supports these different accesses.
For a synchronous access to the newest value of a stream, the monitor directly accesses

the newest value on the buffer:
example_function__arg1_buffer[example_function__arg1_current]

This is not so easy for a synchronous access with an offset, since the accessed value
potentially could not exist. Because of that, the compiler generates a helper function
for accessing a stream with an offset:

function get_example_function__arg1_with_offset(uint256 offset, int256 default) private
view returns (int256){
int256 index =

int256(example_function__arg1_current) - int256(offset);
if (index < 0) { index += 2; }
if (example_function__arg1_valid[uint256(index)]) {

return example_function__arg1_buffer[uint256(index)];
} else {

return default;
}

}

The compiler generates this function for every stream. The function takes the offset and
the default value as an argument and returns the value at that offset if the value is valid,
and returns the default value otherwise. The value of 2 that is used in this function
corresponds to the storage requirement of the stream, which is equal to the size of the
array.
To support the asynchronous access to a stream, the compiler generates another helper

function:
function example_function__arg1_current_value(int256 default) private {

if (example_function__arg1_valid[example_function__arg1_current]) {
return example_function__arg1_buffer[example_function__arg1_current];

} else {
return default;

}
}

This function returns the newest value of the stream if it is valid, and the default value
if the newest value does not exist.

4.2.3. Translating Stream Expressions

When updating an output stream, the monitor calculates the new value with the stream
expression of that stream. For the monitor to be able to do that, the compiler has to
translate the stream expression to Solidity code. The compiler does this translation
recursively. To translate a binary operator, the compiler translates both operands re-
cursively and then combines them with the corresponding Solidity operator. The same
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is done for unary operators: The compiler translates the operand recursively and then
prepends it with the corresponding Solidity operator. To make sure that the order
of precedence stays intact, the compiler surrounds all operations with parentheses. A
stream access is formatted differently, depending on the type of access. Either the mon-
itor directly accesses the value, or calls the corresponding access function:

• synchronous access without offset: accessed_stream[accessed_stream_current]

• synchronous access with offset: get_accessed_stream_with_offset(offset,
default)

• asynchronous access: accessed_stream_current_value(default)

The compiler directly translated a cast in a stream expression to the corresponding
cast operator in Solidity as shown in the update function of the sum stream above (see
page 23). There also exist some library functions supported by the compiler. The
arguments to calls to these functions are translated to Solidity recursively. Then, the
compiler generates a call to the corresponding equivalent Solidity function with these
arguments. The compiler also adds the code implementing that function to the output
contract. Currently supported are the functions min, max and abs from the math library.

4.2.4. Triggers

Since the monitor does not need to store any previous values of a trigger, the compiler
simply adds a trigger-check function for every trigger to the output contract: trigger-check

function
function check_trigger1() private {

if (sum_buffer[sum_current] !=
example_function__return1_buffer[example_function__return1_current]) {
wrong_sum();

}
}

This function checks the trigger condition and executes the trigger function if the condi- trigger function
tion is satisfied. The trigger function is a private function, which takes no arguments. If
the input contract already includes a function with the name of a trigger function, then
the monitor uses that function. Otherwise, the compiler creates the trigger automati-
cally. Nevertheless, the user has to decide what should happen if the trigger activates.
The user could for example decide to bring the contract to the state it was before the
function call that made the trigger activate:

function wrong_sum() private {
revert();

}

Something the user has to keep in mind in that case is, that when the trigger activates,
everything that happened after the function call is reverted. This also includes updat-
ing the streams with the new values. This has the consequence that after the trigger
activates, the streams are exactly the same as before the user called the function.
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Another option for the user is, to bring the contract to a specific state. In this case
for example, the user could set the global variable to a specific value:

function wrong_sum() private {
previous_arg1 = 0;

}

4.2.5. Updating the Streams

Now, the streams are implemented in Solidity. What is missing is, that the monitor has
to update the streams whenever someone calls a monitored function. To be able to do
that, the compiler relocates the body of a monitored function into a helper function.
This helper function has the same definition as the original, besides that it is marked
as private, i.e. it can only be called from inside the contract. Otherwise, it would be
possible to execute the body of the function without the monitor noticing. With the
help of the helper function, it is possible for the monitor to access the return values
after executing the function. The monitor could need these return values to update the
corresponding input streams.

function _example_function(int256 arg1, int32 arg2) private returns(bool equal, int256
sum){
// original function body

}

function example_function(int256 arg1, int32 arg2) public returns(bool equal, int256 sum){
(bool return0, int256 return1) = _example_function(arg1,arg2);
// update the streams here
return (return0, return1);

}

The modified function depicted above behaves exactly the same as the original function.
Missing are the function calls to the stream-shift functions, stream-update functions,
and the trigger-check functions.
First, the monitor shifts all streams that depend on that function call. This is equiv-

alent to the pseudo-evaluation phase and ensures that the monitor accesses the values
with the correct offset. The dependent streams of a function are all the streams, that thedependent streams of

a function monitor has to update when that function is called. These include all the input streams
that receive a value from that function and all the artificial input streams. They also
include all the output streams, where the activation condition is satisfied when the func-
tion is called. The activation condition for the output stream sum for example consists of
the conjunction of the input streams for arg1 and arg2. Since both these input streams
receive a value from that function, the sum stream also depends on that function.
After all the streams are shifted, the monitor updates the dependent streams in the

correct order, sorted by their evaluation layer (see Definition 1). Finally, the monitor:Def. 1, p. 15
checks the trigger conditions for all the triggers that depend on that function. For the
specification in Listing 4.2, the following would be a valid sequence of updates:
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// stream shifts
shift_example_function__arg1();
shift_example_function__arg2();
shift_example_function_equal();
shift_example_function_sum();
shift_sum();
// input stream updates
update_example_function__arg1(arg1);
update_example_function__arg2(arg2);
update_example_function__equal(return0);
update_example_function__sum(return1);
// output stream updates
update_sum();
// trigger checks
check_trigger0();
check_trigger1();

4.2.6. Special Variables

The compiler has to handle the Solidity variables msg.sender and msg.value special in
the output contract. The variable msg.sender always holds the address of the party
calling a function, and msg.value holds the amount of money the caller attached to a
payable function call. In the output contract, the user does not call the function that
was originally intended to be called anymore. Instead the user calls another function
which then calls the helper function with the original function body. Because of that,
the values of msg.sender and msg.value are not what the user expects them to be. Since
the monitor calls the helper function from inside the contract, the msg.sender variable
always holds the address of the contract itself, while msg.value never is set since no
money is attached to the call to the helper function.
The compiler fixes this problem, by renaming every usage of msg.sender to msg_sender

as well as msg.value to msg_value in the original function body. The monitor passed the
values for these variables as extra arguments to the helper function. We demonstrate
this with the following example:

function example_function(uint32 example_arg) public payable {
require(msg.sender == example_address);
require(msg.value == 5 ether);
// ...

}

This example_function accesses the variables msg.sender and msg.value to restrict
the access to this function. When monitoring that function, the monitor passes these
values as extra arguments:

function _example_function(uint32 example_arg, address msg_sender, uint256 msg_value)
private {
require(msg_sender == example_address);
require(msg_value == 5 ether);
// ...

}
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function example_function(uint32 example_arg) public payable {
_example_function(example_arg, msg.sender, msg.value);
// stream updates etc.

}

Now, the _example_function works as expected by the user, since the values of the
variables are taken from the function the user actually called.

4.3. Optimizations

This chapter presents a few optimizations that the compiler implements. The interested
reader can find the code produced by the compiler for the example contract of this
chapter with all the listed optimizations in Appendix A.1.:App. A.1, p. 55

4.3.1. Storage Requirement of 1

A lot of streams have a storage requirement of 1. This means that the monitor only has
to store the current value of that stream. For all these streams, the compiler simplifies
the implementation of the monitor:

int256[1] example_function__sum_buffer;
bool[1] example_function__sum_valid;

function update_example_function__sum(int256 example_function__sum)
private {
example_function__sum_buffer[0] = example_function__sum;
example_function__sum_valid[0] = true;

}

When the monitor produces a new value for a stream, the last value can simply be
overwritten since it is not needed anymore. Because of that, the monitor does not have
to keep track of the index in the buffer, since there is only one value anyway. For the
same reason, the monitor does not need a shift function for such a stream. The monitor
needs the *_valid boolean nevertheless, to make sure that a value exists when doing an
asynchronous access.

