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Abstract

In this thesis, we develop model checking algorithms for both Temporal Stream Logic
(TSL) and Hyper Temporal Stream Logic (HyperTSL). TSL extends Linear Temporal
Logic (LTL) with predicates over inputs and memory cells, and with update terms that
specify how the value of a memory cell should change. Similar to the extension of LTL
to HyperLTL, HyperTSL further extends TSL for the specification of hyperproperties,
that is, properties relating multiple system executions. Unlike HyperLTL, HyperTSL
can express many important security properties like noninterference even if there is
an infinite data domain.

Both TSL and HyperTSL were originally defined for synthesis – to the best of our
knowledge, there is no algorithm explicitly designed for model checking yet. We first
study the decidable case of (Hyper)TSL model checking of finite-state systems. We
show that in this case, (Hyper)TSL is not more expressive than (Hyper)LTL by giving
a translation algorithm. Still, many properties can be expressed more compactly using
(Hyper)TSL. Thus, we also develop direct model checking algorithms for TSL and
HyperTSL with at most one quantifier alternation that are more efficient than model
checking an equivalent HyperLTL formula.

Next, we study (Hyper)TSL model checking of infinite-state systems, which is called
software model checking. We extend a known LTL software model checking algorithm
to TSL and, by applying the technique of self-composition, to alternation-free Hyper-
TSL. We further extend this algorithm to an algorithm for finding counterexamples
for ∀∗∃∗ HyperTSL formulas (or, dually, witnesses of ∃∗∀∗ HyperTSL formulas)
that is sound but not complete. This also gives the, to the best of our knowledge,
first infinite-state software model checking algorithm for finding counterexamples for
∀∗∃∗ and witnesses for ∃∗∀∗ HyperLTL formulas.
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Chapter 1

Introduction

With the increasing use of digital technology in all areas of life, the damage that can
be caused by undetected bugs is also becoming ever greater. While testing can only
reveal bugs but never verify their absence, model checking, the process of checking
automatically whether a system meets a given specification, can prove a system correct
– or provide a counterexample. The object of this thesis is to develop model checking
algorithms for both Temporal Stream Logic and Hyper Temporal Stream Logic.

Model checking has already been very successfully applied in practice, for example
on the control algorithms of a flood barrier in the Netherlands [36]. In this case
and most commonly, linear temporal logic [43] (LTL) was used as the language for
expressing the specification. However, LTL has its limitations: First of all, it is not
possible to relate multiple executions of the system within an LTL formula. Relating
multiple executions is necessary to express many important security properties like
noninterference [40], a property stating that by observing the output, an observer can
not gain any information about a specified secret input. More specifically, noninter-
ference states that for every pair of executions, if in both executions all inputs except
the secret one are equal, then also the output should be equal. Noninterference is
an example for a hyperproperty, that is, a property relating multiple executions. Due
to the great relevance of hyperproperties, LTL has been extended to HyperLTL [17],
making many of them expressible. Several algorithms have been developed for model
checking HyperLTL [17, 18, 27]

Nevertheless, there is still another limitation of HyperLTL: like LTL, HyperLTL is
based on boolean atomic propositions, each describing a property that can at any time
during an execution be true or false. Each atomic proposition is attached to a single
execution. Using a finite set of atomic propositions for encoding all possible values
of some inputs and outputs is only possible if the inputs and outputs both have a
finite value domain. Consequently, properties like noninterference are not expressible
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in HyperLTL if the relevant inputs and outputs have infinitely many possible values.

Hyper Temporal Stream Logic (HyperTSL) [19], which itself extends Temporal Stream
Logic (TSL) [28] for hyperproperties does not have this limitation: In contrast to
LTL, TSL is based on arbitrary predicates over memory cells and inputs. This is why
HyperTSL can express properties like noninterference even if there is an infinite value
domain. Noninterference is formally expressed as a HyperTSL formula as follows:

Example 1.1. (Noninterference as a HyperTSL Formula)

∀π. ∀π
′
. (⋀

i∈I\h
iπ = iπ′)→ (oπ = oπ′)

The formula states that all pairs of executions π and π
′
on which all inputs in I except

the secret input h are always equal, must also always have the same output o. Thus,
by observing the output o, an observer cannot gain information about h.

TSL and HyperTSL additionally feature so-called update terms, terms that state how
the value of a memory cell should change. This, for example, makes the statement ‘the
program variable x should be increased by one’ expressible in TSL and HyperTSL,
as shown in the following example.

Example 1.2. (Update Term)
This HyperTSL formula states that the cell counter should count how often the cell
money drops below zero.

∀π. □ ((moneyπ > 0) ∧◯(moneyπ ≤ 0)→◯◯Jcounterπ ↢ counterπ + 1K)

Always, when money has a positive value, but in the next timestep not anymore, then
in the step after, the cell counter should be increased by one.

This formula has only one universal quantifier. HyperTSL formulas with one universal
quantifier are exactly the set of TSL formulas. When writing a TSL formula, we
usually omit the universal quantifier.

Both TSL and HyperTSL were originally not defined for model checking, but for the
automatic construction of a system from a given specification (synthesis). To the
best of our knowledge, there is no algorithm explicitly designed for model checking
for TSL or HyperTSL yet. The object of this thesis is to develop model checking
algorithms for both TSL and HyperTSL.

Thereby, we first study the easier, decidable case of a finite-state system, that is, a
system with only finitely many possible values for each input and memory cell. We
show that in this case, as there is a finite value domain, (Hyper)TSL is not more
expressive than (Hyper)LTL. Still, many formulas can be expressed more compactly
in TSL. Thus, we also provide model checking algorithms for TSL and HyperTSL
with at most one quantifier alternation that are more efficient on a large system
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than model checking an equivalent (Hyper)LTL formula. For TSL, our algorithm is a
second TSL to LTL model checking reduction that is now based on the modification
of the system instead of the modification of the formula. For HyperTSL, we adapt
the HyperLTL model checking algorithm by Finkbeiner et. al. [27] for HyperTSL
with at most one quantifier alternation.

Then, we study the case of an infinite-state system, where the model checking problem
is called software model checking. As the system, we use an automaton labeled with
program statements. The software model checking problem is undecidable already
for LTL, so it is also undecidable for TSL and HyperTSL. Thus, we develop partial
algorithms that might diverge or return ‘unknown’. To obtain an algorithm for TSL
software model checking, we adapt the automata-based LTL software model checking
algorithm by Dietsch et. al. [25]. This algorithm is extendable to HyperTSL formu-
las without quantifier alternations by applying the technique of self-composition, a
technique commonly used for the verification of hyperproperties [3, 4, 26]. Next, we
further extend this to an algorithm for finding counterexamples disproving ∀∗∃∗ Hy-
perTSL formulas (and, by negating, witnesses proving ∃∗∀∗ formulas) that is sound
but not complete. As such an algorithm does, to the best of our knowledge, also
not yet exist for HyperLTL, this also gives the first software model checking algo-
rithm for finding counterexamples for ∀∗∃∗ HyperLTL formulas (and proving ∃∗∀∗

HyperLTL formulas). The idea of this algorithm is to construct an automaton that
overapproximates the set of program executions satisfying the existential part of the
formula.

