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ABSTRACT
The verification of cyber-physical systems operating in a safety-

critical environment requires formal system models. The validity

of the verification hinges on the precision of the model: possible

behavior not captured in the model can result in formally verified,

but unsafe systems. Yet, manual construction is delicate and error-

prone while automatic construction does not scale for large and

complex systems. As a remedy, this paper devises an automatic con-

struction algorithm that utilizes information contained in artifacts

of the development process: a runtime monitoring specification

and recorded test traces. These artifacts incur no additional cost

and provide sufficient information so that the construction pro-

cess scales well for large systems. The algorithm uses a hybrid

approach between a top-down and a bottom-up construction which

allows for proving the result conservative, while limiting the level

of over-approximation.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Theory of computation→ Timed and hy-
brid models; Formal languages and automata theory.
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1 INTRODUCTION
Hybrid systems connect the discrete, logical world of computers

with the continuous, unpredictable real world. In the last decades,

they became an inevitable part of society by controlling essential in-

frastructures such as power plants, commercial airplanes, and cars.

A mathematical model for such systems are hybrid automata, which

combine information regarding their discrete control structure and

continuous physical behavior. They can be used in all phases of
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development. Before deployment, they allow for analysis and veri-

fication of critical properties. During deployment, time-bounded

prediction and identification of anomalous or unexpected behavior

based on the model is possible. Lastly, recordedmission data enables

a post-mortem analysis as well. Albeit indisputably beneficial for

the development process, designing a hybrid automaton to properly

reflect the semantics of the system is a delicate process. Thus, un-

surprisingly, several approaches aim at automatically constructing

either hybrid automata or their simpler cousins, timed automata,

based on execution traces of the system. These traces are usually a

development artifact as they get recorded during test runs. Estima-

tion methods, most prominently machine-learning, yield promising

results in terms of reconstructing the correct discrete structure of

the automaton and approximating the continuous dynamics. Their

great accuracy notwithstanding, the direction of the approximation

is unclear, resulting in over- and under-approximation. While this

suffices for conveying the gist of the system, it does limit its ca-

pabilities in terms of safety-critical analyses. For this reason, we

propose a construction algorithm for conservative hybrid automata,

i.e., a guaranteed over-approximation of the original system.

Rather than relying solely on execution traces, the construction

employs another development artifact: a formal runtimemonitoring

specification. This specification is crucial for safety-critical systems

as it enables dynamic verification methods — runtime verification
— in which a dedicated component monitors the behavior of the

system during the execution. When the monitor deems this infor-

mation indicative of a malfunction, it terminates the execution.

Note that the constraints imposed by the specification encompass

the entire execution and change depending on the state of the

system. Hence, to judge the situation accurately, the monitor —

and by proxy the specification — needs to keep track of different

operational phases.

This comes to show that both the execution traces and the specifi-

cation manifest expertise acquired during the development process:

a) keeping track of operational phases requires the specification to

contain information regarding the discrete control structure and

b) since the execution traces are recorded test runs, they are ex-

pected to satisfy relevant coverage criteria. Hence, not only do they

cover the “average”, expected behavior including initialization and

termination, they also cover the extreme and corner case behav-

ior. Consequently, both the specification and the traces constitute

indispensable resources.

The construction algorithm proposed in this paper first extracts

the implicit discrete control structure from the specification, result-

ing in a strong over-approximation of the system. It then proceeds

by a) refining this information based on discrete control signals

contained in the execution traces and b) enriching it by analyz-

ing the evolution of samples over time. The resulting automaton
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is an under-approximation. Hence, the last step of the algorithm

merges control modes within the automaton based on discrete evi-

dence found in the traces to finally obtain an over-approximation

of the original system. This mixture of a top-down and bottom-

up construction results in an automaton that is both a provable

over-approximation and retains a high level of precision.

Apart from being conservative, the construction distinguishes

itself from existing approaches in two major ways. First, the speci-

fication roughly indicates the general discrete structure of the con-

structed automaton. This alleviates the need to second-guess the

structure in its entirety, reducing revisions to local sub-structures.

This pushes scalability far beyond 𝐿∗-based approaches [5] likeMed-

hat et al. [14] in which significant time is spent to determine the

discrete structure. Secondly, the construction reduces the level of

over-approximation by merging modes of an under-approximation

only if needed. This can result in more fine-grained refinements

than when successively widening dynamics until the language of

the automaton encompasses every input trace [18].

An empirical evaluation validates three major claims. First, the

construction requires few traces to produce decent results. For

a fourteen-mode automaton, for example, seven hand-picked or

on average 35 random traces suffice for a perfect reconstruction.

Secondly, the precision — while not flawless — comes close to the

optimal result for adequate input data. Thirdly, the construction

algorithm scales extraordinarily well. Even large automata with

over 1000 modes can be constructed within mere seconds. All three

benefits are the result of relying on development artifacts in form

of test traces and a runtime monitoring specification: a readily

available resource often left under-utilized.

All in all, the contributions of this paper are:

• A three step construction for conservative hybrid automaton:

First, it extracts a discrete over-approximation of the system

from a runtimemonitoring specification. This approximation

is successively enriched with continuous information and

refined into an under-approximation by incorporating data

from execution traces. Lastly, it merges modes based on

discrete evidence found in test traces until obtaining an over-

approximation.

• A correctness proof of the construction: under realistic as-

sumptions on the input traces, the constructed automaton

subsumes the language of the original system projected onto

the behavior exposed through the set of input traces. The

projection is required to eliminate parts of the system that

are not exposed to the outside such as unreachable modes.

• Experimental results showcasing the quality and scalability

of the conservative construction. Even small sets of input

traces stemming from random walks allow for precise con-

structions. Moreover, automata with thousands of modes

can be constructed in a matter of seconds.

2 MOTIVATION
The foundation for the conservative construction is a set of traces

generated from an unknown system and a runtime monitoring

specification thereof. As a running example, consider the automaton

depicted in Figure 1a, a simple model for an aircraft. The system

starts in a takeoff mode and resides there until reaching cruising

altitude. Here, it can go straight or adjust its course via left and

right curves until it attempts a landing. Under windy conditions,

the descend-phase is elongated as a precaution.

A specification for the aircraft imposes several constraints de-

pending on the current state of the system. For example, during

takeoff, the specification requires the aircraft to accelerate; while

traveling it requires a stable altitude; during landing it requires

the landing gear to be lowered. An analysis of the specification

hence yields a state machine with coarse information on differ-

ent execution phases as well as conditions on phase-changes. The

state machine is depicted in color in Figure 1a, superimposed by

the aircraft automaton. As can be seen, the specification does not

distinguish between maintaining course or adjusting it; the require-

ments on the system remain the same. Yet, it contains no indication

regarding the continuous behavior of the system.

To fill these gaps, the conservative construction then successively

enriches the specification automaton with information extracted

from the set of traces. The whole process is illustrated in Figure 1c.

It first translates the specification automaton AΦ
into a hybrid

automaton H+
1
. For each step of each trace, it adds more modes

into the automaton while maintaining the structure provided by the

specification. The result, i.e.,H+
|Π | , is by design overly restrictive:

it consists of a single, isolated path for each trace. A merge process

based on the discrete behavior of modes remedies this problem and

finally producesH+
.

The key point behind H+
is that it is conservative, i.e., under

certain assumptions on the specification and traces,H+
over-ap-

proximates H . The assumptions are three-fold: the specification

needs to a) be a coarse abstraction of the actual system, b) agree

with the system on phase changes, and c) the set of traces needs to

encompass sufficient information on the discrete behavior. While

these assumptions seem strong, they are tailored for the use case at

hand such that they are expected to be satisfied naturally. The first

and second assumption concern the specification, which is hand-

crafted specifically for the system. Hence, the specifier must have

had knowledge regarding the abstract control structure, e.g. through

which phases the system traverses during a mission. Evidently,

the concrete control structure refines the abstract structure for

more fine-grained control. This abstract control structure manifests

itself in the specification. Here, each mode of the abstract structure

imposes a different set of requirements on the system. A violation

of such a requirement constitutes a safety-hazard. Hence, engineers

need to define precisely when the requirements on the system

changes. As a result, the specification needs to contain the same

precise criterion for a phase change as the system itself.