4.3.2. Streams of Type String

The artificial input stream called_function is the only supported stream of type String.
Since all the strings in this stream encode a function, the monitor internally encodes
these functions with a unique integer, rather than the name of the function. Whenever a
string is used in any stream expression, the compiler translates that string to the correct
identifier. Besides the increased performance for not having to do string comparisons,
this also has the advantage that comparisons with non-existing function names trigger
an error at compile time.
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4.3.3. Unused Functions
Often a stream is never accessed asynchronously. In these cases, the monitor never
uses the asynchronous access function generated for that stream. Because of that, this
access function is omitted in the output contract. The same is the case for streams that
the monitor never accesses with an offset. Here, the corresponding access function can
be omitted as well. Just like that, only the library function implementations that the
compiler actually uses have to be included in the output contract. Leaving out all the
unused code in the output contract does not only make the output contract shorter and
therefore easier to read, but also reduces the deployment cost of the contract.
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Chapter 5
Implementation

This chapter presents the implementation of the compiler in Rust. We first show the
parsing of the input contract, the RTLola Frontend, and templates. Finally, these
elements are combined to implement the compiler.

5.1. Parsing the Contract

This section describes the parsing of the Solidity input file. First, we introduce the pest
parser generator with a grammar for parsing the body of a function. Afterwards, we
present the internal representation of smart contracts in the compiler.

5.1.1. Pest Parser-Generator

The compiler parses the input contract by using the pest [44] parser generator for Rust.
A parser generator automatically generates efficient code for parsing a given grammar,
instead of the programmer having to write a parser for that grammar by themself. The
pest parser generator uses parsing expression grammars (PEG). We present these PEGs parsing expression

grammarwith a grammar for parsing the body of a function.
Since the compiler does not need to know the details of a function body, there is no

need for the compiler to parse the function bodies completely. Instead, the internal
representation just stores the function body as a string. Nevertheless, the opening brace
of the function body must be correctly matched with the corresponding closing brace.
The parser has to find the correct closing brace since the body of the function most
likely also contains opening and closing braces. On the other hand is it possible, that a
string or comment contains a brace, which the parser should not consider when looking
for the correct brace. The solution for this problem is to differentiate the function body
into parts:
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function = { "function" ~ function_name ~ ... ~ "{" ~ function_body* ~ "}" }

function_body = { (matching_braces | quoted_string | body_char)* }

matching_braces = { "{" ~ function_body ~ "}" }
quoted_string = @{ "\"" ~ (!"\"" ~ ANY)* ~ "\"" }
body_char = _{ !"}" ~ ANY }

COMMENT = _{ "/*" ~ (!"*/" ~ ANY)* ~ "*/" | "//" ~ (!"\n" ~ ANY)* }

The |-symbol is a choice operator, while the *-operator means zero or more occurrences
of that expression. Therefore, the body of a function consists of a sequence of matching
brace pairs, quoted strings, or any other character. Matching braces are allowed to
contain anything that would be a valid function body inside them. This way, it is
possible to nest brace pairs inside of each other. The ~-symbol is a chain operator. A
quoted string consists of an opening quotation mark, followed by an indefinite amount
of characters other than a quotation mark, and is then completed with the closing
quotation mark. The !-symbol is a negative lookahead. Instead of reading anything
from the input, the parser just tests that the beginning of the input does not match the
expression contained in the negative lookahead.
Pest natively supports the handling of comments. Whenever the grammar defines a

COMMENT rule, then the content of the rule is optionally inserted at every ~-operator.
The _ preceding the left curly brace of a rule marks that rule as silent: It is not included
as an extra node in the parse tree. A comment is either a block comment consisting of
the starting and ending symbols or a line comment, that is ended by a newline character.
Comments however are not allowed to be parsed inside quoted strings. The grammar
prevents this with the @-symbol preceding the left curly brace of the quoted_string rule.
It tells pest to not allow comments inside that rule.
The grammar restricts the body_char rule to not include a closing brace so that the

function_body does not eat up the closing brace the function body is enclosed in (or
the closing brace of a nested block). This is necessary because a PEG does not do
backtracking, like a context-free grammar (CFG) would do. The * operator consumes
anything from the input that matches, and would not leave a closing brace to close the
function body. On the other hand, the grammar does not have to exclude the quotation
mark or opening brace in that rule, because the choice operator is ordered, it is tested
from left to right. Only if one choice fails, the parser tests the next choice. This is
another difference between CTGs and PEGs. Since the input contract is expected to
be correct, which also means that there are no unmatched quotation marks or braces
inside, body_char is only tested if the character at the beginning of the input is neither
a quotation mark nor an opening brace.

5.1.2. Internal Contract Representation

The parser only parses the parts of the specification that are relevant for the compilation.
The internal representation stores all the other parts, those which are not relevant for
the compilation, just as strings. These irrelevant parts include function bodies, struct
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Solidity type internal representation

int256 Type::Int(256)

uint128 Type::UInt(128)

bool Type::Bool

address Type::Address

int256[] Type::Other("int256[]")

SomeStruct Type::Other("SomeStruct")

Table 5.1.: Examples of the internal representation of different types.

or enum definitions, and types that can not be used as an input for an input stream.
Table 5.1 depicts various Solidity types and the way the internal representation stores
them. The type int256[] is an array, and can therefore not be used as a value for an
input stream. Since the compiler does not need to know the specifics about such a type,
it just stores the string, to be able to include it in the output contract.
The internal representation of a smart contract consists, besides information like the

name of the contract, of a list of contract elements. A contract element is either a func-
tion, a global variable, or a definition of a struct or enum. The internal representation
stores these elements in a list, to keep the order of the elements in the output contract
intact. Table 5.2 shows different kinds of contract elements and the way the internal
representation represents them.

5.2. Parsing the Specification
The compiler uses the RTLola Frontend [45] to parse the RTLola specification into
the internal representation. The Frontend also analyzes the specification, checks it for
correctness, and calculates all the information relevant for the compilation. This in-
formation includes the inferred activation condition, the activation layer, and storage
requirement for every stream. Listing 5.1 depicts the internal representation for the
example contract in Listing 4.2 from the last chapter. It includes the storage require- :Lst. 4.2, p. 21
ment (line 19), evaluation layer (line 20) and activation condition (line 21) of every
stream.

5.3. Templates
The compiler generates the output contract with the template-engine tera [46]. Tera
loads a text file with placeholders in it and then renders the text with values filled in
the placeholders. The templates can not only contain simple placeholders for strings
but also allow for control flow structures like loops and conditions. One example for
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1 RTLolaIR {
2 inputs: [
3 InputStream {
4 name: "example_function__arg1",
5 ty: Int(I256),
6 memory_bound: Bounded(2),
7 // ...
8 },
9 // ...