1.1 Overview

1.1.1 (Hyper) Temporal Stream Logic with Theories

We present the definitions of TSL and HyperTSL, modified for making them more
suitable for model checking. In their original presentations by Finkbeiner et. al. in
[19, 28], predicates and functions were left uninterpreted. This for example means
that the equals predicate used in the formulation of noninterference would not have
any concrete meaning, which is undesirable in our setting. Therefore, we evaluate
the predicates and functions based on a given theory. This was already done for TSL
in [29], and we also add an interpretation for predicates and functions in HyperTSL.
Moreover, as relating multiple executions within one predicate is necessary to express
properties like noninterference, we choose the version of HyperTSL that was originally
called HyperTSLrel by Finkbeiner et. al. and allows such predicates.

1.1.2 Finite-State Model Checking

Next, we study algorithms for model checking TSL and HyperTSL in a finite-state
system. For the system, we use an automaton that specifies the current values of
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the memory cells and inputs at each automaton state. Because an automaton can
only have finitely many states, such a system only allows to express finitely many
values. This is the reason why in this case, (Hyper)TSL model checking is reducible
to (Hyper)LTL model checking, which we prove by describing a translation algorithm
that given a (Hyper)TSL formula and a finite-state system, constructs a (Hyper)LTL
formula that is equivalent for this system. The idea of this translation is to ‘hardcode’
the predicate and update term evaluations for all possible values of the memory cells
and inputs in the (Hyper)LTL formula.

The existence of such a translation means that if there is a finite value domain,
one does not gain expressiveness by using (Hyper)TSL instead of (Hyper)LTL. Still,
many properties are expressible more compactly in (Hyper)TSL. Therefore, we also
design an explicit algorithm for model checking (Hyper)TSL that is more efficient
than applying the translation if the system is large.

For TSL, our model checking algorithm is another reduction to LTL model checking,
but now a reduction that modifies the system instead of the formula. This reduction
is based on the observation that TSL predicates can also be interpreted as atomic
propositions in LTL. This does not work for the update terms, since whether an
update term is true, depends not only on the current but also on the previous time
step. Therefore, we describe an algorithm for eliminating all update terms from the
TSL formula: to this end, our algorithm modifies the system such that each state
‘remembers’ the previous values of the cells and update terms. This allows expressing
update terms as predicates. In a TSL formula without update terms, we can interpret
the predicates as atomic propositions and then relabel our system, specifying at each
state which predicates are currently true. Then, any LTL model checking algorithm
can be used.

Update term elimination also works for HyperTSL. However, interpreting predicates
as atomic propositions, does not, since atomic propositions can only refer to one
trace. We instead adapt the HyperLTL model checking algorithm by Finkbeiner et.
al [27]. Translating the formula to HyperLTL and then using the HyperLTL model
checking algorithm by Finkbeiner et. al. would roughly mean instantiating all pos-
sible values in the formula, translating the quantifier-free part of the formula to an
automaton and then combining this automaton with the system. Our idea for im-
proving this algorithm is to first translate the quantifier-free part of the TSL formula
into an automaton and then only instantiate the concrete values when combining
this automaton with the system. This avoids an unnecessary blow-up of the formula
automaton.

However, having predicates instead of concrete values as transition labels makes an
important step of the HyperLTL model checking algorithm, the projection, impossible
in our setting. This is why our HyperTSL model checking algorithm is limited to
the fragment of HyperTSL with at most one quantifier alternation. To avoid the
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projection, the idea when verifying a ∀∗∃∗ HyperTSL formula is to construct an
automaton containing all the execution combinations that satisfy the existential part
of the formula. Then, it only remains to test whether this automaton contains all
executions of the system.

Using our algorithms for TSL and HyperTSL model checking is indeed more efficient
than translating the formula and using the HyperLTL model checking algorithm if
the system is large, as we show in Chapter 5. Therefore, if one wants to model check a
property that can be more compactly described using a (Hyper)TSL formula, like the
property in Example 1.2, using Temporal Stream Logic as the specification language
is a good choice, even if (Hyper)TSL is not more expressive for a finite-state system.

1.1.3 Software Model Checking

The more interesting use for (Hyper)TSL model checking is the case of an infinite-state
system like a program. Model checking with a program as the system is called software
model checking. We discuss a software model checking algorithm for (Hyper)TSL
in Chapter 6. For TSL, our algorithm is an adaption of the automata-based LTL
software model checking algorithm by Dietsch et. al [25]. They already express
atomic propositions using predicates over memory cells, but we need to adapt the
algorithm for update terms and predicates over inputs. Dietsch et. al. model the
program as an automaton, where the states correspond to program locations and the
transitions are labeled with program statements that can be assertions or variable
assignments. Not every trace of this automaton is then a real program execution: for
example, a trace assert(n = 0) ;n − −; (assert(n = 0))ω 1

can never be a program
execution, as the second assertion will always fail. Such a trace is called infeasible.
In contrast, in a feasible trace, all assertions might succeed.

In our algorithm, as in the finite-state case, the checked formula is translated to an
automaton, but this time, the update terms are also treated as atomic propositions.
As done by Dietsch et. al., we combine the formula automaton and the program
automaton into a new program automaton called the Büchi program product that
accepts any feasible trace if and only if the program satisfies the formula. Whether
the automaton accepts a feasible trace is undecidable in general. Nevertheless, Dietsch
et. al. describe an algorithm based on counterexample guided abstraction refinement
[16], that can often decide whether there is a feasible accepted trace or not. This
algorithm is also applicable in our setting.

The Büchi program product is similar to the automaton product of the formula au-
tomaton and the program automaton. Thereby, in our algorithm, two transition
labels, a statement s and a set l of predicate and update terms are combined into a
program statement in such a way, that the assertions in the resulting statement suc-

1
The superscript ω denotes an infinite repetition of the program statement
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ceed if the predicates and update terms are true after the execution of s. A feasible
trace of the Büchi program product then corresponds to a program execution that
does not fulfill the TSL formula.

We extend this algorithm for HyperTSL-formulas with only existential or only univer-
sal quantifiers by applying the technique of self-composition, a technique commonly
used for the verification of hyperproperties [3, 4, 26]. If there are n quantifiers, the
program automaton is combined n − 1 times with itself, such that a trace of the
created automaton corresponds to n traces of the original system.

While there are already many important hyperproperties that can be expressed with
a single type of quantifiers, some especially important ones require a combination
of both. As an example, observe that a nondeterministic system can never satisfy
noninterference as stated in Example 1.1 even if the output is not influenced by the
secret input, as the output of two executions can differ even if all inputs are equal.
It is possible to generalize noninterference to allow nondeterminism. Generalized
noninterference [40] states that for any execution, there exists another execution
with the same output, but with the secret input always being some dummy value.
For expressing generalized noninterference, a combination of existential and universal
quantifiers is necessary.