Regarding the third criterion, recall that the set of traces is a

development artifact that arose from the testing process. Thus, not

only do they cover large parts of the system’s regular execution,

they represent executions in which the system was purposefully

coerced into extreme and corner case behavior. Moreover, the em-

pirical evaluation revealed that even small sets of random walks

through the underlying system already produces an adequate trace

set. Here, “small” means on average 32 traces for a fourteen state

automaton and two traces for a seven state automaton. This rea-

soning shows why these assumptions, while strong, are realistic

when considering carefully engineered, safety-critical system. A
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Takeoff

Travel

Landing

Takeoff

¤𝑥 ∈ [1, 100]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [1, 30]

Straight

¤𝑥 ∈ [90, 300]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [−2, 2]

Left

¤𝑥 ∈ [90, 300]
¤𝑦 ∈ [−150, 0]
¤𝑧 ∈ [−2, 2]

Right

¤𝑥 ∈ [90, 300]
¤𝑦 ∈ [0, 150]
¤𝑧 ∈ [−2, 2]

Landing

¤𝑥 ∈ [0, 150]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [−25, 0]

LandWindy

¤𝑥 ∈ [0, 200]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [−20, 0]

cruise 𝑧 ≥ 300

turnL

turnRLtoS

RtoS

descend descend

adjust adjust

(a) Running Example

Takeoff

Travel

Landing

Takeoff

¤𝑥 ∈ [1, 100]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [1, 30]
¤𝑥 ∈ [11.3, 94.9]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [3.5, 29.0]

Straight

¤𝑥 ∈ [90, 300]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [−2, 2]
¤𝑥 ∈ [96.5, 299.1]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [−2.0, 1.9]

Left

¤𝑥 ∈ [90, 300]
¤𝑦 ∈ [−150, 0]
¤𝑧 ∈ [−2, 2]
¤𝑥 ∈ [96.4, 272.3]
¤𝑦 ∈ [−107.8,−45.6]
¤𝑧 ∈ [−1.7, 1.0]

Right

¤𝑥 ∈ [90, 300]
¤𝑦 ∈ [0, 150]
¤𝑧 ∈ [−2, 2]
¤𝑥 ∈ [128.0, 245.2]
¤𝑦 ∈ [3.1, 127.2]
¤𝑧 ∈ [−1.7, 1.3]

Landing

¤𝑥 ∈ [0, 200]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [25, 0]
¤𝑥 ∈ [0.7, 199.5]
¤𝑦 ∈ [0, 0]
¤𝑧 ∈ [−25.0,−0.9]

cruise 𝑧 ≥ 300

turnL

turnRLtoS

RtoS

descend

adjust

(b) Constructed Automaton

Section 4

Section 5

AΦ H+
1

H+
|Π |

H+

H|Π̃

H

≲𝛼1
≲𝛼 |Π |

≲Φ

≲𝑀

≲ |Π | ≲ |𝜋

≲+

(c) Overview of the automata with corresponding relations.

Figure 1: The specification automaton for an aircraft superimposed by its hybrid automaton in Figure 1a and the result of
the construction from three hand-picked traces (black dynamics) and ten random traces (gray dynamics) in Figure 1b. An
overview of the automata is displayed in Figure 1c, where he notationH1 ≲ H2 indicates thatH2 simulatesH1.

formal description of the assumptions and the proof that H+
is

conservative can be found in Section 5.

The empirical evaluation of the approach in Section 6 allows for

validating three claims. a) The construction requires a low volume
of input traces — especially when compared to machine-learning

approaches. For the running example, the construction requires as

little as three traces of length eight. b) It scales linearly for increas-

ing dimension and quadratically in the number of traces and size of

the original/constructed system. Constructing a three-dimensional

automaton with 2
10

modes based on a specification with nine states

and 512 traces requires less than a second. c) Though over-approxi-

mating, the constructed automaton has a high level of precision. For
the aircraft, the construction is identical to the original apart from

a merge of the two terminal modes.

3 PRELIMINARIES
Definition 3.1 (Interval). I𝑛 = R2𝑛

denotes an 𝑛-dimensional

rectangle where I1 = I is an interval overR. The multiplication

of a 𝑘- and an ℓ-dimensional rectangle yields a (𝑘 + ℓ)-dimensional

rectangle. Addition and multiplication of intervals with scalars are

geometric translation and scaling, respectively.

Definition 3.2 (Convex Hull). Let 𝑆 be a convex set. The convex
hull of two convex sets 𝐴 ⊆ 𝑆 and 𝐵 ⊆ 𝑆 is the minimal convex set

covering both 𝐴 and 𝐵. Further, let S be a non-empty set of convex

sets. Conv(X) computes the convex set covering all elements of X
by applying the convex hull iteratively in arbitrary order. Conv(X)
yields the identity for singleton inputs.

chull(𝐴, 𝐵) =
⋃
𝑝𝑎 ∈𝐴

⋃
𝑝𝑏 ∈𝐵

[𝑝𝑎, 𝑝𝑏 ]

Conv(𝑌 ∪ X) = chull(𝑌,Conv(X))

3.1 Hybrid Automata
An 𝑛-dimensional Multi-Rectangular Hybrid Automaton H is a 6-

tuple (𝑀,Λ, flow, 𝐸,𝛾, 𝑠𝐼 ) over R𝑛
. 𝑀 denotes the finite set of dis-

crete control modes. A state 𝑠 ∈ 𝑀 ×R𝑛
of the automaton consists

of a discrete mode and a continuous state. Here, 𝑠𝐼 = (`𝐼 , 𝑥𝐼 ) ∈
𝑀 × R𝑛

is the initial state and Λ is the finite set of action labels.
flow : 𝑀 → I𝑛

defines the dynamics of modes. When entering

one, a random value is drawn from the respective interval for each

dimension. 𝐸 ⊆ 𝑀 × Λ × 𝑀 is the finite set of edges containing

discrete, labeled transitions between two modes. Lastly, 𝛾 : 𝐸 → I𝑛

assigns guard conditions to edges. A transition can only be taken

in a state if its continuous component lies within the rectangle.

Figure 1a shows the easy-to-grasp visual representation of a hybrid

automaton where each white rectangle constitutes a mode. The

text inside it defines the dynamics as differential equations, edge

labels state guard conditions.

Semantics. Hybrid automata allow for two kinds of transitions:

control mode changes according to 𝐸 and delays according to the

flow of the current mode during which the system state evolves

continuously. More formally, the semantics of a multi-rectangular

hybrid automatonH are defined based on valid omniscient traces
through H . An omniscient trace 𝜋 ∈ R𝑛 × R≥0 × R𝑛 × (𝐸 ×
R≥0 × R𝑛)𝑘 with 𝜋 = 𝑥0, 𝛿0, 𝑥1, 𝑒1, 𝛿1, . . . , 𝑥𝑘 , 𝑒𝑘 , 𝛿𝑘 , 𝑥𝑘+1 is valid
for an automaton (𝜋 ⊲H ) iff: a) the trace starts in the initial state

of H , i.e., 𝑥𝐼 = 𝑥0. b) the first discrete transition starts in the initial

mode, so 𝑒1 = (`𝐼 , _, `) for some _ and `. c) all guards are satisfied:

∀1 ≤ 𝑖 ≤ 𝑘 : 𝑥𝑖 ∈ 𝛾 (𝑒𝑖 ). d) all delay transitions are valid, i.e., for

0 ≤ 𝑖 ≤ 𝑘 and 𝑒𝑖+1 = (`𝑠 , _, `𝑡 ), the state changes according to the

flow: 𝑥𝑖+1 ∈ (𝑥𝑖 + 𝛿𝑖 · flow(`𝑠 )). The language of an automaton is

the set of valid traces: L(H) = {𝜋 | 𝜋 ⊲H}.

Definition 3.3 (Observable Traces). An observable trace 𝜋 is an

omniscient trace stripped of its information regarding source and

target modes: 𝜋 ∈ R𝑛 ×R≥0 ×R𝑛 × (Λ ×R≥0 ×R𝑛)𝑘 .
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For the remainder of the paper, unless stated otherwise, a trace

refers to an observable trace and we only consider finite languages.

Notation. Any automaton with decoration such as H+
will be

implicitly destructed into its components with the same decora-

tion, e.g.𝑀+
denotes the modes ofH+

. (𝑥)𝑘 denotes the 𝑘th com-

ponent of the 𝑛-dimensional vector 𝑥 for 0 < 𝑘 ≤ 𝑛. For a fi-

nite set 𝐴, |𝐴| denotes the cardinality of 𝐴. The length |𝜋 | of a
trace 𝜋 ∈ R𝑛 × R≥0 × R𝑛 × (Λ × R≥0 × R𝑛)𝑘 is the number

of timed transitions occurring in it, i.e., 𝑘 + 1. A trace of length

𝑘 + 1 is implicitly destructed into the following components: 𝜋 =

𝑥𝜋
0
, 𝛿𝜋

0
, 𝑥𝜋

1
, 𝑒𝜋
1
, 𝛿𝜋

1
, . . . , 𝑥𝜋

𝑘
, 𝑒𝜋
𝑘
, 𝛿𝜋

𝑘
, 𝑥𝜋

𝑘+1. Moreover, mode ` is a mem-

ber of an omniscient trace if it reaches the mode at least once:

` ∈ 𝜋 ⇐⇒ ∃𝑖 : 𝑒𝜋
𝑖
= (`1, _, `2) with ` ∈ {`1, `2}. A step of a trace

is the combination of a delay and a discrete transition. Further, let

Π be a sequence of traces in arbitrary order. Then, 𝜋𝑖 denotes the

𝑖th entry of the sequence with 𝑖 ≤ |Π |.