10 ],
11 outputs: [
12 OutputStream {
13 name: "sum",
14 ty: Int(I256),
15 expr: Expression {
16 kind: ArithLog(Add, [Expression { kind: StreamAccess(InRef(0), Sync), ty:

Int(I256) }, /*...*/ ], Int(I256))),
17 ty: Int(I256)
18 },
19 memory_bound: Bounded(1),
20 layer: 3,
21 ac: Some(Conjunction([Stream(InRef(0)), Stream(InRef(1))])),
22 // ...
23 },
24 OutputStream {
25 name: "trigger_wrong_bool:...",
26 ty: Bool,
27 expr: // ...
28 memory_bound: Bounded(0),
29 layer: 3,
30 ac: Some(Conjunction([Stream(InRef(0)), Stream(InRef(2))])),
31 // ...
32 },
33 // ...
34 ],
35 triggers: [
36 Trigger {
37 message: "wrong_bool: the return boolean does not correspond to the equality

of the argument and the previous argument",
38 reference: OutRef(1),
39 trigger_idx: 0
40 },
41 // ...
42 ]
43 }

Listing 5.1: The internal representation of the RTLola specification depicted in
Listing 4.2. The listing does not show the parts of the internal representation
that are not relevant for the compilation.
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contract element internal representation

int256 globalVariable1 = 10;

ContractElement::GlobalVariable(
(Type::Int(256), []),
"globalVariable1",
Some("10")

)

address payable globalVariable2;

ContractElement::GlobalVariable(
(Type::Address, [VariableModifier::Payable]),
"globalVariable2",
None

)

function exampleFunction(int64 arg1)
public returns (bool){
// function body

}

ContractElement::Function{
name: "exampleFunction",
parameter: [((Type::Int(64),[]), "arg1")],
scope: Scope::Public,
return_value: [(Type::Bool,[])],
body: "// function body"

}

Table 5.2.: Examples of various contract elements.

such a template is depicted in Listing 5.2. This template generates the asynchronous
access function for a stream (see Section 4.2.1). Tera replaces the placeholders with the
corresponding name and type of the stream. This template also supports the optimiza-
tions shown in Section 4.3: You can see one optimization in the way the buffer access
is generated: Depending on the memory bound of the stream, the way the monitor ac-
cesses the current value of the buffer is different. Another optimization shown in that
template is to only generate this function if it is actually used by the monitor. Due to
the outer if-block, tera only generates any code for that function, if the stream has an
asynchronous access.

5.4. Output Contract Generation

Figure 5.3 depicts an overview of the compiler. After parsing the input contract as
well as the specification into their corresponding internal representation, the compiler
generates the output contract: First, the compiler iterates over all the elements of the
input contract. Depending on the contract element, the compiler copies the element over
to the output contract or handles it as part of the monitor. If there exists any stream in
the specification that receives a value from a function in the input contract according to
the naming convention, then that function is monitored. For this function, the compiler
adds a helper function with the original function body to the output contract and also
generates the stream updates for that function. During this progress, the compiler keeps
track of all the streams it generated an update for, to warn the user about streams that
never receive any updates.
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{% if has_hold_access %}
function get_{{ stream_name }}_current_value({{ stream_type }} default) private view

returns ({{ stream_type }}){
{%- if size > 1 %}
if ({{ stream_name }}_valid[{{ stream_name }}_current]){

return {{ stream_name }}_buffer[{{ stream_name }}_current];
{%- else %}
if ({{ stream_name }}_valid[0]){

return {{ stream_name }}_buffer[0];
{%- endif %}
} else {

return default;
}

}
{% endif %}

Listing 5.2: Template for the asynchronous access function.

Input Contract

RTLola
Specification

Output Contract

User Code

Trigger Functions

Stream Updates

Input Streams

Output Streams

Trigger Checks

Contract
Parser

RTLola
Frontend

RTLola

IR

Split
contract
elements

Contract

IR

Code
Generation

Code
Generation

(1)

(2)

(3)

Figure 5.3.: Overview of the compiler implementation. The elements of the input con-
tract are split into: (1) Global variables, enum/struct definitions, unmon-
itored functions, helper functions with the body of monitored functions.
(2) Trigger functions (present in the input or automatically generated).
(3) The definition of monitored functions to update the streams accord-
ingly.
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To make the output contract more readable, the contract elements are grouped into
different sections. The first section contains all the user-defined code: every unmonitored
function, other contract elements like global variables, and all the helper functions with
the function body of a monitored function. The next section contains all the trigger
functions, either copied from the input contract if provided by the user or automatically
generated if they are not present in the input. When a trigger function is generated,
the compiler inserts comments to the trigger function with all the trigger messages
the function corresponds to. The compiler also adds a revert("trigger_function")
statement in every generated trigger function. The message in the revert statement
corresponds to the name of the trigger function and is used for debugging purposes.
Next, the compiler adds all the stream implementations to the output contract. For
that, the compiler translates all the stream expressions to Solidity first. The compiler
does this separately from generating the streams so that it can keep track of which calls
to access functions were generated. The compiler uses this information, to only generate
the stream access functions that are actually used. As well as the calls to access functions,
the compiler notes all calls to library functions, to only add the implementation for those
library functions that are actually used. Then, the compiler adds the corresponding code
for every stream in the specification to implement that stream in the output contract.
This code is generated by using templates. The user can also instruct the compiler to
add debugging functions. With these functions, the user can inspect the values of every
stream, making debugging of the monitor a lot easier. In the end, the compiler adds the
implementation for every used library function to the output contract.
Since the compiler did not take care of the correct formatting during compilation,

it in the end formats the output contract correctly. For that, the compiler uses the
prettier-solidity [47] plugin for the prettier [48] tool.
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Chapter 6
Evaluation

We evaluate the implementation of the compiler with two example contracts. This chap-
ter first presents these example contracts together with their specification in RTLola.
In the next step, we evaluate the consumed gas by these contracts. Finally, we present
the results of the evaluation.

6.1. Example Contracts
We evaluate the compiler with two example contracts already used by Azzopardi et al. [7].
The first contract is for an ordering system, where a buyer can order items from a seller.
The second example is a token transfer contract, where the users can transfer tokens from
one to another. This contract is special because the owner of the contract can change
the implementation during the runtime of the contract. With runtime monitoring, it is
ensured that every implementation follows the specification.

6.1.1. Ordering System

Azzopardi et al. [7] introduced their monitoring approach with an ordering system con-
tract as an example. This contract is between two parties: a buyer and a seller. The
Buyer can make orders for a specific item, which the buyer has to pay for once the seller
delivered them. Listing 6.1 depicts the implementation of the contract that is used for
the evaluation. This implementation is inspired by code shown by Azzopardi et al. [7].

1 contract OrderSystem {
2 struct Order {
3 uint256 timeOfDelivery;
4 uint256 amount;
5 bool delivered;
6 }
7

8 enum ContractStatus {UNOPENED, OPENED, ACCEPTED, CLOSED}
9 ContractStatus status = ContractStatus.UNOPENED;
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10

11 mapping(uint256 => Order) orders;
12

13 function openContract(uint256 endDate, uint256 price, uint256 minimumItems, uint256
maximumItems) public payable {

14 status = ContractStatus.OPENED;
15 }
16

17 function acceptContract() public payable {
18 status = ContractStatus.ACCEPTED;
19 }
20

21 function placeOrder(uint256 orderId, uint256 itemsOrdered, uint256 timeOfDelivery)
public {

22 orders[orderId] = Order(timeOfDelivery, itemsOrdered, false);
23 }
24

25 function deliveryMade(uint256 orderId) public payable {
26 orders[orderId].delivered = true;
27 }
28

29 function terminateContract() public {
30 status = ContractStatus.CLOSED;
31 }
32 }

Listing 6.1: The implementation of the ordering system in Solidity. The specification is
not checked at all in this implementation.

The following paragraphs explain what the functions of the contract do. When the
seller opens the contract by calling the openContract function (line 13), the seller can
specify the earliest date the contract can be closed, the price for one item, and the min-
imum and the maximum number of items that the buyer has to order. After the seller
opened the contract, the buyer has to accept the contract by calling the acceptContract
function (line 17). When opening the contract, the seller has to deposit a performance
guarantee, that is transferred to the wallet of the contract. The seller pays the perfor-
mance guarantee, by attaching money to the call to the payable function openContract.
The specification defines that the contract transfers the performance guarantee back to
the seller if the seller complies with his side of the contract. Otherwise, the contract
transfers the performance guarantee to the buyer. In the implementation shown in List-
ing 6.1, the contract never pays back the performance guarantee, it stays in the wallet
of the contract. In the monitored version of this contract, the monitor will handle the
payout of the performance guarantee with a trigger function. Similarly, the buyer has
to deposit an escrow, to ensure that he pays for his delivered items. The buyer makes
this deposit with the call to the acceptContract function.
When making an order with the placeOrder function (line 21), the buyer has to give

a unique order id, the number of items ordered, and the time when the order has to
be delivered by the seller. With the unique order id given when placing an order, the
buyer has to mark the order as delivered as soon as it is. To do that, the buyer calls
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1. This contract is between 〈buyer-name〉, henceforth referred to as ’the buyer’ and 〈seller-
name〉, henceforth referred to as ’the seller’. The contract will hold until either party
requests its termination.