To the best of our knowledge, there does not exist a software model checking algorithm
for HyperLTL formulas with both universal and existential quantifiers yet. So for
this problem, there is no HyperLTL algorithm that we could extend to HyperTSL. In
finite-state HyperLTL model checking algorithms, there is usually a complementation
of the constructed automaton involved. When complementing a program automaton
containing infeasible traces, the infeasible traces are lost. This makes the task of
software model checking HyperLTL or HyperTSL formulas with different quantifiers
especially difficult.

We develop an algorithm that, in many cases, can find counterexamples disproving
∀∗∃∗-HyperTSL formulas (and therefore also witnesses proving ∃∗∀∗-HyperTSL for-
mulas by finding a counterexample for the negated formula). However, our algorithm
is partial in the sense that if our algorithm does not find a counterexample, this does
not necessarily mean that the system satisfies the formula.

For this algorithm, we again use an idea from the finite-state algorithm: Consider
again a ∀∗∃∗ HyperTSL formula. In the finite-state algorithm, we have constructed
an automaton containing all the execution combinations from our system that satisfy
the existential part of the formula. As this is not possible for an infinite-state system,
we now instead construct an automaton that overapproximates the combinations of
program executions satisfying the existential part of the formula. If there is a pro-
gram execution that is not included in the overapproximation, this execution is a
counterexample proving that the program does not satisfy the HyperTSL-formula.
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To obtain such an overapproximation, we construct the Büchi program product of
the automaton for ψ and the n-fold self-composition of the program automaton.
Every feasible trace of the Büchi program product then corresponds to a choice of
executions for the variables π1, . . . , πn that makes ψ true. Then, we remove two kinds
of infeasibility from the Büchi program product: first of all, we choose some k and
remove all k-infeasibility, that is, a local inconsistency in a trace appearing within k
consecutive timesteps. For example, the trace assert(n = 0); n−−; (assert(n = 0))ω
is 3-infeasible. Whether a sequence of program executions is inconsistent can be
checked using an SMT-solver. If k is larger, more counterexamples can be identified,
but the algorithm is also slower.

As the second kind of infeasibility, we remove some infeasible accepting cycles from
the automaton. For example, the trace (assert(n ≥ 0); n−−)ω is not k-infeasible for
any k, but still infeasible, as n cannot decrease forever without eventually dropping
below zero. This trace is accepted by a program automaton if assert(n ≥ 0); n −
−; assert(n ≥ 0) is an infeasible accepting cycle of the automaton. The infeasibility
of a cycle can be proven using a ranking function synthesizer [5, 10, 20, 32, 44].

After some infeasible traces were removed using those algorithms, we project the
automaton to the universally quantified traces, obtaining an overapproximation of
the trace combinations satisfying the existential part of the formula. It remains to
check whether the overapproximation includes all the combinations of feasible traces.

We apply the algorithm to two examples to show that there are indeed cases where
it suffices to remove those kinds of infeasibility from the automaton to be able to
identify a counterexample.

Contributions.

• We extend HyperTSL with theories, creating a version of HyperTSL suitable
for model checking.

• For a finite-state system, we describe a reduction of (Hyper)TSL to (Hyper)LTL
model checking that is based on ‘hardcoding’ all possible values for the memory
cells and inputs inside the formula.

• We also describe direct finite-state model checking algorithms for TSL and∀∗∃∗

and ∃∗∀∗ HyperTSL, which are more efficient than applying the reduction
based on hardcoding all possible values if the system is large.

• To obtain an algorithm for TSL software model checking, we adapt the automaton-
based LTL software model checking algorithm from [25].

• We extend this algorithm to HyperTSL formulas with only universal or existen-
tial quantifiers by applying the technique of self-composition.

• We further extend this to an algorithm for finding counterexamples disproving
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∀∗∃∗ HyperTSL formulas (and, conversely, witnesses proving ∃∗∀∗ formulas)
that is sound but not complete. This also gives the, to the best of our knowledge,
first software model checking algorithm for finding counterexamples for ∀∗∃∗

HyperLTL formulas and proving ∃∗∀∗ HyperLTL formulas
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Related Work

Temporal Stream Logic. Temporal stream logic extends linear temporal logic [43]
and was originally designed for synthesis [28]. For synthesis, the logic was already
successfully applied, for example for synthesizing the computer game ‘Syntroids’ [31]
or for synthesizing smart contracts [30]. For advancing the smart contract synthe-
sis, TSL was extended to HyperTSL [19], thereby adding the possibility to relate
multiple program executions. All those applications however use a different version
of TSL than presented in this thesis - there, all functions and predicates were left
uninterpreted. While this choice made perfect sense for synthesis, having interpreted
predicates is more desirable for other purposes like model checking. TSL was extended
with theories by Finkbeiner et al. in [29]. Our definition differs slightly from theirs:
Finkbeiner et al. define the satisfaction of an update term by syntactic comparison of
the current program statement and the update term. Thus, for example, the program
statement c ∶= c + 1 would satisfy the update term Jc ↢ c + 1K while the statement
c ∶= c+ 2− 1 would not. In model checking, we usually do not want to reason about
the syntax of a program, thus in this thesis, we interpret update terms based on the
current and the previous value assignment, as done in [39].

While there are algorithms for synthesizing a system from a TSL specification, to the
best of our knowledge, there was no algorithm yet that is explicitly designed for model
checking. There is some recent work on TSL satisfiability [29]. As TSL can encode
programs, a satisfiability checker can also be used for model checking. However, an
algorithm explicitly designed for model checking is likely to be more efficient. The
reason for that is that encoding the program in the formula and then translating the
formula to an automaton already leads to an automaton with a size exponential in
the size of the program.
For LTL and HyperLTL, the model checking problem has been extensively studied
both on finite and infinite-state models [7, 9, 14, 18, 23, 25, 27]. In this thesis, we rely
on the fact that TSL extends LTL in order to extend LTL model-checking algorithms
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to TSL.

Finite-State Model Checking. For a finite-state system, the model checking prob-
lem for LTL is well-known to be decidable. The classical approach is based on Büchi-
automata: the negated property is translated into an automaton [2, 41, 47], then it is
examined whether the intersection of the language of the automaton and the traces
of the model is empty. This approach was adapted for hyperproperties, developing
model checking algorithms for HyperLTL [17, 18, 27]. We show in Chapter 5 that for
a finite-state system, (Hyper)TSL model checking is reducible to (Hyper)LTL model
checking. Moreover, the LTL to Büchi automaton translation is used as the basis for
all TSL model checking algorithms in this thesis.

Self-Compositon. Self-composition is a technique often used for the verification of
hyperproperties, both in finite and infinite-state systems [3, 4, 26], exploiting the fact
that the model checking problem for universal or existential hyperproperties can be
reduced to a simple model checking problem in the composed system – each trace of
the composed system corresponds to an interleaving of multiple traces in the original
system. We use self-composition both for finite and infinite-state systems in Chapters
5 and 6.