Bisimulation. Discrete bisimulation on two (hybrid) automata is

defined conventionally by disregarding any continuous behavior

or behavior not shared among the automata.

Definition 3.4 (Discrete Bisimulation). Two modes of `1, `2 of

two automata H1, H2 are discretely bisimilar `1 ≈ `2 iff for all

transition labels _ ∈ Λ1 ∩ Λ2:

(`1, _, ` ′1) ∈ 𝐸1 =⇒ ∃` ′
2
: (`2, _, ` ′2) ∈ 𝐸2 ∧ ` ′

1
≈ ` ′

2
and

(`2, _, ` ′2) ∈ 𝐸2 =⇒ ∃` ′
1
: (`1, _, ` ′1) ∈ 𝐸1 ∧ ` ′

2
≈ ` ′

1

Further, the two automata are discretely bisimilar H1 ≈ H2 iff

`1
𝐼
≈ `2

𝐼
.

4 CONSTRUCTING CONSERVATIVE
AUTOMATA

The construction proceeds in three steps: First, it extracts informa-

tion from the specification to obtain a finite state machine AΦ
and

a table mapping discrete control mode changes to conditions for

undergoing such a change. The automaton is a coarse abstraction of

the underlying system. The second step transforms it into a hybrid

automaton H+
and iteratively refines it by extracting information

regarding the continuous behavior from the input traces. By de-

sign, the refinement overshoots its goals, resulting in an abstraction

that is too fine. As a remedy, the third step merges parts of the

automaton to construct a conservative automaton. The alterna-

tion in coarseness has the effect that the resulting automaton is an

over-approximation without being overly permissive.

4.1 Extracting Discrete Information from the
Specification

The requirements on the system change depending on its current

state. For example, during the landing of an airplane, the landing

gear must be lowered whereas it is required to be retracted when

on traveling altitude. Hence, the specification needs to keep track of

relevant parts of the system state to impose the proper restrictions.

This process of keeping track induces an abstract state machine

that lacks any information on the continuous dynamics since the

monitor solely relies on external input data such as sensor read-

ings. Each abstract state may summarize several concrete modes of

the actual system. In the plane example, the requirements on the

abstract mode “in full flight” apply to both the control mode “no

wind” and “tail wind” even though they have different continuous

dynamics. By assumption, the contrary is false: a change of require-

ments on the system is always accompanied by a change in concrete

modes. Intuitively, a change of requirements is strongly linked to an

action or reaction of the system: approaching a geofence imposes

new constraints and hence prompts a reactionary change of course

to satisfy them. A formalization of these assumptions follows in

Section 5.1.

The extraction of the abstract automaton varies depending on

the specification language. This paper uses the RTLola [9, 17] mon-

itoring framework since it was designed for and integrated into

safety-critical cyber-physical systems [1, 6, 8]. An RTLola spec-

ification consists of input streams representing data the monitor

receives from the system, output streams and triggers. With output

streams the specifier declares how to process input data with the

goal of analyzing the state of the system. Lastly, triggers define

conditions on output streams. The satisfaction of a trigger condition

prompts the monitor to emit a message to the system, informing

it about a violation of a safety requirement or the detection of a

phase change.

A specification can keep track of the current set of requirements

imposed on the system by using an output stream `Φ. The value of

`Φ indicates in which abstract state the system is. Assume there are

two abstract states `Φ
1
and `Φ

2
, and a state transition occurs under

some condition 𝜑 . Then, the `Φ stream has the following shape:

output `Φ := if `Φ = `Φ
1

∧ 𝜑 then `Φ
2

else last(`Φ)

Here, last(`Φ) provides the last value of the `Φ. For more possible

abstract states and transitions, the conditional statement can be

extended accordingly. In addition, a state change is accompanied

by a respective trigger:

trigger last(`Φ) = `Φ
1

∧ `Φ = `Φ
2

∧ 𝜑 "`Φ
1
→ `Φ

1
with _."

The trigger checks for a change in `Φ from `Φ
1
to `Φ

2
and emits this

information coupled with the name _ of the respective transition.

An analysis of the output stream and trigger declarations yields

two artifacts:

Definition 4.1 (Specification Automaton). Given a specification Φ,
AΦ = (𝑉Φ, 𝐸Φ, 𝑣Φ

𝐼
) is the abstract specification automaton of Φ and

ΓΦ = (𝑉Φ × _ ×𝑉Φ) → I𝑛
is the guard condition table of Φ.

In the construction of AΦ
,𝑉Φ

and 𝑣Φ
𝐼
are the domain and initial

value of `Φ, respectively. Then, for each trigger as the one stated

before, 𝐸Φ contains the edge (`Φ
1
, _, `Φ

2
) and ΓΦ (𝑒) = 𝜑 . Note that

the following assumes AΦ
to be free of unreachable states and

related edges. This is the case in sensible specifications and can

easily be enforced by pruning the respective parts of the graph.

4.2 Extracting Continuous Information from
Traces

While the specification provides information about the system’s

discrete structure, the traces reveal how the continuous state of the
system evolves over time. They also reveal mode changes within a

single abstract state. This information allows for transforming AΦ

into a more fine-grained automaton with annotated dynamics in
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each mode. For this, the transformation iteratively constructs an

automatonH+
, processing each position of all traces in separation.

This requires to keep track of two maps: a concrete mode-map

𝜓 : Π → 𝑀 that maps each trace to the mode of the constructed

automaton in which it currently resides, and an abstract mode-map

𝛼 : ` → 𝑉Φ
mapping each concrete mode to an abstract one in the

specification automaton AΦ
.

Definition 4.2 (Construction Initialization). The construction starts
with a quasi-empty hybrid automaton H+

1
that is structurally simi-

lar to AΦ
, a concrete mode-map𝜓1 and an abstract mode-map 𝛼1

defined as:

𝑀1 = {`𝐼 } Λ1 = ∅ 𝐸1 = ∅ 𝛾1 (𝑒) = 1 𝜓1 (𝜋) = `𝐼

𝛼1 (`𝐼 ) = 𝑣Φ𝐼 flow
1
(`) =

∏
𝜋𝑖 ∈Π

solve(𝑥𝜋𝑖
0
, 𝑥

𝜋𝑖
1
, 𝛿𝜋

0
)

Here, 1 denotes the neutral element with respect to the multi-

plication of intervals. Moreover, the solve-function computes the

singular interval representing the linear dynamics exhibited by a

delay transition:

solve(𝑥, 𝑥 ′, 𝛿) = [(𝑥 ′ − 𝑥)𝛿−1, (𝑥 ′ − 𝑥)𝛿−1]
Thus, H+

1
already incorporates the information of each trace re-

garding their first delay transition.

After the initialization, the procedure successively incorporates

information contained in further positions of the traces.

Definition 4.3 (Construction Step). Given the automatonH+
𝑘
, con-

crete mode-map𝜓𝑘 , and abstract mode-map 𝛼𝑘 from the previous

construction step. Consider the 𝑘-th step of each input trace, i.e.,

𝑥
𝜋𝑖
𝑘
, _

𝜋𝑖
𝑘
, 𝛿

𝜋𝑖
𝑘
, and 𝑥

𝜋𝑖
𝑘+1 for all 0 < 𝑖 ≤ |Π |. The 𝑘th step of the

construction producesH+
𝑘+1,𝜓𝑘+1, and 𝛼𝑘+1.

For brevity, given 𝑒 = (`1, _, `2), let 𝛼𝑘 (𝑒) = (𝛼𝑘 (`1), _, 𝛼𝑘 (`2)).
Moreover, let Φ(𝜋 [..𝑘], 𝑒) be true iff the edge 𝑒 of the specification

automatonwas derived from a trigger for which themonitor reports

a violation for the trace 𝜋 up to the 𝑘th step. Lastly, `𝑖,𝑘 are fresh

modes.