2. The buyer is obliged to order at least 〈minimum-items〉, but no more than 〈maximum-
items〉 for a fixed price 〈price〉 before the termination of this contract.

3. Notwithstanding clause 1, no request for termination will be accepted before 〈contract-end-
date〉. Furthermore, the seller may not terminate the contract as long as there are pending
orders.

4. Upon enactment of this contract, the buyer is obliged to place the cost of the minimum
number of items to be ordered in escrow.

5. Upon accepting this contract, the seller is obliged to place the amount of 〈performance-
guarantee〉 in escrow.

6. Upon termination of the contract, the seller is guaranteed to have received payment covering
the cost of the minimum number of items to be ordered unless less than this amount is
delivered, in which case the cost of the undelivered items is not guaranteed.

7. The Buyer has the right to place an order for an amount of items and a specified time-
frame as long as (i) the running number of items ordered does not exceed the maximum
stipulated in clause 2; and (ii) the time-frame must be of at least 24 hours, but may not
extend beyond the contract end date specified in clause 2.

8. Upon placing an order, the buyer is obliged to ensure that there is enough money in escrow
to cover pending orders.

9. Upon delivery, the seller receives payment of the order.
10. Upon termination of the contract, any undelivered orders are automatically canceled, and

the seller loses the right to receive payment for these orders.
11. Upon termination of the contract, if either any orders were undelivered or more than 25% of

the orders were delivered late, the buyer has the right to receive the performance guarantee
placed in escrow according to clause 5. Otherwise, it is released back to the seller.

Figure 6.1.: The natural language specification for the ordering system from the Con-
tractLarva paper [7].

the deliveryMade function (line 25), and has to pay for the order at the same time, by
attaching the payment to that function call. Either party can request the termination
of the contract, by calling the terminateContract function (line 29).

Figure 6.1 depicts the specification for this contract in natural language. This spec-
ification is translated to RTLola next. We present some interesting examples of the
specification in this section. If you are interested in the translation in detail, you can
find the full specification for the contract in Appendix A.2. :App. A.2, p. 59

Our example needs the following input streams:
input current_time : UInt256
input sender_address : UInt256

input openContract : Bool
input openContract__endDate : UInt256
input placeOrder__orderId : UInt256
input deliveryMade__orderId : UInt256
input terminateContract : Bool

When the seller opens the contract by calling the openContract function, two in-
put streams receive new values: the end date specified by the seller is placed in the
openContract__endDate input stream, and the value true in the openContract stream.
For this example, we assume that the buyer does not has to accept the contract. When
the buyer places an order with the placeOrder function, the monitor inserts the or-
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der id in the placeOrder__orderId stream. Likewise, the order id is placed in the
deliveryMade__orderId stream, when the buyer confirms the delivery of the order. If
either participant requests termination of the contract by calling the terminateContract
function, the value true is placed in the terminateContract input stream. To differ-
entiate which party requested termination of the contract, we add the sender_address
stream to the specification. Every time a party calls a function, this input stream
receives the address of that party. The current_time input stream receives the current
time, whenever someone calls a function.
The first specification we take a closer look at is the first part of §3: "no request for

termination will be accepted before 〈contract-end-date〉". In RTLola, we can express this
as a trigger. When the trigger condition becomes true, a violation of the specification
occurred and the associated trigger function example1 is executed:

trigger terminateContract && current_time < openContract__endDate.hold().defaults(to:0)
"example1: the contract can only get closed after contract-end-date"

When a party calls the terminateContract function, but the current_time is less than
the time specified when opening the contract, that is a violation of the specification.
The trigger accesses the stream openContract__endDate asynchronously, since it is not
expected that the contract is opened at the same time as it is closed. Instead, the
value that the seller specified when opening the contract should be used. Since it is not
possible to call two functions at the same time, it is not possible that input streams that
correspond to different functions receive new values at the same time. Therefore, each
output stream or trigger can only access the input streams of one function synchronously.
Otherwise, that output stream would never calculate new values since the activation
condition is never satisfied.
With the trigger shown above, it is however possible to terminate the contract before

someone ever called the openContract function. The reason for that is, that if the
openContract function was never called, the default value 0 is used instead of the end
date. To prevent that, the specification defines another trigger:

trigger terminateContract && !openContract.hold().defaults(to:false) "example2: the
contract can not get closed before it got opened"

If the terminateContract stream receives the true value because a party requested the
termination of the contract, but the openContract stream has never received a true
value before, the termination of the contract was requested before the contract ever
being opened.
Now we want to look at the second part of §3: "Furthermore, the seller may not

terminate the contract if there are pending orders." This restriction only applies to the
seller. Because of that, the monitor has to be able to distinguish which party called the
terminateContract function. For that, the monitor stores the address of the seller when
the seller opens the contract, to compare that address with the address of the party
requesting the termination:

output seller_address @(openContract) := sender_address.hold().defaults(to:0)
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The stream expression has to include the default value for the sender_address stream
so that the type checking succeeds. Since artificial input streams always receive a new
value, the monitor never uses this default value. We could also always include artificial
input streams in the activation condition and then access them synchronously.
After that, the monitor has to remember which orders are pending and which are

not. Now a problem occurs: For every possible order id, the monitor has to remember
if that order was already ordered and delivered. For the RTLola language, this does
not pose a problem. The RTLola language does support parametrized streams, which
could handle that problem. The problem at the current time is, that these parametrized
streams are not yet implemented in the RTLola Frontend. As a workaround, we use
the following: We restrict the number of possible order ids to a limited set and create a
separate stream for every possible order id.
For every order, the monitor stores if that order was already ordered and if that order

was already delivered (here shown for order id 1):
output order1_ordered := placeOrder__orderId == 1 ||

order1_ordered.offset(by:-1).defaults(to:false)
output order1_delivered := deliveryMade__orderId == 1 ||

order1_delivered.offset(by:-1).defaults(to:false)

If the buyer places an order, and the order id is equal to 1, the stream is set to true. If
the buyer places an order, but the order id is not equal 1, the last value of the stream is
repeated. The truth value stays unchanged. The output stream that takes care of the
delivery of order id 1 works in the same way.
Now, we can express the specification as a trigger:

1 trigger sender_address == seller_address.hold().defaults(to:0) && terminateContract
2 && order1_ordered.hold().defaults(to:false) &&

!order1_delivered.hold().defaults(to:false)

If the seller requested the termination of the contract (line 1), but order 1 was ordered
and not delivered (line 2), the specification is violated. Again, this trigger has to be
extended for every supported order id.

6.1.2. ERC20 Token Interface

The second example Azzopardi et al. [7] use is the ERC20 Token Interface. This interface
specifies a standard for Fungible Tokens. Fungible means, that the tokens are mutually
interchangeable i.e. every token is the same. What exactly these tokens represent is
arbitrary. They can for example represent the skills of a character in a game or financial
assets. [49]
Listing 6.2 shows the functions that are required in the ERC20 Token Interface. The

totalSupply function returns the total number of tokens that are in the system. A user
can query the balance of an account with the balanceOf function. When calling the
transfer function, one can transfer tokens from one’s own account to someone else’s
account. With the transferFrom function, it is also possible to transfer tokens that
are not on your own account. The restriction is that the participants are only able to
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function totalSupply() public view returns (uint256)
function balanceOf(address owner) public view returns (uint256 balance)
function transfer(address to, uint256 value) public returns (bool success)
function transferFrom(address from, address to, uint256 value) public returns (bool

success)
function approve(address spender, uint256 value) public returns (bool success)
function allowance(address owner, address spender) public view returns (uint256 remaining)

Listing 6.2: The required functions from the ERC20 Token Interface as specified in [50].