Software Model Checking. The software model checking problem is already unde-
cidable for LTL [8]. There are many approaches for partially solving the problem, like
semi-algorithms that might diverge or return ”unknown” if they can not determine
the solution [14, 22, 23, 25]. Most of these approaches use counterexample guided
abstraction refinement (CEGAR) [16]. The program is first abstracted to a finite-
state model in a sound but incomplete manner, for example as a Büchi automaton,
having program statements as its alphabet [33] or based on automatically inferred
predicates [21]. Then, if in the abstraction an execution is found that does not fulfill
the property, this execution is checked for feasibility, i.e. it is examined whether it
corresponds to an execution of the original system. If not, the abstraction is refined.
The problem of determining whether a given execution is feasible also is undecid-
able. In general, the construction of a ranking function is necessary - a proof that
such a sequence must eventually terminate. Many algorithms have been developed
for termination-proving [5, 10, 20, 32, 44]. They are often able to prove or disprove
termination despite the general undecidability of the problem, but they are still very
inefficient. For tackling this issue, the automata-based LTL software model checking
algorithm from [25], which is the algorithm we extend for (Hyper)TSL in this thesis,
exploits the fact that proving the infeasibility of a finite prefix of the sequence is
mostly easier - first, some prefixes of the sequence are checked for feasibility by using
SMT-solvers, then, only if they are feasible, a ranking function is synthesized.

However, there exist more recent approaches for LTL software model checking that
are even more successful in practice. Many of them are based on the observation that
model checking algorithms for safety properties are already well-studied and work
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well in practice. The most known algorithm is called IC3 [9] and has been extended
for software model checking [14]. Reducing the model checking problem of a liveness
property to that of a safety propery in another system leads to good model checking
results [14, 23, 42]. This approach is called liveness-to-safety. It would be interesting
to examine whether such an approach can also be extended to TSL.

There are also some existing algorithms for verifying hyperproperties on programs,
for example, algorithms based on type theory [1, 6]. They are usually limited to
universal hyperproperties. For example, [1] axiomatically introduces a new relational
logic that can be used to prove relational properties.

Recently, an algorithm has been proposed for verifying the ∀∃-fragment of the logic
OHyperLTL that, like TSL, extends LTL with predicates, but is also able to ex-
press asynchronous hyperproperties [7]. However, this algorithm relies on a given
abstraction and does not specify how to check the result for feasibility or refine the
abstraction. Thus, it can only be applied for software model checking if a suitable
abstraction is available.





Chapter 3

Preliminaries

3.1 Kripke Structures and Büchi Automata

Kripke structures are commonly used as the system that is model checked. A Kripke
structure [38] is a finite transition system where the states are labeled with atomic
propositions, each describing a property that at any time can be true or false.

Definition 3.1. A Kripke structure is a tuple K = (S, s0, δ, AP,L) where S is a
set of states, s0 is the initial state, δ ⊆ S × S is the transition relation, AP is the set
of atomic propositions and L ∶ S → 2

AP
is the labeling function.

A path of K is an infinite sequence s0 s1 s2 ⋅ ⋅ ⋅ ∈ S
ω

of states of K, where (si, si+1) ∈
δ for all i ∈ N. We denote all paths of K as Paths(K). A trace of K is an infinite
sequence L(s0) L(s1) L(s2) ⋅ ⋅ ⋅ ∈ (2AP )ω where s0 s1 s2 is a path of K.

A Büchi automaton [12] is also a transition system, but with labeled transitions
instead of labeled states. Moreover, there is a distinguished subset of accepting states.
Intuitively, a word is accepted by the Büchi automaton if the automaton, while reading
it, can visit some accepting state infinitely often.

Definition 3.2. A Büchi automaton is a tuple A = (Σ, Q, δ, q0, Qacc) where Σ is
the finite alphabet, Q is a set of states, δ ⊆ Q×Σ×Q is the transition relation, q0 is
the initial state and Qacc ⊆ Q is the set of accepting states.

A run of the Büchi automaton on a word σ ∈ Σ
ω

is an infinite sequence q0 q1 q2 ⋅ ⋅ ⋅ ∈
Q
ω

of states such that for all i ∈ N, (qi, σi, qi+1) ∈ δ. An infinite word σ is accepted
by the Büchi automaton if there is a run on σ with infinitely many i ∈ N such that
qi ∈ Qacc. We denote with L(A) the set of words accepted by A.

Büchi automata are closed under intersection, union and complementation [12, 37,
45, 46]. Complementation however leads to an exponential blow-up in the number of
states.
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3.2 (Hyper) Linear Temporal Logic

Linear Temporal Logic (LTL) is a language for specifying trace properties, that is,
properties of sequences of sets of atomic propositions. Besides the standard boolean
operators, LTL also includes modal operators, namely

• the next-operator . ϕ states that the formula ϕ should hold in the next
timestep.

• the eventually-operator . ϕ states that ϕ should hold at some timepoint in
the future.

• the until-operator U . ϕU ψ states that the formula ψ must hold eventually and,
until this is the case, ϕ must hold.

• the globally-operator . ϕ states that ϕ must hold from now on and forever.

We only treat the next-operator and the until-operator as native and derive the other
operators.

Definition 3.3. An LTL Formula is defined by the grammar

ϕ ∶∶= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∣ ϕU ϕ where a ∈ AP

The operators ∨, , can be derived using the equations ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ),
ϕ = trueU ϕ, ϕ = ¬ ¬ϕ.

Definition 3.4. The satisfaction of an LTL formula with respect to a trace
s ∈ (2AP )ω and a time point t is recursively defined by

t, s ⊧LTL a ⇔ a ∈ st

t, s ⊧LTL ¬ϕ ⇔ ¬(t, s ⊧LTL ϕ)
t, s ⊧LTL ϕ ∧ ψ ⇔ t, s ⊧LTL ϕ ∧ t, s ⊧LTL ψ

t, s ⊧LTL ϕ ⇔ t + 1, s ⊧LTL ϕ

t, s ⊧LTL ϕU ψ ⇔ ∃t
′
≥ t. t

′
, s ⊧LTL ψ ∧∀t ≤ t

′′
< t

′
. t
′′
, s ⊧LTL ϕ

We define s ⊧LTL ϕ as 0, s ⊧LTL ϕ

It is well known that it is possible to translate an LTL formula into an equivalent
Büchi automaton that accepts exactly the traces satisfying the LTL formula [47].

However, if the formula is of size n, the Büchi automaton might have up to 2
O(n)

states. The classical translation algorithm has been improved, making it faster in
practice and reducing the size of the automaton [2, 41].

HyperLTL [17] extends LTL with explicit trace quantification. An LTL formula has
to hold for all traces of the system, so this is an implicit universal quantification.
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Within an HyperLTL formula, we can use multiple (different) quantifiers and thereby
relate multiple traces. Every atomic proposition is now attached to a trace variable.
In the following, let Π be a set of trace variables.