𝑀𝑘+1 = 𝑀𝑘 ∪
⋃
𝑖

{
`𝑖,𝑘

}
Λ𝑘+1 = Λ𝑘 ∪

⋃
𝑖

{
_
𝜋𝑖
𝑘

}
𝐸𝑘+1 = 𝐸𝑘 ∪

⋃
𝑖

{
(𝜓𝑘 (𝜋𝑖 ), _𝜋𝑖𝑘 , `𝑖,𝑘 )

}
𝜓𝑘+1 (𝜋𝑖 ) = `𝑖,𝑘

𝛾𝑘+1 (𝑒) =
{
𝛾𝑘 (𝑒) if 𝑒 ∈ 𝐸𝑘
ΓΦ (𝛼𝑘+1 (𝑒)) otherwise

flow𝑘+1 (`) =
{

solve(𝑥𝜋𝑖
𝑘
, 𝑥

𝜋𝑖
𝑘+1, 𝛿

𝜋𝑖
𝑘
) if ` = `𝑖,𝑘

flow𝑘 (`) otherwise

𝛼𝑘+1 (`) =


`𝛼 if ∃𝜋 : Φ(𝜋 [..𝑘], (𝛼𝑘 (𝜓𝑘 (𝜋)), _𝜋𝑘 , `
𝛼 ))

𝛼𝑘 (`) if ` ∈ 𝑀𝑘

𝛼𝑘 (𝜓𝑘 (𝜋𝑖 )) if ` = `𝑖,𝑘

Intuitively, for each position of each trace the construction (i) adds

a new mode with the dynamics exhibited by the delay transition,

(ii) adds a new edge from ` to ` ′ for the discrete transition, and
(iii) updates the mode maps accordingly. The latter means that if

the transition was accompanied by a step in AΦ
, 𝛼 maps the ` ′

to the respective abstract mode and looks up the guard from the

specification. Otherwise, it maps ` ′ to the same abstract state as `

with a vacuous guard indicating a lack of information.

4.3 Merging Modes
Evidently, following the procedure yields an automaton with at

most |𝜋 | · |Π | modes arranged as a tree as can be seen in Figure 1c.

It transformed the overly coarse specification automaton into an

overly fine hybrid automaton. To find the sweet spot between both

extremes, the next construction step merges modes within an ab-

stract state provided they are sufficiently similar. Suppose some

relation ∼∃_ captures this notion of similarity. Then, intuitively, the

construction deems any two modes ` ̸∼∃_ ` ′ sufficiently dissimilar

such that theymust represent different modes in the original system.

For this, let ∼𝛼 denote the relation induced by 𝛼 for a constructed

hybrid automaton, `1 ∼𝛼 `2 indicates that both modes refine the

same abstract state, i.e., 𝛼 (`1) = 𝛼 (`2).

Definition 4.4 (Action Similarity). For a constructed hybrid au-

tomaton H+
, two modes `1, `2 ∈ 𝑀+

are action-similar if they

share some discrete characteristics and reside in the same abstract

state of the specification. Assume there are somemodes ` ′
1
, ` ′

2
∈ 𝑀+

and action _ ∈ Λ+
.a

`1 ∼∃_ `2 ⇐⇒ 𝛼 (`1) = 𝛼 (`2) ∧
(
{
(` ′

1
, _, `1), (` ′2, _, `2)

}
⊆ 𝐸+ ∨{

(`1, _, ` ′1), (`2, _, `
′
2
)
}
⊆ 𝐸+)

Note that by construction ∼𝛼 is coarser than ∼∃_ .
Terminal modes need further attention: consider the automa-

ton in Figure 1a. There are two identical traces in the language

of the automaton starting in Takeoff and traversing Straight,

but ending in different Landing modes. Based on these traces the

construction cannot distinguish the two terminal modes, since the

difference in modes is unobservable. In fact, there is no finite set

of traces for which they can be distinguished with certainty. This

forces the construction to merge them as can be seen in Figure 1b.

Definition 4.5 (Terminal and Merge Similarity). Two terminal

modes are terminal-similar iff they reside in the same abstract state.

`1 ∼⊥ `2 ⇐⇒ outdeg(`1) = outdeg(`2) = 0 ∧ 𝛼 (`1) = 𝛼 (`2)

Two modes are merge-similar iff they are either action-similar or

terminal-similar: ∼𝑀 = ∼∃_ ∪ ∼⊥

Merge Operation. The merge operation now minimizes the au-

tomaton with respect to ∼𝑀 by building the quotient automaton.

Formally, a merge operates on an equivalence relation ≈ over the

set of modes where each equivalence class Z ⊆ 𝑀 will be replaced

by a single representative ⟦Z⟧≈. By slight abuse of notation let

⟦`⟧≈ = ⟦Z⟧≈ for ` ∈ Z . Moreover, if context permits, the sub-

script may be omitted. The representative conserves the language

of each mode contained in Z by retaining discrete transitions and

computing the convex hull for its continuous components.

Definition 4.6 (Merge Automaton). Merging an automaton H
with respect to an equivalence relation ≈ yields an automaton

H ↓≈ where all elements of an equivalence class get merged into a

single element retaining its language.
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Algorithm 1 Construct Conservative Hybrid Automaton

Require: Specification Φ, Traces Π
1: Extract AΦ, ΓΦ from Φ ⊲ Definition 4.1

2: Construct H+
1
,𝜓1, 𝛼1 from Π and ΓΦ ⊲ Definition 4.2

3: for 𝑘 from 1 to |𝜋 | for 𝜋 ∈ Π do
4: Update toH+

𝑘
,𝜓𝑘 , 𝛼𝑘 ⊲ Definition 4.3

5: end for
6: Compute the action-similarity ∼∃_ ⊲ Definition 4.4

7: Compute the merge-similarity ∼𝑀 ⊲ Definition 4.5

8: ComputeH+ = H+
|Π | ↓(∼𝑀 ) ⊲ Definition 4.6

𝑀 ↓≈ =
{
⟦`⟧ | ` ∈ 𝑀

}
𝑠𝐼 ↓≈ = (⟦`𝐼⟧ , 𝑥𝐼 )

flow ↓≈ (⟦Z⟧) = Conv(
⋃
`∈Z

{flow(`)}) 𝜓 ↓≈ (𝜋) = ⟦𝜓 (𝜋)⟧

𝐸 ↓≈ = {(⟦`1⟧ , _, ⟦`2⟧) | (`1, _, `2) ∈ 𝐸} 𝛼 ↓≈ (⟦`⟧) = 𝛼 (`)
Λ↓≈ =

{
_ | ∃𝑒 ∈ 𝐸 ↓≈ : 𝑒 = (⟦Z1⟧ , _, ⟦Z2⟧)

}
𝛾 ↓≈ ((Z1, _, Z2)) = Conv({(`1, _, `2) | `1 ∈ Z1 ∧ `2 ∈ Z2})

4.4 Putting it Together: Construction
Algorithm

The overall construction algorithm now proceeds as outlined in

Algorithm 1: First, the procedure extracts information from the

specification, constructs the initial automaton and refines it suc-

cessively by iterating over the traces. After processing all traces

completely, the procedure computes and applies the merges with

respect to action- and terminal-similarity.

Time Complexity. The construction process consists of three

phases: extraction, construction and merging. Recall that the di-

mensionality, i.e., the number of continuous state variables is 𝑛. The

first phase scales linearly in the size of the specification O(|Φ|). The
second phase construct an automaton with a single mode per step of

any trace. Its size and the running time of the construction scales lin-

early with the number and length of traces as it creates a new mode

per step of any trace. It is also linear in the dimension since the dy-

namics of each dimension have to be computed separately per mode.

Hence, the complexity is in O(𝑛 · |𝜋 | · |Π |). Lastly, the complexity of

the last phase depends on the complexity of a single merge, which

is linear in the dimension, and the number of merges. The latter is

quadratic in the size of H+
|Π | , which in turn is linear in the number

and length of traces: O(𝑛 · |H+
|Π | |

2) = O(𝑛 · |𝜋 |2 · |Π |2). This, how-
ever, only describes the worst case. The procedure compares each

mode against each other with respect to ∼𝑀 . In the best case, all ele-

ments of an equivalence class are identified successively by chance.

In this case, the process is quadratic in the number of equivalence

classes: Ω(𝑛 · |∼𝑀 |2). Here, |∼𝑀 | denotes the number of equivalence

classes induced by ∼𝑀 with |AΦ | ≤ | ∼𝑀 | = |𝑀+ | ≤ |𝑀+
|Π | |. In

conclusion, the overall asymptotic running time is dominated by

the merge procedure: O(𝑛 · |𝜋 |2 · |Π |2)

5 CORRECTNESS OF CONSTRUCTION
The validation of the construction requires a proof that the con-

structed automaton is — under certain assumptions on the input

— indeed conservative. For this, a key criterion is that the automa-

ton over-approximates the discrete and continuous behavior of the

original system when projected down to the parts that contributed

to the inputs. Evidently, if the original system encompasses parts

that were neither reflected in the specification, nor traversed in the

input traces, the constructed automaton cannot reconstruct it.

Hence, this section first formalizes requirements on the input

data. Then, a definition of projection automata enables proving that

the constructed automaton subsumes the language of the projected

original system.

5.1 Requirements on Input Data
The construction of the conservative automaton relies on the quality

of the input traces and specification. Hence, they need to satisfy

three criteria: (i) the specification must be an abstraction of the

real system, (ii) its trigger conditions must be at least as restrictive

as the respective conditions on mode changes, and (iii) the trace

set needs to traverse every control mode of the system sufficiently

often to capture the discrete behavior.