ImplementationInterface

balanceOf

transfer

. . .
Monitor

balanceOf

transfer

. . .
Figure 6.2.: The interface passes all calls through to the implementation. The monitor

in the interface checks, that the implementation behaves correctly.

handle that amount of tokens of another account, that the other account allowed them
to handle. This can be done with the approve function: When calling the approve
function, one can allow another account to spend a specific amount of tokens from their
account. With the allowance function, one can query how much one account allowed
another account to spend.
The idea Azzopardi et al. [7, 51] proposed is to monitor this interface, but with the

ability to exchange the implementation afterward. This first sounds counterintuitive
since smart contracts are immutable. The trick that is used here, is that it is possible
to call functions in other contracts. Instead of storing the whole implementation in
the contract, the contract just stores the address of another contract, which contains
the actual code. When someone calls a function in the contracts, the contract passes
the call to the external function behind the stored address (see Figure 6.2). Since this
address can be changed even after publishing the contract, it is possible to exchange the
code that the functions execute.

interface ERC20TokenImplementation {
function totalSupply () external returns (uint);
function balanceOf (address tokenOwner) external returns (uint balance);
function transfer (address caller, address to, uint tokens) external returns (bool

success);
// ...

}
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contract ERC20Interface{

ERC20TokenImplementation impl;
address owner;

constructor(ERC20TokenImplementation _impl, address _owner) public{
impl = _impl;
owner = _owner;

}

function updateImplementation(address newImpl) public{
require(msg.sender == owner);
impl = ERC20TokenImplementation(newImpl);

}

function totalSupply() public returns (uint){
return impl.totalSupply();

}

function balanceOf(address tokenOwner) public returns (uint balance){
return impl.balanceOf(tokenOwner);

}

function transfer(address to, uint tokens) public returns (bool success){
return impl.transfer(msg.sender, to, tokens);

}

// ...
}

Listing 6.3: The code for the mutable ERC20 interface ([52], slightly modified and
shortened).

See Listing 6.3 for the implementation of the interface from the ContractLarva Github
repository [52]. Azzopardi et al. had to modify the interface slightly (i.e. compare
transfer in Listing 6.3 to Listing 6.2) for passing the sender address of the function
as an extra argument. When executing the constructor function, the contract stores two
values. The first is the address of the contract, which contains the initial implementa-
tion. The constructor also stores the address of the one who is allowed to change the
implementation, the owner. This owner can call the updateImplementation function,
which updates the global variable storing the address to the implementation. Whenever
someone calls a function, the call is just forwarded to the corresponding function in the
current implementation.
However, it is undesirable that there is no control over what the implementation

actually does since there is no guarantee to the users of the contract that the owner does
not change the implementation to their disadvantage. To make sure that, independent
from the implementation used, the functions still do what they are supposed to do, we
add runtime monitoring to the interface. For that, the monitor has to store the current
balance of every account. Here, the same problem occurs that we already saw with the
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ordering system since the number of accounts is not limited. And again, the workaround
we use is that the monitor limits the number of accounts to a smaller set. To be able
to do that, we have to write the addresses of all supported accounts directly into the
specification.
Below, we present the most interesting parts of the specification with two accounts.

For the full specification, we refer the interested reader to Appendix A.3. This example:App. A.3, p. 62
uses the following input streams:

input called_function : String
input sender_address : UInt256

input transfer : Bool
input transfer__to : UInt256
input transfer__tokens : UInt256
input transfer__success : Bool

input transferFrom : Bool
input transferFrom__from : UInt256
input transferFrom__to : UInt256
input transferFrom__tokens : UInt256
input transferFrom__success : Bool

input balanceOf__tokenOwner : UInt256
input balanceOf__balance : UInt256

input approve : Bool
input approve__spender : UInt256
input approve__tokens : UInt256
input approve__success : Bool

When the transfer function is executed, the monitor stores the arguments to, value
and the return value success in the corresponding input streams. The same goes for the
transferFrom function. When the balance of a user is queried by calling the balanceOf
function, the monitor stores the address of the queried user in the balanceOf__owner
input stream, and the returned balance in the balanceOf__balance input stream. When
allowing another user to handle parts of your tokens by calling the approve function,
then the monitor adds the arguments and the return value success in the corresponding
input streams. Since multiple functions can be responsible for the change of a balance, we
also need the called_function stream, to differentiate how the balance should change.
Since a lot of the functions depend on the user that called the function, the specification
also includes the sender_address input stream. Additionally, the specification contains
all the addresses of the supported accounts:

output ADDRESS1 := 619237891...
output ADDRESS2 := 718931273...

These output streams are constant, they always have the same value.
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The monitor needs to keep track of the current balance of every account (here shown
for the first address):

1 output balance1 @(transfer || transferFrom) :=
2 balance1.offset(by:-1).defaults(to:0) +
3 if called_function.hold().defaults(to:"") == "transfer" &&

transfer__success.hold().defaults(to:false) then
4 if transfer__to.hold().defaults(to:0) == ADDRESS1.hold().defaults(to:0) then
5 transfer__tokens.hold().defaults(to:0)
6 else if sender_address.hold().defaults(to:0) == ADDRESS1.hold().defaults(to:0)

then
7 -transfer__tokens.hold().defaults(to:0)
8 else 0
9 else if called_function.defaults(to:"") == "transferFrom" &&

transferFrom__success.hold().defaults(to:false) then
10 if transferFrom__from.hold().defaults(to:0) == ADDRESS1.hold().defaults(to:0)

then
11 -transferFrom__tokens.hold().defaults(to:0)
12 else if sender_address.hold().defaults(to:0) == ADDRESS1.hold().defaults(to:0)

then
13 transferFrom__tokens.hold().defaults(to:0)
14 else 0
15 else 0

Due to the activation condition, this stream always receives a new value when someone
calls the transfer or transferFrom function. If the stream is updated because the
transfer function was executed successfully (line 3), the monitor evaluates the upper
block (line 4 to 8). If the transfer is towards account 1, then the monitor adds the
transferred tokens to the current balance (line 5). If the transfer is from account 1,
because account 1 is the one calling the function, then the monitor subtracts the tokens
from the balance of account 1 (line 7). If the stream is updated because the transferFrom
function was executed successfully (line 9), the monitor evaluates the lower block (line 10
to 14). If none of this is the case, for example, because the function was not successful
and returned false, the balance does not change at all (line 15).

Besides that, the monitor has to record the current allowance from every account
to every other account (here shown for the amount of tokens that account 1 allowed
account 2 to handle):

output allowance1_to_2 :=
if sender_address == ADDRESS1 && approve__spender == ADDRESS2 && approve__success then

approve__tokens
else

allowance1_to_2.offset(by:-1).defaults(to:0)

If the account with ADDRESS1 successfully called the approve function with spender
being ADDRESS2, then the monitor sets the approve_tokens as the new value. Otherwise,
the approve call does not influence the allowance from account 1 to account 2 and the
monitor repeats the previous value.
Next, the specification defines a trigger to make sure that balanceOf always returns

the correct balance:
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trigger balanceOf__owner == ADDRESS1 && balanceOf__balance !=
balance1.hold().defaults(to:0) "trigger1: wrong balance for account 1"

If the queried account’s address is ADDRESS1, but the returned value does not equal to
the current balance1, that is a violation of the specification. Also, transferFrom can
only be used if the allowance is high enough:

trigger transferFrom__from == ADDRESS1 && sender_address == ADDRESS2 &&
allowance1_to_2.hold().defaults(to:0) < transferFrom__tokens "trigger2: allowance
from 1 to 2 is not high enough for the transfer"

If ADDRESS2 tries to transfer tokens from ADDRESS1, but the allowance is not high enough,
then that is also a violation of the specification.