Definition 3.5. A HyperLTL formula is defined by the grammar

ϕ ∶∶= aπ ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∣ ϕU ϕ ∣ ∀π. ϕ ∣ ∃π. ϕ where a ∈ AP and π ∈ Π

The satisfaction of a HyperLTL formula is defined with respect to a mapping m ∶
Π → (2AP )ω of trace variables to traces. For treating the quantifiers, we need the
notion of extending such a mapping for a new trace variable. We define

m[π → s](π) = s
m[π → s](π′) = m(π′) for π ≠ π

′

Definition 3.6. The satisfaction of a HyperLTL formula with respect to a set
of traces Z ⊆ 2

AP ω
, a mapping of trace variables to traces m ∶ Π→ 2

AP ω
and a time

point t is recursively defined by

Z, t,m ⊧LTL aπ ⇔ a ∈ m(π)t
Z, t,m ⊧LTL ¬ϕ ⇔ ¬(Z, t,m ⊧LTL ϕ)
Z, t,m ⊧LTL ϕ ∧ ψ ⇔ Z, t,m ⊧LTL ϕ ∧ Z, t,m ⊧ ψ

Z, t,m ⊧LTL ϕ ⇔ Z, t + 1,m ⊧LTL ϕ

Z, t,m ⊧LTL ϕU ψ ⇔ ∃t
′
≥ t. Z, t

′
,m ⊧LTL ψ ∧∀t ≤ t

′′
< t

′
. Z, t

′′
,m ⊧LTL ϕ

Z, t,m ⊧LTL ∀π. ϕ ⇔ ∀s ∈ Z. m[π → s] ⊧LTL ϕ
Z, t,m ⊧LTL ∃π. ϕ ⇔ ∃s ∈ Z. m[π → s] ⊧LTL ϕ

We define Z ⊧LTL ϕ as Z, 0,∅ ⊧LTL ϕ.





Chapter 4

(Hyper) Temporal Stream Logic
with Theories

4.1 Recap: Temporal Stream Logic with Theories

Temporal Stream Logic [28] extends Linear Temporal Logic [43]. While LTL is based
on boolean atomic propositions, TSL is instead based on predicates over memory cells
and inputs. Moreover, it supports update terms - terms that specify how the value of
a cell should change. The following example illustrates the basic usage of TSL.

Example 4.1. This formula states that the cell counter should count how often the
cell money drops below zero.

((money > 0) ∧◯(money ≤ 0)→◯◯Jcounter ↢ counter + 1K)

Whenever money has a positive value, but in the next timestep not anymore, then in
the step after the cell counter should be increased by one.

We present the formal definition of temporal stream logic with theories, based on the
definition by Finkbeiner et al. [29], which is an extension of the original TSL definition
[28]. The definition we present slightly differs from the definition by Finkbeiner et
al.: the satisfaction of an update term is not defined by syntactic comparison, but
relative to the current and the previous values of cells and inputs. This adaption
was already presented in [39]. We decided on this version because we usually do not
want to reason about the syntax used in the description of the system when model
checking.

TSL is defined based on a set of values V containing distinguished elements true and
false, a set of inputs I and a set of memory cells C. Update terms and predicates are
interpreted with respect to a given theory.
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Definition 4.2. A theory is a tuple (F, ε)
• F is the set of function symbols, each one with an arity n.

• ε ∶ F × Vn → V is the interpretation function, evaluating a function with arity
n given concrete argument values

In this thesis, we now assume a concrete theory (TF , ε) containing at least the equals-
predicate, disjunction and negation. Next, we formally present how function terms,
predicate terms and TSL formulas are constructed using function symbols, cells and
inputs.

Definition 4.3. A function term τF is defined by the following grammar:

τF ∶∶= c ∣ i ∣ f(τF , τF , . . . τF )

where c ∈ C, i ∈ I, f ∈ F, and the number of tuple elements matches the function
arity.

Definition 4.4. An assignment a ∶ (I ∪ C) → V is a function assigning values to
inputs and cells. The set of all assignments is A.

Given a concrete assignment, the value of a function term can be computed.

Definition 4.5. The evaluation function η ∶ TF ×A→ V is defined by

η(c, a) = a(c) for c ∈ C
η(i, a) = a(i) for i ∈ I

η(f (τF1, τF2, . . . , τFn), a) = ε(f, (η(τF1), η(τF2), . . . , η(τFn))) for f ∈ F

Definition 4.6. A predicate term τP is a function term only evaluating to true or
false:

∀a ∈ A. η(τP , a) = true ∨ η(τP , a) = false

The set of all predicate terms is TP .

Definition 4.7. Let c ∈ C and τF ∈ TF . Then, Jc↢ τF K is called an update term.

Intuitively, the update term Jc ↢ τF K states that c should be updated to τF . If in
the previous time step τF evaluated to v ∈ V, then in the current time step c should
have value v. The set of all update terms is TU .

Definition 4.8. A TSL-Formula is defined by the grammar:

ϕ ∶∶= τP ∣ Jc↢ τF K ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∣ ϕU ϕ

where c ∈ C, τP ∈ TP , τF ∈ TF .
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The usual operators ∨, , can be derived using the equations
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ϕ = true U ϕ, ϕ = ¬ ¬ϕ, where ε(true, ()) = true
Next, we present the definition of the semantics of TSL. For that, assume a fixed
initial variable assignment ζ−1. (This could for example map all cells and inputs to
zero)

Definition 4.9. The satisfaction of a TSL-Formula with respect to a computation
ζ ∈ Aω

and a time point t is recursively defined by

t, ζ ⊧ τP ⇔ η(τP , ζt) = true
t, ζ ⊧ Jc↢ τF K ⇔ η(τF , ζt−1) = ζt(c)
t, ζ ⊧ ¬ϕ ⇔ ¬(t, ζ ⊧ ϕ)
t, ζ ⊧ ϕ ∧ ψ ⇔ t, ζ ⊧ ϕ ∧ t, ζ ⊧ ψ

t, ζ ⊧ ϕ ⇔ t + 1, ζ ⊧ ϕ

t, ζ ⊧ ϕU ψ ⇔ ∃t
′
≥ t. t

′
, ζ ⊧ ψ ∧∀t ≤ t

′′
< t

′
. t
′′
, ζ ⊧ ϕ

We define ζ ⊧ ϕ as 0, ζ ⊧ ϕ

4.2 HyperTSL with Theories

The definition from the previous section is now extended with path quantifiers, leading
to the definition of the logic HyperTSL [19]. Using HyperTSL, many important
security properties are expressible by relating multiple program executions.

Example 4.10. (Noninterference)
By observing the output o, an observer cannot gain information about the secret
input h

∀π. ∀π
′
. (⋀

i∈I\h
iπ = iπ′)→ (oπ = oπ′)

The HyperLTL specification of noninterference looks very similar - however, there
the inputs and outputs can only be boolean atomic propositions, while in HyperTSL,
they can have arbitrary values. This makes HyperTSL more expressive, as there is
no need for a finite value domain.