Definition 5.1 (Adequacy of Input Data). A specification Φ and

trace set Π are adequate for a hybrid automaton H iff they satisfy

three criteria.

(1) The specification induces a coarser automaton AΦ
than the

original, i.e., ∃ ∼Φ : H ↓∼Φ ≈ AΦ
.

(2) Assume 𝑉Φ =
{
⟦Z⟧ | Z ∈ P

}
. For any discrete transition

that is both inH and AΦ
, the specification contains a mode

change condition that is at least as permissive as the guard

of the respective transition in H . Formally, let `Φ
1

̸∼Φ `Φ
2

and `Φ
1
≈ `1 ∧ `Φ

2
≈ `2. Then, for all (`Φ

1
, _, `Φ

2
) ∈ 𝐸Φ and

𝑒 = (⟦`1⟧∼Φ
, _, ⟦`2⟧∼Φ

) ∈ 𝐸 ↓∼Φ :

𝛾 (`, _, `) =⇒ ΓΦ (𝑒)

(3) For every mode ` inH , let 𝑎` = indeg(`) +outdeg(`) be the
number of input and output actions of ` in Π. The trace set
needs to contain more than 𝑎` (𝑎` − 1)/2 traversals through
`. Here, a trace 𝜋 traverses through a mode if its omniscient

counterpart 𝜋 contains two subsequent edges first ending

and then starting from `.

∀` ∈ 𝑀H : |{(𝑒𝜋𝑖 , 𝑒
𝜋
𝑖+1) | ∃𝜋 ∈ Π̃, 𝑖 < |𝜋 | , _, _′ ∈ ΛH :

(𝑒𝜋𝑖 , 𝑒
𝜋
𝑖+1) = ((`1, _, `), (`, _′, `2))}| >

(𝑎` ) (𝑎` − 1)
2

Evidently, these criteria depend on the original hybrid automa-

ton, which seemingly contradicts the premise of this paper regard-

ing the unavailability of such a model. Nevertheless, the criteria

are designed in a way that they are either satisfied naturally or can

be satisfied without access to all formal details of the system.

First, consider 5.1.1 and 5.1.2. These criteria restrict the specifi-

cation, which was hand-crafted for the underlying system. Here, a

reasonable specification summarizes control modes that are subject

to the same requirements; at the same time, the specification needs

to capture changes in the abstract state precisely to impose the
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correct sub-specification on the system. Thus, even without perfect

knowledge of the inner workings and dynamics of the system, the

first two criteria can be ensured. Consider the third criterion, which

is concerned with the trace set. A thorough testing process demands

that all discrete paths
1
through the system are tested at least once.

Moreover, the system has a fixed control interface, represented by

Λ. As a result, it is reasonable to assume that the number of times

each control mode is traversed during the development exceeds

the threshold required by Criterion 5.1.3. This again does not rely

on knowledge about the exact mode structure nor dynamics of the

underlying system.

The exact threshold for the third criterion seems arbitrary but is

anchored in graph theory, the impact of which can be seen in the

next lemma.

Lemma 5.2 (Trace Connectivity). Let Φ and Π be adequate for
H . For any mode ` inH with incoming edge label _𝑖 and outgoing
edge label _𝑜 , there is a mode ` ′ inH+ with the very same edge labels
and 𝛼 (`) = 𝛼 (` ′).

Proof. By reduction on the graph connectivity problem. Let

G(`,Π) = (𝑉 , 𝐸) be a graph where𝑉 is the set of labels of incoming

or outgoing edges of ` in H . 𝐸 connects two action labels _, _′ if
there is a trace in Π that reaches ` via _ and leaves via _′. The
solution of the graph connectivity problem states that _ and _′ are
necessarily connected if |𝐸 | exceeds |𝑉 | · ( |𝑉 | − 1)/2. This threshold
corresponds to Criterion 5.1.3. Recall that ∼∃_ relates all modes

with at least one common incoming or outgoing edge label. Thus,

since ∼∃_⊆∼𝑀 , all respective modes are merged in H+
and by

Definition 4.6, the resulting mode ⟦`⟧∼𝑀
retains these transitions.

Lastly, ∼𝑀 refines ∼Φ, hence 𝛼 (`) = 𝛼 (⟦`⟧∼𝑀
), which concludes

the proof. □

5.2 Projection Automata
The assessment of the quality of the reconstruction depends on the

projection of the original system onto the set of traces. This first

requires a definition of projections on automata.

Definition 5.3 (Projection Automata). The projection of an au-

tomatonH down to a set of omniscient traces Π̃ is an automaton

H|Π̃ with the following constituents.

𝑀 |Π̃ =
⋃
𝜋 ∈Π̃

⋃
𝑖≤ |𝜋 |

{
`𝜋𝑖 | `𝜋𝑖 ∈ 𝑀

}
Λ|Π̃ =

⋃
𝜋 ∈Π̃

⋃
𝑖< |𝜋 |

{
_𝜋𝑖 | _𝜋𝑖 ∈ Λ

}
𝐸 |Π̃ =

{
(`, _, ` ′) ∈ 𝐸 | `, ` ′ ∈ 𝑀 |Π̃ ∧ _ ∈ Λ|Π̃

}
𝛾 (𝑒) |Π̃ = [amin

𝑒 , amax

𝑒 ] flow(`) |Π̃ = [amin

` , amax

` ] 𝑠𝐼 |Π̃ = 𝑠𝐼

Here, for 𝜑 ∈ {min,max}, the min and max values for guards and

flows are:

a
𝜑
𝑒 = 𝜑{𝑥 | ∃𝜋, ∃𝑖 < |𝜋 | : 𝑥 = 𝑥𝜋𝑖 ∧ 𝑒 = 𝑒𝜋𝑖 }

a
𝜑
` = 𝜑{𝑓 | ∃𝜋, ∃𝑖 < |𝜋 | : 𝑒𝜋𝑖 = (` ′, _, `) ∧ 𝑥𝜋𝑖 + 𝛿𝜋𝑖 𝑓 = 𝑥𝜋𝑖+1}

1
This is the case for terminating systems. In the presence of infinite discrete paths, a

threshold on the length of executions is usually imposed.

Intuitively, the projection strips the automaton of any informa-

tion not reflected in the set of traces. This reduces the sets of modes,

edges, and transition labels. By definition, the initial state occurs in

all traces and thus remains the same. Guards and flows are reduced

to the maximum and minimum value exhibited by some trace.

Note that the projection automaton H|Π̃ is not meant to be

constructed at any point; it merely serves as theoretical point of

reference for the quality of the construction. It is easy to see that in

general the projection reduces the expressiveness of an automaton,

i.e., L(H) ⊇ L(H |Π̃). This, however, is not necessarily the case

as the following theorem shows.

Theorem 5.4 (Perfect Projection). For any hybrid automa-
tonH there is a finite set of traces for which the projection onto these
traces yields the identity, i.e., ∃Π̃∗ ⊆ L(H) : Π∗ finite∧L(H |Π̃∗ ) =
L(H).

The proof of Theorem 5.4 can be found in Appendix B. Note that

the language equality cannot be extended to identical or isomor-

phic automata sinceH can contain unreachable modes that are not

reflected in its language and thus not in any trace. The theorem

emphasizes the generality of the conservative construction: For

an appropriate trace set, the projection of an automaton perfectly

resembles the original system. Since the constructed automaton is

conservative with respect to this very projection, it is also conser-

vative with respect to the original system. This is independent of

the exact structure of the underlying system.

5.3 Construction Guarantees
The first observations are that application of a merge and iterations

of the construction do not reduce the language of an automaton.

Lemma 5.5 (Lossless Merge). Given a constructed hybrid au-
tomatonH+ and an equivalence relation ≈, mergingH+ with respect
to ≈ yields a more permissive automaton, i.e., L(H+) ⊆ L(H+ ↓≈).

The proof of the lossless merge can be found in Appendix B.

After showing the property of a merged automaton, we state that

our construction is lossless.

Lemma 5.6 (Lossless Construction). Given a set of traces Π
and specification Φ. For any iterations 𝑖 and 𝑗 , if 𝑗 ≥ 𝑖 , then the set of
edges, the flow, and the transition guards only grow over the iterations:

𝐸𝑖 ⊆ 𝐸 𝑗 ∧ flow𝑖 ⊆ flow 𝑗 ∧ ∀𝑒 ∈ 𝐸𝑖 : 𝛾𝑖 (𝑒) ⊆ 𝛾 𝑗 (𝑒)

Proof. This lemma follows directly from the construction step

(Definition 4.3). □

This suffices to prove that the language of the constructed au-

tomaton at least includes all input traces.