6.2. Evaluation of the Gas Usage
We measure the gas usage of the example contracts by writing unit tests and then mea-
suring the gas every function call uses. The unit tests are written in Javascript and
executed with Truffle [53]. Truffle is a set of tools for developing and testing Solidity
smart contracts. We use Ganache-time-traveler [54] to allow testing the time-relevant
parts of the specification. The unit tests check whether the contracts fulfill the specifi-
cation.
Listing 6.4 shows a test checking that the order contract can not be terminated by

the buyer before the minimum number of items have been ordered. The buyer’s request
for termination of the contract (line 15) is a violation of the specification since the
minimal amount of items that have to be ordered is 2, but the buyer did not order any
at all. Because of that, an exception is expected since the monitor should call the trigger
function which executes revert(). If the monitor does not raise the expected exception,
the test fails with assert(false) (line 19).

To measure the gas usage, we use the eth-gas-reporter [55]. This tool measures the
gas usage of every function called in the tests and produces a report in the end (see
Figure 6.3). We are interested in the average gas usage of every function, to compare
that with the gas usage of the monitored contracts.
We evaluate the gas usage of the ordering system with two different contracts and

compare the gas usage with the monitored versions of these. The first one (Version 1) is
the contract shown in Listing 6.1, where the contract does not check the specification at:Lst. 6.1, p. 39
all. This contract does of course not pass the unit tests, but we can measure the gas usage
nevertheless. In the second contract (Version 2), we modified Version 1 by hand in a
way, so that the contract also checks all of the specifications. In the contract of Version 1
with included monitor (Monitored 1), we leave checking the specification completely to
the monitor. In the monitored Version 2 (Monitored 2), the monitor verifies that the
specification is correctly implemented in the contract. In case there is an error in the
hand-implemented specification in Version 2, the monitor finds and handles that error.
Adding the monitoring to Version 1 (see Table 6.4) introduces a lot of overhead.

The reason for that is that the monitor does all of the actual work of the contract.
The unmonitored version just provides the functions to call but does not check the
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1 it('can not get closed by buyer before minimum Items', async () => {
2 orderSystemInstance = await OrderSystem.deployed();
3 let seller = accounts[0];
4 let buyer = accounts[1];
5 let minItems = 2;
6 let price = ...
7

8 await orderSystemInstance.openContract(endDate,price,minItems,maxItems, {from:
seller, value: performance_guarantee});

9 await orderSystemInstance.acceptContract({from: buyer, value: escrow});
10

11 // three days later after end date
12 timeMachine.advanceTimeAndBlock(3*24*60*60);
13

14 try {
15 await orderSystemInstance.terminateContract({from: buyer});
16 } catch (e) {
17 return
18 }
19 assert(false);
20 });

Listing 6.4: A unit test for the ordering system testing that the buyer can not terminate
the contract before the minimum number of items have been ordered.

Figure 6.3.: Report generated by eth-gas-reporter. For each function in the contract
that was called in any test, the report prints the minimal, maximal, and
average gas usage. The report also includes the deployment costs of the
contracts.
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Function Version 1 Monitored 1 Overhead

Deployment 258359 4487272 4228913 1636,84%

openContract 64292 454150 410724 945,80%

acceptContract 47981 181220 154105 568,34%

placeOrder 87981 584117 519959 810,44%

deliveryMade 43505 328345 285748 670,82%

terminateContract 28025 133887 106770 393,74%

Table 6.4.: Gas usage overhead of the ordering system. Version 1 is the implementation
shown in Listing 6.1 where the contract does not check the specification at
all.

Function Version 2 Monitored 2 Overhead

Deployment 879075 5062544 4183469 475,89%

openContract 140589 551326 410737 292,15%

acceptContract 70737 224853 154116 217,87%

placeOrder 108176 628736 520560 481,22%

deliveryMade 63602 348650 285048 448,17%

terminateContract 59657 166432 106775 178,98%

Table 6.5.: Gas usage of the ordering system where the specification is also implemented
in the original contract and the monitoring is just used in case of errors in
the implementation.
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Function Original Monitored Overhead Larva Overhead

Deployment 2051548 6693611 4642063 226,27% 2525349 473801 23,09%

updateImplementation 43404 43404 0 0,00% 44365 961 2,21%

totalSupply 25830 25830 0 0,00% 26741 911 3,53%

balanceOf 25508 123527 98019 384,27% 26419 911 3,57%

allowance 26962 203105 176143 653,30% 27873 911 3,38%

approve 46161 639802 593641 1286,02% 56356 10195 22,09%

transfer 45062 210205 165143 366,48% 51311 6249 13,87%

transferFrom 46511 310096 263585 566,72% 71570 25059 53,88%

Table 6.6.: Gas usage of the mutable ERC20 interface. The original contract is the
interface without any monitoring. The monitored contract adds our moni-
toring approach to the interface with support for four accounts. The third
contract adds the monitoring approach from ContractLarva to the original
contract.

specification at all. The difference is visible when comparing the gas usage of Version 1
to the gas usage of Version 2 (see Table 6.5). There the gas usage also increases, even if
a lot less as through adding the monitoring. Since the gas usage of Version 2 is higher
than that of Version 1, the percentage overhead of introducing monitoring to Version 2
is much smaller than introducing monitoring to Version 1.

For the evaluation of the monitorable ERC20 interface, we use the interface and im-
plementation used by Azzopardi et al. [56] for evaluating ContractLarva (updated for
a newer version of the Solidity compiler). We compare the gas usage of the interface
without any monitoring to the gas usage of the interface with our monitoring approach
and the gas usage of the interface with the ContractLarva monitoring approach. All
interfaces use the same implementation. Table 6.6 depicts the gas usage of the different
contracts. The deployment costs in the table all include the 1419669 gas for deploying
the implementation. The RTLola specification used in this evaluation allows for four
different accounts. To support these four accounts, the specification needs a lot of out-
put streams. Especially with the allowance streams, where every account has to have an
allowance for every other account. This results in a lot of duplicated code, that would
not be necessary with parametrized streams. Because of that, we also measured the gas
usage of the monitor with only one supported stream (see Table 6.7). These gas usages
are a lot smaller and may be more comparable to that of a monitor with parametrized
streams.
The way our approach and ContractLarva check the specification is different. In our

approach, the monitor keeps track of what the correct balance should be. If someone then
queries the current balance, the returned value is compared with the expected balance.
ContractLarva on the other hand does not store the expected balance in the monitor.
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Function Monitored Overhead

Deployment 3023494 971946 47,38%

updateImplementation 43404 0 0,00%

totalSupply 25830 0 0,00%

balanceOf 106263 80755 316,59%

allowance 159541 132579 491,73%

approve 145787 99626 215,82%

transfer 99059 53997 119,83%

transferFrom 158896 112385 241,63%

Table 6.7.: The gas usage of the monitored ERC20 Token Interface with only one ac-
count.