HyperTSL was first presented for the synthesis of smart contracts [19]. There, two
different versions of HyperTSL were introduced and discussed: the first version, called
HyperTSL, did not allow the relation of multiple traces within one predicate, while the
second one, called HyperTSLrel, did allow them. Many important security properties
like noninterference require HyperTSLrel. Nevertheless, the authors of [19] focused
on the more restrictive version, as otherwise, the synthesis problem would have been
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cellc=0

cellc=1cellc=2

Figure 4.1: An automaton. The annotation cellc=v means that at this automaton
state, the cell c has value 0

even harder. In this thesis, we instead use the more expressive version (we even
allow update terms that relate multiple traces), as this version seems suitable for
model checking. Furthermore, we extend the originally uninterpreted functions and
predicates with an interpretation. For simplicity, we still call the logic HyperTSL.

The syntax of HyperTSL is like that of TSL, with the difference that the cells and
inputs are now each assigned to a trace variable that represents a computation. For
example, cπ now refers to the memory cell c in the computation represented by π.
Formally, let Π be a set of trace variables. We define a hyper-function term τ̂F ∈ T̂F
as a function term using (I ×Π) as the set of inputs and (C ×Π) as the set of cells:

Definition 4.11. A hyper-function term τ̂F is defined by the following grammar:

τ̂F ∶∶= cπ ∣ iπ ∣ f(τ̂F , τ̂F , . . . τ̂F )

where cπ ∈ C × Π, iπ ∈ I × Π, f ∈ F, and the number of tuple elements matches the
function arity. T̂F is the set of all hyper-function terms.

Analogously, we also define hyper-predicate terms τ̂P ∈ T̂P as hyper-function terms
only evaluating to true or false, hyper-assignments Â = (I ∪ C) × Π → V as func-
tions that map each cell and input of each trace to their current value, and hyper-
computations ζ̂ ∈ Âω

as sequences of hyper-assignments.

Example 4.12. Consider the automaton shown in Figure 4.1 and the two automaton
traces

π = cellc=0 cellc=1
ω

π
′
= (cellc=0 cellc=1 cellc=2)ω

Those automaton traces can be each interpreted as a computation. When executing
both traces simultaneously, at each point in time, there is a corresponding hyper-
assignment - an assignment of values to cπ and cπ′ . In the first time step, c is 0 at both
traces, so the corresponding hyper-assignment is â1(cπ) = â1(c′π) = 0. Analogously,
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for the next timesteps we have

â2(cπ) = 1, â2(c′π) = 1 second time step

â3(cπ) = 1, â3(c′π) = 2 third time step

â4(cπ) = 1, â4(c′π) = 0 fourth time step

Thus, the two traces define a hyper-computation â1 (â2 â3 â4)ω

We can now define the syntax of HyperTSL. It is similar to the syntax of TSL but
allows path quantifiers, hyper-predicate terms instead of predicate terms and hyper-
function terms instead of function terms.

Definition 4.13. A HyperTSL-formula is defined by the following grammar:

ϕ ∶∶= ψ ∣ ∀π. ϕ ∣ ∃π. ϕ
ψ ∶∶= τ̂P ∣ Jcπ ↢ τ̂F K ∣ ¬ψ ∣ ψ ∧ ψ ∣ ψ ∣ ψ U ψ

where cπ ∈ C ×Π, τ̂P ∈ T̂P , τ̂F ∈ T̂F .

When defining the semantics of HyperTSL, we need to extend a hyper-computation
by a computation for a new trace variable. Then, we can extend the current set of
traces with a new one for each path quantifier.

Definition 4.14. (Extension of a Hyper-Computation)
Let ζ̂ ∈ Âω

, π, π
′
∈ Π, ζ ∈ Aω

, x ∈ (I ∪ C). We define ζ̂[π, ζ] as

ζ̂[π, ζ] (xπ) = ζ(xπ)
ζ̂[π, ζ] (xπ′) = ζ̂(xπ′) for π

′
≠ π

Definition 4.15. The satisfaction of a HyperTSL-Formula with respect to a
hyper-computation ζ̂ ∈ Âω

, a set of computations Z and a time point t is recursively
defined by

t, Z, ζ̂ ⊧ ∀π. ϕ ⇔ ∀ζ ∈ Z. t, Z, ζ̂[π, ζ] ⊧ ϕ
t, Z, ζ̂ ⊧ ∃π. ϕ ⇔ ∃ζ ∈ Z. t, Z, ζ̂[π, ζ] ⊧ ϕ
t, Z, ζ̂ ⊧ τ̂P ⇔ η(τ̂P , ζ̂t) = true
t, Z, ζ̂ ⊧ Jcπ ↢ τ̂F K ⇔ η(τ̂F , ζ̂t−1) = ζ̂t(cπ)
t, Z, ζ̂ ⊧ ¬ϕ ⇔ ¬(t, Z, ζ̂ ⊧ ϕ)
t, Z, ζ̂ ⊧ ϕ ∧ ψ ⇔ t, Z, ζ̂ ⊧ ϕ ∧ t, Z, ζ̂ ⊧ ψ

t, Z, ζ̂ ⊧ ϕ ⇔ t + 1, Z, ζ̂ ⋅ ⋅ ⋅ ⊧ ϕ

t, Z, ζ̂ ⊧ ϕU ψ ⇔ ∃t
′
≥ t. t

′
, Z, ζ̂ ⊧ ψ ∧∀t ≤ t

′′
< t

′
. t
′′
, Z, ζ̂ ⊧ ϕ

We define Z ⊧ ϕ as 0, Z,∅ω ⊧ ϕ
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4.3 Similiarity of LTL and TSL

In this section, we prove a lemma that states an important relation between (Hy-
per)TSL and LTL. The LTL semantics is defined with respect to a sequence of subsets
of atomic propositions, while the semantics of a TSL-formula or quantifier-free Hyper-
TSL formula is defined with respect to a (hyper-)computation. A crucial observation
for this thesis is that we can ‘translate’ between the two – a (hyper-)computation
defines a sequence of predicate and update term subsets. For each time point, the
subset contains exactly the predicate and update terms that are true now.

Definition 4.16. Let ζ̂ ∈ Âω
, ρ ⊆ T̂P , υ ⊆ T̂U . We define

Seq(ζ̂, ρ, υ)t = {τ̂P ∈ ρ ∣ t,∅, ζ̂ ⊧ τ̂P } ∪ {Jc↢ τ̂F K ∈ υ ∣ t,∅, ζ̂ ⊧ Jc↢ τF K}
Seq(ζ̂, ρ, υ) = Seq(ζ̂, ρ, υ)0 Seq(ζ̂, ρ, υ)1 Seq(ζ̂, ρ, υ)2 . . .

If ρ and υ are clear from the context, we also omit these arguments.