Theorem 5.7 (Input Trace Inclusion). Given an adequate set of
traces Π and specification Φ, the language of a constructed automaton
H+ subsumes Π, i.e., Π ⊆ L(H+).

The proof of Theorem 5.7 can be found in Appendix B. A stronger

classification of the language of H+
requires some insight into its

discrete structure in relation to the projection automaton of the

original system. Specifically, H|Π̃ has a finer discrete structure

thanH+
.
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Lemma 5.8 (Discrete Refinement). For an adequate specifi-
cation Φ and set of traces Π for a hybrid automaton H , the re-
construction H+ is coarser than the projection of H onto Π, i.e.,
∃ ∼+ : H+ ↓∼+ ≈ H |Π̃ .

Proof. The proof proceeds in two steps. First, for an arbitrary

trace 𝜋 through H|Π̃ it generates a trace 𝜋 ′
through H+

. Second,

it constructs the equivalence relation ∼+ based on these trace pairs.

Step 1: For a given 𝜋 ∈ L(H |Π̃), the proof inductively con-

structs 𝜋 ′
with 𝜋 ′ ∈ L(H+) such that the observable traces for 𝜋

and 𝜋 ′
are equal. Moreover, for any step 𝑖:𝜓 (𝜋 [0..𝑖]) = 𝜓 (𝜋 ′[0..𝑖])

. The induction base is trivial since both traces originate in the fixed

initial state, which corresponds to the initial state of the specifica-

tion automaton. Induction Step: Suppose the observable traces for

𝜋 [0..𝑖] and 𝜋 ′[0..𝑖] are equal and𝜓 (𝜋 [0..𝑖]) = 𝜓 (𝜋 ′[0..𝑖]). Suppose
further the last action label was _ and the next is _′.

Since the label combination _, _′ appears in 𝜋 , it is also present

in a mode ` in H+
by Lemma 5.2 with 𝛼 (𝜋 [0..𝑖]) = 𝛼 (𝜋 ′[0..𝑖]) =

𝛼 (` ′′) . Further, 𝜓 (𝜋 [0..𝑖]) has an incoming _ label, so by Defini-

tion 4.4,𝜓 (𝜋 [0..𝑖]) ∼∃_ ` ′′ due to their shared action label. Hence,

by Lemma 5.5, 𝛼 (𝜋 [0..1]) has an outgoing edge with label _′, which
proves that the discrete edge is present.

Now, it suffices to show that𝜓 (𝜋 [0..𝑖]) = 𝜓 (𝜋 ′[0..𝑖]). There are
possibilities: both traces take a transition in terms of𝜓 or neither

one does. This follows from Criterion 5.1.2 and Lemma 5.6 stating

that both automata are refinements of AΦ
. If both take such a

transition, the claim follows because AΦ
is deterministic and both

automata refine AΦ
. If neither one does, both remain in the same

state in AΦ
; the claim follows from the induction hypothesis. Step

2: The trace pairs 𝜋, 𝜋 ′
induce an equivalence relation:

∼+ =
{
(𝜓 (𝜋 [0..𝑖]),𝜓 (𝜋 ′[0..𝑖])) | 𝑖 ∈ N

}
This relation is a witness for the claim that H|Π̃ is a refinement of

H+
due to the trace inclusion proven in Step 1.

□

Note that the refinement can be a true refinement since the

merge criterion might falsely relate modes that are distinct in H|Π̃
but share some discrete behavior, as discussed before.

Corollary 5.9. ∼+ is finer than ∼𝑀 .

Theorem 5.10 (Conservative Construction). Let H be a hy-
brid automaton with an adequate set of traces Π and specification Φ.
The constructed automatonH+ over-approximates the language of
the projection automaton H|Π̃ : L(H |Π̃) ⊆ L(H+).

Proof. Let 𝜋 ∈ L(H |Π̃). The proof constructs a trace 𝜋 ∈
L(H+) such that 𝜋 is an observable counterpart for 𝜋 . The initial

real-valued state of 𝜋 is 𝑥𝜋
0
with 𝜓 (𝜋 [1]) = `+

𝐼
. By construction,

`+
𝐼
∼+ `𝐼 |Π̃ = `𝜋

0
.

For the induction, consider a delay transition 𝑥𝜋
𝑖
, `𝜋

𝑖
, 𝛿𝜋

𝑖
, 𝑥𝜋

𝑖+1
where `𝜋

𝑖
∼+ `+ by Lemma 5.8. Let 𝑥𝜋

𝑖
+ 𝑓 𝛿𝜋

𝑖
= 𝑥𝜋

𝑖+1 for 𝑓 ∈ R𝑛
. By

definition of the projection automaton (Definition 5.3), Π contains

traces 𝜋 ↑
and 𝜋 ↓

exhibiting the flow 𝑓 ↑ and 𝑓 ↓ at point 𝑎↑ ≤ |𝜋 ↑ |
and 𝑎↓ ≤ |𝜋 ↓ |, respectively, while traversing `𝜋

𝑖
with 𝑓 ↓ ≤ 𝑓 ≤ 𝑓 ↑.

By construction, there are modes `𝑎
↑ ∈ 𝑀+

𝑎↑
and `𝑎

↓ ∈ 𝑀+
𝑎↓

with

𝑓 𝑙𝑜𝑤𝑎↑ (`𝑎
↑) = 𝑓 ↑ and 𝑓 𝑙𝑜𝑤𝑎↓ (`𝑎

↓) = 𝑓 ↓. Lemmas 5.5 and 5.6

guarantee that further construction steps and merges retain this

information. Moreover, Lemma 5.8 implies that `𝑎
↑
, `𝑎

↓
, and `+ are

equal with respect to ∼+. By Corollary 5.9, they are also equal with

respect to ∼𝑀 . Thus, flow(`+) = Conv(
{
flow(`) | ` ∈ Z +

}
) with

𝑓 ↓, 𝑓 ↑, 𝑓 ∈ flow(`+). As a result, 𝜋 may contain the subsequence

𝑥𝜋
𝑖
, 𝛿𝜋

𝑖
, 𝑥𝜋

𝑖+1 representing the delay transition.

For discrete transitions, consider 𝑒 = (`𝜋
𝑖
, _𝜋

𝑖
, `𝜋

𝑖+1). We show

that 𝑒+ = (`+𝑠 , _𝜋𝑖 , `
+
𝑡 ) is a valid transition assuming that `+𝑠 =

𝜓 (𝜋 [0..𝑖]), i.e., the trace constructed so far ended in `+𝑠 . There are
three cases:

Case a) Both `𝜋
𝑖
∼Φ `𝜋

𝑖+1 and `+𝑠 ∼𝛼 `+𝑡 . Intuitively, this means

that both automata remain in the same state of the specification

automaton. In this case, by construction: 𝛾𝑖 (𝑒+) = ΓΦ (𝛼𝑖 (𝑒+)) = 1
and by Lemmas 5.5 and 5.6: 𝛾𝑖 (𝑒+) ⊆ 𝛾+ (𝑒+). Thus, the guard

is satisfied trivially. The existence of the edge in the constructed

automaton follows from Lemma 5.8.

Case b)Neither `𝜋
𝑖
∼Φ `𝜋

𝑖+1 nor `
+
𝑠 ∼𝛼 `+𝑡 . Intuitively, this means

neither automaton remains in the same state of the specification

automaton. In this case, 𝛾𝑖 (𝑒+) = ΓΦ (𝛼𝑖 (𝑒+)). By Criterion 5.1.2

and Definition 5.3, we know that 𝛾 |Π̃ (𝑒) =⇒ 𝛾 (𝑒) and 𝛾 (𝑒) =⇒
ΓΦ (𝛼𝑖 (𝑒+)). Again, by Lemma 5.6 and Lemma 5.5 we know𝛾𝑖 (𝑒+) ⊆
𝛾+ (𝑒+) and the existence of the edge in the constructed automaton

follows from Lemma 5.8.

Case c) Either `𝜋
𝑖
̸∼Φ `𝜋

𝑖+1 or `
+
𝑠 ̸∼𝛼 `+𝑡 but not both. This case

is impossible for adequate specifications (Definition 5.1.1) and by

the definition of ∼Φ /∼𝛼 .
Thus, the discrete transition exists and is applicable in the recon-

structed automaton. This concludes the proof. □

6 EXPERIMENTS
The empirical evaluation shows the scalability and precision of the

approach presented in this paper. It is based on a prototype imple-

mentation in Rust
2
and the code is open source. All experiments

were conducted on an Intel i5-7200u with 8GB RAM.