There, the monitor queries the balance directly after a transaction and checks that the
balance changed accordingly. This difference is also visible in the gas measurements.
ContractLarva does not really have any overhead for any of the getter functions, since
everything is checked directly after a transfer. One problem with this approach is that
a malicious owner of the contract could change the implementation in a way, that the
value that balanceOf returns is not consistent. When the monitor calls balanceOf after
a transfer, the malicious implementation could return the expected balance, but when
the user calls the balanceOf function, the implementation could return a wrong balance.
With ContractLarva, this behavior would not trigger a violation of the specification.
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Chapter 7
Conclusion

This thesis implements runtime monitoring for smart contracts by using the stream-
based monitoring language RTLola. We presented a compiler that takes a Solidity
smart contract as an input together with a RTLola specification, and then produces a
smart contract with an included monitor. As long as the specification is not violated, the
output contract behaves exactly the same as the input contract, except that a monitor
checks the specification during the runtime of the contract. Once a violation of the
specification occurs, the monitor executes user-defined code to handle the error. We
chose this design to accommodate for the fact that the monitor has to be able to handle
the error by itself since smart contracts are immutable and the developer can not fix
the errors after the contract is added to the blockchain. To handle a violation of the
specification, the monitor reverts the faulty function call or brings the contract into a
specific state.
First, we showed how to implement input streams, output streams, and triggers in

Solidity. We also presented how the monitor adds new values to these streams whenever
someone calls a function in the contract. The monitor has to know how many values
of each stream it has to keep. This number is given by the storage requirement of each
stream. Likewise, the monitor has to know which streams it has to update when a specific
function was called and in which order these streams have to be evaluated. This informa-
tion can be retrieved from the dependency graph of the specification and the activation
conditions of each stream during the compilation. Debugging of the output contract
produced by the compiler was challenging. We handled this by providing debugging
messages from the compiler, including debugging functions in the output contract, and
by writing unit tests for the output contracts. In the evaluation we found that we need
parametrized streams to express the specifications. Since parametrized streams are not
yet supported by the RTLola Frontend, we used a workaround. Therefore, we limited
the number of possible parameters and added a separate stream for each parameter.
We evaluated our monitoring approach with two example contracts by measuring

the gas usage of every function. Our monitoring approach introduced a non-negligible
overhead on the gas usage. Nevertheless, one may be willing to pay that overhead
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instead of losing even more money due to a bug in the contract. The gas usage overhead
of ContractLarva is a lot less than that of our approach. On the other hand is it more
natural to write a specification as stream-expressions, instead of having to think of states
and transitions. This also makes it less likely to introduce an error in the specification
itself. Besides that, our approach allows monitoring of function’s return values, which
is not possible with ContractLarva.

Future Work
In the evaluation, we saw that the compiler would benefit from parametrized streams [9,
57]. To implement a parametrized stream in Solidity, instead of using a simple array for
storing the values of a stream, we could use a mapping to arrays. The update function,
as well as the access functions for a parametrized stream would then in addition also
receive the parameter of the stream. It would be interesting to see how the gas usage
overhead behaves after implementing parametrized streams. This could reduce the gas
usage overhead introduced by the monitoring a lot.
Currently, not the full RTLola language is supported by the compiler. To add the

real-time aspects of RTLola to our approach, every value in a buffer would also has
to have a timestamp associated with it. Every time the monitor adds a new value to a
stream, it would also add the current time to the value. That the monitor is only able to
update streams when someone called a function poses a challenge. Because of that, the
monitor has to evaluate periodic streams and sliding windows retrospectively, whenever
a function is called.
Besides supporting the full RTLola language, it may also be an option to differentiate

more between the user code and the monitor. Currently the monitored functions the
user calls are part of the monitor. It may be more desirable to completely separate the
monitor from the contract and only interact with it through an API.

54



Appendix A
Appendix

A.1. Idea Example Output Contract
The code produced by the compiler for the contract and the specification in Listings 4.1
and 4.2:

contract example {
// --- CONTRACT ---------------

int256 last_arg1;

function _example_function(int256 arg1, int32 arg2)
private
returns (bool equal, int256 sum)

{
equal = arg1 == last_arg1;
last_arg1 = arg1;
return (equal, arg1 + int256(arg2));

}

function example_function(int256 arg1, int32 arg2)
public
returns (bool equal, int256 sum)

{
(bool return0, int256 return1) = _example_function(arg1, arg2);

// input stream shifts
shift_example_function__arg1();

// input stream updates
update_example_function__arg1(arg1);
update_example_function__arg2(arg2);
update_example_function__equal(return0);
update_example_function__sum(return1);

// output stream updates
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update_sum();

// trigger checks
check_trigger0();
check_trigger1();

return (return0, return1);
}

// --- TRIGGER ----------------

function wrong_bool() private {
// Trigger #0: "the return boolean does not correspond to the equality of the

argument and the previous argument"
// !! -- fill with custom code -- !!
revert("wrong_bool");

}

function wrong_sum() private {
// Trigger #1: "the return value does not correspond to the sum of the arguments"
// !! -- fill with custom code -- !!
revert("wrong_sum");

}

// --- MONITOR ----------------

// -- input streams ----------

int256[2] example_function__arg1_buffer;
bool[2] example_function__arg1_valid;
uint256 example_function__arg1_current;

function shift_example_function__arg1() private {
example_function__arg1_current =

(example_function__arg1_current + 1) %
2;

}

function get_example_function__arg1_with_offset(uint256 offset, int256 def)
private
view
returns (int256)

{
int256 index =

(int256(example_function__arg1_current) - int256(offset)) % 2;
if (index < 0) {

index += 2;
}
if (example_function__arg1_valid[uint256(index)]) {

return example_function__arg1_buffer[uint256(index)];
} else {

return def;
}
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}

function update_example_function__arg1(int256 example_function__arg1)
private

{
example_function__arg1_buffer[

example_function__arg1_current
] = example_function__arg1;
example_function__arg1_valid[example_function__arg1_current] = true;

}

// ------

int32[1] example_function__arg2_buffer;
bool[1] example_function__arg2_valid;

function update_example_function__arg2(int32 example_function__arg2)
private

{
example_function__arg2_buffer[0] = example_function__arg2;
example_function__arg2_valid[0] = true;

}

// ------

bool[1] example_function__equal_buffer;
bool[1] example_function__equal_valid;

function update_example_function__equal(bool example_function__equal)
private

{
example_function__equal_buffer[0] = example_function__equal;
example_function__equal_valid[0] = true;

}

// ------

int256[1] example_function__sum_buffer;
bool[1] example_function__sum_valid;

function update_example_function__sum(int256 example_function__sum)
private

{
example_function__sum_buffer[0] = example_function__sum;
example_function__sum_valid[0] = true;

}

// -- output streams ---------

int256[1] sum_buffer;
bool[1] sum_valid;

function update_sum() private {
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sum_buffer[0] = (example_function__arg1_buffer[
example_function__arg1_current

] + (int256(example_function__arg2_buffer[0])));
sum_valid[0] = true;

}

// -- trigger checks --------

function check_trigger0() private {
if (

((example_function__arg1_buffer[example_function__arg1_current] ==
get_example_function__arg1_with_offset(1, (int256(0)))) !=
example_function__equal_buffer[0])

) {
wrong_bool();

}
}

// ------

function check_trigger1() private {
if ((sum_buffer[0] != example_function__sum_buffer[0])) {

wrong_sum();
}

}
}
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A.2. Ordering System Specification

The full RTLola specification for the ordering system depicted as natural language in
Figure 6.1 with one supported order id:

input sender_address : UInt256
input current_time : UInt256
input attached_value : UInt256

input openContract : Bool
input openContract__endDate : UInt256
input openContract__price : UInt256
input openContract__minimumItems : UInt256
input openContract__maximumItems : UInt256

input acceptContract : Bool

input placeOrder : Bool
input placeOrder__orderId : UInt256
input placeOrder__itemsOrdered : UInt256
input placeOrder__timeOfDelivery : UInt256

input deliveryMade : Bool
input deliveryMade__orderId : UInt256

input terminateContract : Bool

output PERFORMANCE_GUARANTEE := 1000

output seller_address @(openContract && sender_address) := sender_address
output buyer_address @(acceptContract && sender_address) := sender_address

output buyer_escrow @(acceptContract && attached_value) := attached_value

output order1_amount :=
if placeOrder__orderId == 1 then placeOrder__itemsOrdered
else order1_amount.offset(by:-1).defaults(to:0)

output order1_timeOfDelivery :=
if placeOrder__orderId == 1 then placeOrder__timeOfDelivery
else order1_timeOfDelivery.offset(by:-1).defaults(to:0)

output order1_ordered := placeOrder__orderId == 1 ||
order1_ordered.offset(by:-1).defaults(to:false)

output order1_delivered := deliveryMade__orderId == 1 ||
order1_delivered.offset(by:-1).defaults(to:false)

output orders_ordered @(placeOrder) := orders_ordered.offset(by:-1).defaults(to:0) + 1
output orders_delivered @(deliveryMade) := orders_delivered.offset(by:-1).defaults(to:0)