Lemma 4.17. Let t ∈ N. Let ϕ be a HyperTSL-formula without quantifiers. Let
ρ ⊆ T̂P , υ ⊆ T̂U be the sets of predicate and update terms appearing in ϕ, respectively.
Then

t, Seq(ζ̂) ⊧LTL ϕ⇔ t,∅, ζ̂ ⊧ ϕ

Proof. Proof by structural induction over ϕ.

• Case ϕ = τ̂P

t, Seq(ζ̂) ⊧LTL τ̂P ⇔ τ̂P ∈ Seq(ζ̂)t⇔ t,∅, ζ̂ ⊧ τ̂P

• Case ϕ = Jcπ ↢ τ̂F K

t, Seq(ζ̂) ⊧LTL Jcπ ↢ τ̂F K⇔ τ̂P ∈ Seq(ζ̂)t⇔ t,∅, ζ̂ ⊧ Jcπ ↢ τ̂F K

• Case ϕ = ¬ψ

t, Seq(ζ̂) ⊧LTL ¬ψ⇔ ¬(t, Seq(ζ̂) ⊧LTL ψ)⇔ ¬(t,∅, ζ̂ ⊧ ψ)⇔ t,∅, ζ̂ ⊧ ¬ψ

• Case ϕ = ψ ∧ ψ′

t, Seq(ζ̂) ⊧LTL ψ ∧ ψ′

⇔ t, Seq(ζ̂) ⊧LTL ψ ∧ t, Seq(ζ̂) ⊧LTL ψ′

⇔ t,∅, ζ̂ ⊧ ψ ∧ t,∅, ζ̂ ⊧ ψ
′

⇔ t,∅, ζ̂ ⊧ ψ ∧ ψ
′
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• Case ϕ = ψ

t, Seq(ζ̂) ⊧LTL ψ⇔ t + 1, Seq(ζ̂) ⊧LTL ψ⇔ t + 1,∅, ζ̂ ⊧ ψ⇔ t,∅, ζ̂ ⊧ ψ

• Case ϕ = ψ U ψ′

t, Seq(ζ̂) ⊧LTL ψ U ψ′

⇔ ∃t
′
≥ t. t

′
, Seq(ζ̂) ⊧LTL ψ′ ∧∀t ≤ t′′ < t′. t′′, Seq(ζ̂) ⊧LTL ψ

⇔ ∃t
′
≥ t. t

′
, Z, ζ̂ ⊧ ψ

′
∧∀t ≤ t

′′
< t

′
. t
′′
, Z, ζ̂ ⊧ ψ

⇔ t,∅, ζ̂ ⊧ ψ U ψ′

□





Chapter 5

Finite-State Model Checking

In this chapter, we study TSL and HyperTSL model checking algorithms for a finite-
state system, that is, a system where each input and cell has only finitely many
possible values. As the system, we use a Kripke structure specifying the values of each
input and cell at each state. We call such a Kripke structure a TSL Kripke structure
and define it in section 5.1. In section 5.2 we show that when using a TSL-Kripke
structure as the model, (Hyper)TSL model checking is reducible to (Hyper)LTL model
checking. For this reduction, we ‘hardcode’ the predicate and update term evaluations
for all possible values that appear in the Kripke structure in the (Hyper)LTL formula.
This gives a (Hyper)TSL to (Hyper)LTL translation.

The problem with using this reduction for (Hyper)TSL model checking is that by
translating to (Hyper)LTL, the size of the formula is increased a lot, slowing down
the model checking algorithm. Therefore, we propose a second reduction from TSL to
LTL model checking in section 5.3 that is based on modifying the system instead of the
formula. In section 5.4 we directly modify the HyperLTL model checking algorithm
by Finkbeiner et. al. [27] for HyperTSL with at most one quantifier alternation.
Next, we show that applying our algorithms for TSL and HyperTSL model checking
is more efficient than translating the formula and then applying the (Hyper)LTL
model checking algorithm.

5.1 TSL Kripke Structures

When doing model checking for TSL, we first need to define how our model defines
the current input and cell values as they are at one state. In this chapter, we use
a Kripke structure where for each input i ∈ I and possible value v ∈ V, there is an
atomic proposition ini=v that is true when i has value v. Analogously, for each cell
c ∈ C and possible value v ∈ V, there is an atomic proposition cellc=v that is true
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when cell c is currently v.

Definition 5.1 (TSL-Kripke Structure). A Kripke Structure K = (S, s0, δ, AP,L) is
called a TSL-Kripke Structure if

1. AP = ⋃i∈I,v∈V ini=v ∪ ⋃c∈C,v∈V cellc=v

2. ∀s ∈ S, i ∈ I. ∃!v ∈ V. ini=v ∈ L(s)

3. ∀s ∈ S, c ∈ C. ∃!v ∈ V. cellc=v ∈ L(s)

The second and third conditions ensure that every cell and input have exactly one
current value at any state. A state s of the TSL-Kripke structure thus defines an
assignment as ∈ A:

as(i) ∶= v if and only if ini=v ∈ L(s)
as(c) ∶= v if and only if cellc=v ∈ L(s)

In the following, we additionally require that as0 = ζ−1, i.e. the initial state of the
TSL-Kripke structure matches the initial assignment.

Then, a path σ = s0, s1, . . . of a TSL-Kripke structure defines a computation ζσ =
as1 , as2 , . . . . We say that a TSL-Kripke structure K satisfies TSL-formula ϕ if for all
paths σ of K, ζσ ⊧ ϕ. Analogously, we say that K satisfies a HyperTSL-formula ϕ if
{ζσ ∣ σ ∈ Paths(K)} ⊧ ϕ. If a TSL-Kripke structure satisfies a TSL or HyperTSL
formula ϕ, we write K ⊧ ϕ

In the following, we give a translation algorithm that translates a (Hyper)TSL formula
to an equivalent (Hyper)LTL formula given a concrete TSL-Kripke structure. This
already gives a model checking algorithm, as we can then use (Hyper)LTL model
checking to solve the (Hyper)TSL model checking problem.

5.2 Translation to (Hyper)LTL

In this section, we present a translation algorithm that, given a TSL-Formula ϕ,
outputs an LTL-Formula ϕ

′
, such that K satisfies ϕ if and only if K satisfies ϕ

′
. The

idea is that as there are only finitely many value combinations appearing at states
of the Kripke structure, we can ”hardcode” the function evaluation for these value
combinations in the LTL formula.

First, for each state s, we define a formula that is true when we are in state s, i.e.
the truth values of the atomic propositions are as in s:

curs ∶= ⋀
a∈L(s)

a
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cellc=0

cellc=1cellc=2

Figure 5.1: A TSL Kripke structure

We now define the translation function tK that translates TSL to LTL given a concrete
Kripke structure K:

tK(¬ϕ) ∶= ¬tK(ϕ)
tK( ϕ) ∶= tK(ϕ)

tK(ϕ ∧ ψ) ∶= tK(ϕ) ∧ tK(ψ)
tK(ϕU ψ) ∶= tK(ϕ) U tK(ψ)

tK(τP ) ∶= ⋁
s∈S with η(τP ,as)=true

curs

tK(Jc↢ τF K) ∶= ⋀
s∈S

(curs⇒◯ cellc=vs) where vs ∶= η(τF , as)

In the case of a predicate term, for the formula to be satisfied, we need to be in a state
where the predicate term evaluates to true. The next-operator is necessary because
the computation ‘starts one step earlier’ than the path of the Kripke structure, as the
initial assignment is also included.