6.1 Aircraft System
As a first proof of concept, consider the running example from

Figure 1a. For adequate input traces, the output will always be

structurally equal with varying dynamics. This can be seen in Fig-

ure 1b, which shows the results of two construction processes. The

dynamics in black are constructed from three hand-picked traces

of length eight. Two of these traces travers all three Travel modes,

whereas the last one skips the course adjustment modes and loops

in one of the Landing modes instead. As can be seen, by picking

the state values for the traces in such a way that they represent

the extreme behavior, the reconstruction of the dynamics is per-

fect. Conversely, the constructed dynamics based on an adequate

trace set of ten traces obtained by conducting random walks on

the original system is shown in gray. The traces can be found in

Appendix A. Evidently, the reconstruction closely resembles the

original system both structurally and in terms of dynamics despite

being based on a small set of random traces.

2
https://www.rust-lang.org

https://www.rust-lang.org
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StableDrop Jump

RampUp

Stable

¤𝑣 ∈ [0, 0]
Jump

¤𝑣 ∈ [−1,−1]
Drop

¤𝑣 ∈ [1, 1]

RampUp

¤𝑣 ∈ [2, 2]
CounterDrop

¤𝑣 ∈ [−0.5,−0.5]
CounterJump

¤𝑣 ∈ [0.5, 0.5]
SlowDown

¤𝑣 ∈ [−0.5,−0.5]

torqueUptorqueDown

throttleUp

counter
stabilize

counter
stabilize

counter

stabilize

(a) Hybrid automaton approximating the engine timing control system. A
single trace of length ten enables perfect reconstruction. Colored states
indicate the specification automaton.

s12

s11

s8c2

c5s1

c7 s2 c9

s4

s0 s3

s5

c1

lock? unlock?

close? open?

unlock?

lock?

close?

open?

armedOn! 𝑐0 ≥ 2

unlock?

armedOff !

open?

armedOff ! flashOn!

soundOn!

unlock?

soundOff !

soundOff ! 𝑐0 ∈ [3, 13]

unlock?

flashOff !

flashOff !

𝑐0 ≥ 30close?

unlock?

(b) Timed automaton for the car alarm system.
Perfect reconstruction requires seven traces of
length twelve.

Figure 2: Example automata by Medhat et al. [14] (a) and Tappler et al. [20] (b).

6.2 Scalability
Recall the complexity of each step of the construction algorithm,

i.e., extraction, construction, and merging, from Section 4.4. The

extraction only requires a single pass over the specification and

is thus negligible. The construction and merges depend on the

dimensionality of the system and the number and length of traces.

The merge also depends on the number of equivalence classes with

respect to ∼𝑀 in the best case, which is the size of the output

automaton.

For this reason, the scalability evaluation considers exactly these

three factors: dimensionality, number and length of traces, and

output-size. To this end, it automatically generates an automaton

with matching specification and adequate trace set. The automaton

is shaped like a binary tree of variable depth 𝑑 (scales the length

of traces) where each of the 2
𝑑+1 − 1 nodes is a control mode with

dynamics of variable dimension (scales the dimensionality). The

specification summarizes a variable number of modes with equal

depth (scales the output size) and generates a variable number of

adequate traces (scales the number of traces) enabling the respective

merges.

Figure 3a and Figure 3b show the running time and memory

consumption for varying sizes of the original automaton. The green

line represents runs where ∼𝑀 only equates identities, prohibiting

any merges. For the blue line, two modes are equal if they have the

same depth in the underlying automaton. The number and size of

the traces required for an adequate trace set scales linearly with

the size and the depth, respectively. Independent of the existence

of merges, the running time lies below a second for automata with

less than 2
10

modes and increases steadily afterwards — as expected

considering the asymptotic complexity. Even for automata with 2
15

modes, the construction terminated after less than an hour (green

line) or half an hour (blue line). The memory consumption behaves

similarly, starting to rise significantly around 2
7
owing both to the

increased number of traces stored in memory, and the resulting size

of H+
|Π | . Note that the memory consumption almost exclusively

stems from the construction process; merging only deallocates

memory. In terms of running time, the lion’s share comes from

merging due to the difference in time-complexity. At a size of 2
9

modes the running time of the construction process amounts to

3.061% and decreases to 0.015% for automata with 2
15

modes.

The dimensionality impacts the running time to a lesser extent.

Raising the dimension from 1,000 to 7,000 for an automaton size

of 10
10

increases the running time from around 4 s to 14 s. The

limiting factor here is the memory consumption: each additional

dimension increases the memory consumption of every guard con-

dition, mode, and trace step. As a result, 10,000 dimensions requires

around 5GB of memory, which is also reflected in a relatively steep

increase in running time to 96 s. Lastly the number of traces has

an almost identical impact on both the running time and memory

consumption. The scale of the impact lies in-between the one of the

dimensionality and the size of the automaton. Raising the number

of traces from 3,000 to 16,000 increases the running time roughly 40-

fold. Detailed results for the dimensionality and number of traces

can be found in Appendix C.

6.3 Comparison Against Other Approaches
The construction of a hybrid automaton requires the determination

of both the discrete structure and continuous behavior. Regarding

the former, the conservative construction relies on the information

provided by the specification and refines abstract states according

to trace information. This restricts revisions to a local level. In

absence of such a specification, other approaches resort to learn-

ing algorithms. Medhat et al. [14] use a modification of Angluin’s

𝐿∗ algorithm [5] to learn the discrete structure separately from

the dynamics. Tappler et al. [20] on the other hand learn a timed

automaton with genetic programming. Note that these automata

alleviate the need to infer dynamics. We will evaluate the conser-

vative construction against both of these approaches.
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Figure 3: The results of the scalability analysis for different
sizes of the original automaton and specifications enabling
many (blue) or no (green) merges.

Anguin’s 𝐿∗ and Clustering. Medhat et al. [14] use an adapta-

tion of 𝐿∗ and clustering to identify the discrete and continuous

behavior of a system, respectively. In their case study, they use

a Simulink model of a closed-loop engine timing control system.

Figure 2a shows an approximate representation of the system as

hybrid model. Their construction uses eight traces to generate an

automaton that resembles the underlying system for new traces

up to an error of 2.6%. Note that a detailed comparison is exacer-

bated by a lack of information regarding the running time, memory

consumption, and length of the input traces. The conservative

construction can perfectly reconstruct the automaton with one

hand-picked trace of length ten within less than 1ms. When using

random walks, an average of 35 traces of length fifteen suffices for

the perfect reconstruction. In this example, the specification always

summarizes modes belonging to a certain operation of the system,

i.e., a drop, jump, ramp-up and the stable configuration.

Genetic Programming. Tappler et al. [20] use genetic program-

ming to successively adapt a candidate automaton to encompass

all input traces. As an example, they consider a timed automaton

modeling a car alarm system (see Figure 2b). A sufficiently precise

reconstruction requires 2,000 randomly generated traces and took

a mean of around 100min. When using seven hand-selected traces,

the conservative construction can perfectly reconstruct the system

within less than 1ms, disregarding resets. With random walks, an

average of 35 traces of length fifteen is necessary for the perfect

reconstruction. Note that the nature of the car alarm system does

not allow for a meaningful summary of several modes in the spec-

ification. However, in terms of performance, the specification is

irrelevant owing to the small size of the system.

7 RELATEDWORK
The theory of hybrid automata was first studied by Henzinger [11]

as the real-time extension of timed automata [3]. Learning the com-

plex structure of timed and hybrid automata is a line of research that

resulted in deterministic and stochastic reconstruction algorithms.

Niggemann et al. [15] present the tool HyBUTLA that builds

prefix trees of the traces and applies merges when appropriate.

Since Angluin’s 𝐿∗ algorithm [5] is a prominent solution for learn-

ing discrete automata, several extensions for timed automata were

proposed [4, 10]. Based on that, Medhat et al. [14] split the learn-

ing process of a hybrid automaton into two steps. They first learn

the discrete model of the automaton with 𝐿∗ and then capture the

dynamics using clustering. Both of these techniques can poten-

tially be replaced or integrated into different frameworks. Hence,

their approach is complementary to the conservative construction:

substituting the clustering for the simpler solve function can yield

better precision at the price of conservativeness. Focusing on the

medical application domain, HyMN [12] learns patient specific

parameters for hybrid automata deterministically. Soto et al. [18]

synthesize a hybrid automaton with an online algorithm without re-

lying on a specification as discrete template. While precision is very

high and completeness is shown, learning a trace prompts a global

analysis of the previously learned hybrid automaton, which incurs

performance penalties. The conservative construction avoid this

complexity by using the specification automaton and the adequacy

criterion. This way, revisions are local and still retain correctness

guarantees. Other approaches for learning hybrid automata using

mathematical models for node identification were proposed by

Summerville et al. [19] and Breschi et al. [7].

If large datasets of traces are available, stochastic learning of

hybrid automata is feasible. Tappler et al. [20] use genetic pro-

gramming to reconstruct timed automata both in an offline and

online setting [2]. Santana et al. [16] build hybrid automata with

the Expectation-Maximization algorithm to iteratively define the

model parameters. An unsupervised learning approach was pre-

sented by Lee et al. [13], whereas Birgelen and Niggemann [21]

use self-organizing feature maps. Despite the success of machine

learning, the results do not provide provable guarantees.