+ 1
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output items_ordered := items_ordered.offset(by:-1).defaults(to:0) +
placeOrder__itemsOrdered

output items_delivered := items_delivered.offset(by:-1).defaults(to:0) +
if deliveryMade__orderId == 1 then order1_amount.hold().defaults(to:0)
else 0

output items_pending @(placeOrder || deliveryMade):= items_ordered.hold().defaults(to:0)
- items_delivered.hold().defaults(to:0)

output orders_pending @(placeOrder || deliveryMade) :=
if order1_ordered.hold().defaults(to:false) &&

!order1_delivered.hold().defaults(to:false) then 1 else 0

output orders_delivered_late :=
if deliveryMade__orderId == 1 && current_time >

order1_timeOfDelivery.hold().defaults(to:0) then
orders_delivered_late.offset(by:-1).defaults(to:0) + 1

else
orders_delivered_late.offset(by:-1).defaults(to:0)

// 1
trigger openContract && terminateContract.hold().defaults(to:false) "trigger1: once

closed, the contract can not get opened again"
trigger acceptContract && !openContract.hold().defaults(to:false) "trigger1: the contract

can only get accepted after being opened"
trigger placeOrder && !acceptContract.hold().defaults(to:false) "trigger1: no orders are

possible before opening the contract"

// 2
trigger terminateContract && sender_address == buyer_address.hold().defaults(to:0)

&& items_ordered.hold().defaults(to:0) <
openContract__minimumItems.hold().defaults(to:0) "trigger1: the contract can only
get terminated by the buyer if the minimum amount of items were ordered"

trigger items_ordered > openContract__maximumItems.hold().defaults(to:0) "trigger1: the
buyer can order at most maximumItems"

// 3
trigger terminateContract && openContract__endDate.hold().defaults(to:0) > current_time

"trigger1: the contract can only get terminated after endDate"
trigger terminateContract && sender_address == seller_address.hold().defaults(to:0) &&

orders_pending.hold().defaults(to:0) > 0 "trigger1: contract can not get closed by
seller if there are pending orders"

// 4
trigger acceptContract && attached_value < openContract__price.hold().defaults(to:0) *

openContract__minimumItems.hold().defaults(to:0) "trigger1: buyer has to pay escrow
for the minimum items when accepting the contract"

// 5
trigger openContract && attached_value != PERFORMANCE_GUARANTEE "trigger1: seller has to

pay performance guarantee when opening the contract"

// 7
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trigger placeOrder__timeOfDelivery < current_time + 86400 "trigger1: time of delivery has
to be at least 24 hours later"

// 8
trigger items_pending * openContract__price.hold().defaults(to:0) >

buyer_escrow.hold().defaults(to:0) "trigger1: buyer can only place orders if enough
money is in escrow"

// 9
trigger deliveryMade__orderId == 1 && attached_value !=

openContract__price.hold().defaults(to:0) * order1_amount.hold().defaults(to:0)
"trigger1: upon delivery of order 1 the seller receives payment of the order"

// 11
output performance_guarantee_return @(terminateContract) :=

orders_ordered.hold().defaults(to:0) < orders_delivered.hold().defaults(to:0)
|| orders_delivered_late.hold().defaults(to:0) * 4 >

orders_delivered.hold().defaults(to:0)
trigger performance_guarantee_return "pay_buyer: buyer gets performance guarantee"
trigger !performance_guarantee_return "pay_seller: seller gets performance guarantee"
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A.3. ERC20 Token System Specification

The full RTLola specification for the ERC20 token interface depicted in Listing 6.3
with two supported accounts:

input sender_address : UInt256
input called_function : String

input transfer : Bool
input transfer__to : UInt256
input transfer__tokens : UInt256
input transfer__success : Bool

input transferFrom : Bool
input transferFrom__from : UInt256
input transferFrom__to : UInt256
input transferFrom__tokens : UInt256
input transferFrom__success : Bool

input balanceOf__tokenOwner : UInt256
input balanceOf__balance : UInt256

input approve : Bool
input approve__spender : UInt256
input approve__tokens : UInt256
input approve__return0 : Bool

input allowance__tokenOwner : UInt256
input allowance__spender : UInt256
input allowance__return0 : UInt256

output ADDRESS1 := 588645899264321211530317558446108028729426462147
output ADDRESS2 := 704938353656261341379910710004063475570337743756

output balance1 @(transfer || transferFrom):=
balance1.offset(by:-1).defaults(to:0) +
if called_function.hold().defaults(to:"") == "transfer" &&

transfer__success.hold().defaults(to:false) then
if transfer__to.hold().defaults(to:0) == ADDRESS1.hold().defaults(to:0) then

transfer__tokens.hold().defaults(to:0)
else if sender_address.hold().defaults(to:0) == ADDRESS1.hold().defaults(to:0) then

-transfer__tokens.hold().defaults(to:0)
else 0

else if called_function.hold().defaults(to:"") == "transferFrom" &&
transferFrom__success.hold().defaults(to:false) then
if transferFrom__from.hold().defaults(to:0) == ADDRESS1.hold().defaults(to:0) then

-transferFrom__tokens.hold().defaults(to:0)
else if sender_address.hold().defaults(to:0) == ADDRESS1.hold().defaults(to:0) then

transferFrom__tokens.hold().defaults(to:0)
else 0

else 0

output balance2 @(transfer || transferFrom) :=
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balance2.offset(by:-1).defaults(to:0) +
if called_function.hold().defaults(to:"") == "transfer" &&

transfer__success.hold().defaults(to:false) then
if transfer__to.hold().defaults(to:0) == ADDRESS2.hold().defaults(to:0) then

transfer__tokens.hold().defaults(to:0)
else if sender_address.hold().defaults(to:0) == ADDRESS2.hold().defaults(to:0) then

-transfer__tokens.hold().defaults(to:0)
else 0

else if called_function.hold().defaults(to:"") == "transferFrom" &&
transferFrom__success.hold().defaults(to:false) then
if transferFrom__from.hold().defaults(to:0) == ADDRESS2.hold().defaults(to:0) then

-transferFrom__tokens.hold().defaults(to:0)
else if sender_address.hold().defaults(to:0) == ADDRESS2.hold().defaults(to:0) then

transferFrom__tokens.hold().defaults(to:0)
else 0

else 0

output allowance1_to_2 :=
if sender_address == ADDRESS1 && approve__spender == ADDRESS2 && approve__return0 then

approve__tokens
else

allowance1_to_2.offset(by:-1).defaults(to:0)

output allowance2_to_1 :=
if sender_address == ADDRESS2 && approve__spender == ADDRESS1 && approve__return0 then

approve__tokens
else

allowance2_to_1.offset(by:-1).defaults(to:0)

trigger balanceOf__tokenOwner == ADDRESS1.hold().defaults(to:0) && balanceOf__balance !=
balance1.hold().defaults(to:0) "trigger1: balance of 1 is wrong"

trigger balanceOf__tokenOwner == ADDRESS2.hold().defaults(to:0) && balanceOf__balance !=
balance2.hold().defaults(to:0) "trigger1: balance of 2 is wrong"

trigger transferFrom__from == ADDRESS1 && transferFrom__to == ADDRESS2 &&
allowance1_to_2.hold().defaults(to:0) < transferFrom__tokens "trigger1:
allowance1_to_2 not high enough"

trigger transferFrom__from == ADDRESS2 && transferFrom__to == ADDRESS1 &&
allowance2_to_1.hold().defaults(to:0) < transferFrom__tokens "trigger1:
allowance2_to_1 not high enough"

trigger allowance__tokenOwner == ADDRESS1 && allowance__spender == ADDRESS2 &&
allowance__return0 != allowance1_to_2.hold().defaults(to:0) "trigger1:
allowance1_to_2 wrong"

trigger allowance__tokenOwner == ADDRESS2 && allowance__spender == ADDRESS1 &&
allowance__return0 != allowance2_to_1.hold().defaults(to:0) "trigger1:
allowance2_to_1 wrong"
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