8 CONCLUSION
This paper presented a construction algorithm for conservative hy-

brid automata from development artifacts in the shape of a runtime

monitoring specification and pre-recorded execution traces. The

construction is validated mathematically by proving that the result

is an over-approximation under certain assumptions on the inputs.

An additional empirical evaluation revealed both the extraordinary
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scalability of the construction and that even randomly generated

inputs regularly satisfy the input requirements. Considering that

— in a realistic setting — these inputs are high-quality artifacts ac-

quired during development of the system, they should no longer

be left under-utilized. Treating them as the valuable assets they are

allows for constructing precise, conservative hybrid automata in a

scalable fashion.
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A ADEQUATE TRACES OF AIRCRAFT
SYSTEM

This section of the appendix presents the adequate traces used to

learn the version of the aircraft system depicted in Figure 1b with

the dynamics written in black.

(0,0,0)

cruise,300−−−−−−−−−−−−→ (300,0,300)

turnL,5−−−−−−−−−−−−→ (750,0,290)

LtoS,5−−−−−−−−−−−−→ (1200,-750,280)

turnL,5−−−−−−−−−−−−→ (1650,-750,270)

LtoS,5−−−−−−−−−−−−→ (2100,-1500,260)

turnR,5−−−−−−−−−−−−→ (2550,-1500,250)

RtoS,5−−−−−−−−−−−−→ (3000,-1500,240)

descend,5−−−−−−−−−−−−→ (3450,-1500,230)

5−−−−−−−−−−−−→ (3450,-1500,150)

(0,0,0)

cruise,10−−−−−−−−−−−−→ (1000,0,300)

turnR,5−−−−−−−−−−−−→ (2500,0,310)

RtoS,5−−−−−−−−−−−−→ (4000,750,320)

turnR,5−−−−−−−−−−−−→ (5500,750,330)

RtoS,5−−−−−−−−−−−−→ (7000,1500,340)

turnL,5−−−−−−−−−−−−→ (8500,1500,350)

LtoS,5−−−−−−−−−−−−→ (10000,1500,360)

descend,5−−−−−−−−−−−−→ (11500,1500,370)

5−−−−−−−−−−−−→ (12500,1500,370)

(0,0,0)

cruise,20−−−−−−−−−−−−→ (1000,0,300)

descend,5−−−−−−−−−−−−→ (2000,0,300)

adjust,5
−−−−−−−−−−−−→ (2375,0,275)

adjust,5
−−−−−−−−−−−−→ (2750,0,250)

adjust,5
−−−−−−−−−−−−→ (3125,0,225)

adjust,5
−−−−−−−−−−−−→ (3500,0,200)

adjust,5
−−−−−−−−−−−−→ (3875,0,175)

adjust,5
−−−−−−−−−−−−→ (4250,0,150)

5−−−−−−−−−−−−→ (4625,0,125)

B PROOFS OF SECTION 5
This section contains the missing proofs of Section 5.

Theorem 5.4 (Perfect Projection). For any hybrid automa-
tonH there is a finite set of traces for which the projection onto these
traces yields the identity, i.e., ∃Π̃∗ ⊆ L(H) : Π∗ finite∧L(H |Π̃∗ ) =
L(H).

Proof. The proof selects traces from L(H) enabling the per-

fect projection. For each 𝑒 in 𝐸, Π̃∗
contains a trace 𝜋 with 𝑒 ∈ 𝜋 .

This immediately entails that the projected edge set, set of actions,

set of modes, and initial mode are accurate when disregarding un-

reachable entities. For each mode, Π̃∗
encompasses four traces per

dimension: one minimizing and one maximizing the flow and con-

tinuous state variable of the mode and dimension. Theminimization

and maximization is over the set of traces rather than over the mode

itself. As a result, the projection of the flow is perfect. Lastly, for

each mode, outgoing edge, and dimension, there are two traces in

Π̃∗
which maximize and minimize the continuous state value before

taking the transition. Hence, the projection of the guard condition

is lossless in terms the language of the automaton.

In conclusion, L(H |Π̃∗ ) = L(H) with

|Π̃∗ | = |𝐸 | + 𝑛(5 |𝑀 | +
∑︁
`∈𝑀

outdeg(`))

where 𝑛 is the dimension of H . □

Lemma 5.5 (Lossless Merge). Given a constructed hybrid au-
tomatonH+ and an equivalence relation ≈, mergingH+ with respect
to ≈ yields a more permissive automaton, i.e., L(H+) ⊆ L(H+ ↓≈).

Proof. By contradiction: Assume there is a trace 𝜋 ∈ L(H+) \
L(H+ ↓≈). As the merge operation is defined by unifying modes,

𝜋 either (1) takes a discrete transition or (2) traverses a continuous

state not permitted in the merged automaton. Definition 4.6 “bends”

edges such that they originate and end in the respective representa-

tives. Hence, the construction retains all edges up to elimination of

duplicates due to set semantics, ruling out (1). Regarding (2), Defi-

nition 4.6 builds the convex hull for all flow and guard definitions

of the merged states. The convex hull is at least as permissive as

its constituents, rendering a less permissive behavior impossible,

which concludes the proof. □

Theorem 5.7 (Input Trace Inclusion). Given an adequate set of
traces Π and specification Φ, the language of a constructed automaton
H+ subsumes Π, i.e., Π ⊆ L(H+).

Proof. Let 𝜋 ∈ Π be an arbitrary input trace. We first prove

by induction that any subsequence of length 𝑖 of 𝜋 is included in

the language ofH+
𝑖
. Recall that𝜓𝑖 (𝜋) denotes the mode in which

𝜋 [0, 𝑖] ends.
Induction Base: 𝑖 = 0. By construction (𝑥𝜋

0
, `𝐼 ) ∈ L(H+

0
).

Moreover,𝜓0 (𝜋) = `𝐼 marks the (start and) end point of the trace.

Induction Step: 𝑖−1 → 𝑖 . Consider 𝜋 [0, 𝑖] = 𝜋 [0, 𝑖−1], _𝑖 , 𝛿𝑖 , 𝑥𝑖 .
By induction hypothesis, 𝜋 [0, 𝑖 − 1] ∈ L(H+

𝑖−1). By Lemma 5.6,

the language membership carries over to H+
𝑖
. By construction,

𝑒 = (`𝑖−1, _𝑖 ,𝜓𝑖 (𝜋)) ∈ 𝐸𝑖 with guard 𝛾𝑖 (𝜋) = ΓΦ (𝑒𝛼 ). Here, ΓΦ (𝑒𝛼 )
is either ⊤ if the transition is not present Φ, or the condition from

the respective trigger in Φ. In the latter case, by construction of 𝛼𝑖 ,

the respective trigger (and thus guard) condition is satisfied in 𝑥𝑖−1.
This enables the discrete transition and ensuring that the trace ends

in𝜓𝑖 (𝜋). The delay transition is valid because of the definition of

solve. Hence, 𝜋 ⊆ L(H+
|𝜋 |). By Lemma 5.5, this result carries over

toH+
, i.e., 𝜋 ⊆ L(H+) □

C ADDITIONAL EVALUATIONS RESULTS
This section presents supplementary material for the evaluation in

Section 6.

Figure 4 shows that the construction scales extremely well for an

increasing dimension, both in terms of running time and memory

consumption assuming the number of modes is a constant 2
11 − 1.

The increase in running time mainly stems from the merge oper-

ation, which computes the convex hull of the dynamics for each

dimension separately. However, the impact is rather low since the

running time is less than 100 s even for 10
4
dimensions. Similarly,

the memory consumption increases solely owing to the necessity

to store the multi-dimensional dynamics of each mode.

Figure 5 shows the result when constructing five-dimensional

automata with the same number of modes, but varying number of

traces. Each trace has a length of eleven. Increasing the number

of traces results in an increase in running time since the construc-

tion has to traverse the current automaton for each traces. It also

increases the memory consumption because traces lead to the cre-

ation of new modes. However, the construction scales well in both

performance metrics with a running time of around 17min and

memory consumption of 200MB for 16,000 traces.



Conservative Hybrid Automata from Development Artifacts HSCC’22, May 4–6, 2022, Milan, Italy

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1010.5

·103

1

10

100

Dimension

T
i
m
e
(
s
)

(a) Running Time

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1010.5

·103

100

1,000

10,000

Dimension

M
e
m
o
r
y
(
M
B
)

(b) Memory Consumption

Figure 4: Performance of the reconstruction for varying dimensions. The original automaton has 211 − 1 modes and each of
the around 1,000 trace has length eleven.
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Figure 5: Performance of the reconstruction for a varying number of traces. The original automaton has 211−1modes and five
dimensions. Each trace has length eleven.