In the case of an update term, depending on what state we are in, the value of the
cell has to be changed at the next state. For all combinations of atomic propositions
that appear at one of the states, we define how the cell value has to change in that
case.

Example 5.2. Let K be the TSL Kripke structure shown in Figure 5.1. Then:

tK( ( Jc↢ (c + 1) mod 3K ∨ c = 1) ) = (((cellc=0 ⇒ cellc=1)∧
(cellc=1 ⇒ cellc=2)∧
(cellc=2 ⇒ cellc=0)) ∨ cellc=1)

Theorem 5.3. For a TSL-formula ϕ and TSL-Kripke structure K, K satisfies ϕ if
and only if K satisfies tK(ϕ)

Proof. We show that for all σ ∈ Paths(K), t ∈ N, t, L(σ) ⊧ ϕ if and only if t, ζσ ⊧ ϕ.
Proof by structural induction over ϕ.
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Case ϕ = τP

t, L(σ) ⊧LTL tK(τP )
⇔ t, L(σ) ⊧LTL ⋁

s∈S with η(τP ,as)=true
curs

⇔ t + 1, L(σ) ⊧LTL ⋁
s∈S with η(τP ,as)=true

curs

⇔ η(τP , aσt+1) = true as curs⇔ (as = aσt+1)
⇔ ζσ ⊧ τP

Case ϕ = Jc↢ τF K

t, L(σ) ⊧LTL tK(Jc↢ τF K)
⇔ t, L(σ) ⊧LTL ⋀

s∈S

(curs⇒ cellc=vs) where vs ∶= η(τF , as)

⇔ t, L(σ) ⊧LTL cellc=vσt where vσt ∶= η(τF , aσt)
⇔ t + 1, L(σ) ⊧LTL cellc=vσt
⇔ η(τF , aσt) = aσt+1(c)
⇔ t, ζσ ⊧ Jc↢ τF K

Case ϕ = ¬ψ

t, L(σ) ⊧LTL tK(¬ψ)
⇔ t, L(σ) ⊧LTL ¬tK(ψ)
⇔ ¬(t, L(σ) ⊧LTL tK(ψ))
⇔ ¬(t, ζσ ⊧ ψ)
⇔ t, ζσ ⊧ ¬ψ

Case ϕ = ψ

t, L(σ) ⊧LTL tK( ψ)
⇔ t, L(σ) ⊧LTL tK(ψ)
⇔ t + 1, L(σ) ⊧LTL tK(ψ)
⇔ t + 1, ζσ ⊧ ψ

⇔ t, ζσ ⊧ ψ
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Case ϕ = ψ ∧ ψ′

t, L(σ) ⊧ tK(ψ ∧ ψ′)
⇔ t, L(σ) ⊧ tK(ψ) ∧ tK(ψ′)
⇔ t, L(σ) ⊧ tK(ψ) ∧ t, L(σ) ⊧ tK(ψ′)
⇔ t, ζσ ⊧ ψ ∧ t, ζσ ⊧ ψ

′

⇔ t, ζσ ⊧ ψ ∧ ψ
′

Case ϕ = ψ U ψ′

t, L(σ) ⊧LTL tK(ψ U ψ′)
⇔ t, L(σ) ⊧LTL tK(ψ)U tK(ψ′)
⇔ ∃t

′
≥ t. t

′
, L(σ) ⊧LTL tK(ψ) ∧∀t ≤ t′′ < t′. t′′, L(σ) ⊧LTL tK(ψ′)

⇔ ∃t
′
≥ t. t

′
, ζσ ⊧ ψ ∧∀t ≤ t

′′
< t

′
. t
′′
, ζσ ⊧ ψ

′

⇔ ζσ ⊧ ψ U ψ′

□

We can now check whether K satisfies ϕ by checking whether K satisfies tK(ϕ). This
can be done by any known model checking algorithm for LTL.

Reducing the size of the formula. To avoid an unnecessary blow-up when trans-
lating function terms to LTL, one may only include the propositions in the translated
LTL formula that are actually relevant for the result of the computation. This can be
done for example by the following function θ that given a function term and a state
s constructs an LTL-formula that is true if and only if the values of the relevant cells
and inputs are as in s.

θ(i, s) ∶= ini=v iff ini=v ∈ L(s)
θ(c, s) ∶= cellc=v iff cellc=v ∈ L(s)

θ(f (τ0, τ1, ...τk−1), s) ∶= θ(τ0, s) ∧ θ(τ1, s) ∧ ... ∧ θ(τk−1, s)

For the translation of a function term or predicate term τ we can then use θ(τ, s)
instead of curs. Moreover, one may eliminate unnecessary duplicate occurrences of
propositions and subformulas that will be created for example when for a function
term τ there are multiple states where θ(τ, s) is equal. This can dramatically reduce
the size of the formula when there are functions whose arguments only have a few
possible values.

For every update and predicate term in the TSL-formula ϕ, at most ∣S∣ new subfor-
mulas are created. As the size of θ(ψ, s) is bound by the number of input and cell
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terms appearing in the update/predicate term, the sizes of those subformulas are not
greater than the size of the original update/predicate term, so the total size of the
translated formula is at most ∣ϕ∣ ⋅ ∣S∣ (the exact number depends of course on the
exact definition of ”size”)

HyperTSL. The previous construction can be easily extended to obtain a translation
from HyperTSL into HyperLTL, relative to a concrete TSL-Kripke structure K.

Now, the result of a function or predicate term might depend on multiple states
instead of only one. Every mapping of the trace variables to states m ∶ Π→ S defines
a hyper-assignment âm:

âm(iπ) ∶= v if and only if ini=v ∈ L(m(π))
âm(cπ) ∶= v if and only if cellc=v ∈ L(m(π))

For every such mapping m, we can construct a formula that is true if it matches the
current hyper-assignment:

curm = ⋀
π∈Π

⋀
a∈L(m(π))

aπ

Using this, we can redefine the translation function for HyperTSL. Let Π be the set
of trace variables used in ϕ. Then

tK(∃π. ϕ) ∶= ∃π. tK(ϕ)
tK(∀π. ϕ) ∶= ∀π. tK(ϕ)
tK(¬ϕ) ∶= ¬tK(ϕ)
tK( ϕ) ∶= tK(ϕ)

tK(ϕ ∧ ψ) ∶= tK(ϕ) ∧ tK(ψ)
tK(ϕU ψ) ∶= tK(ϕ) U tK(ψ)

tK(τ̂P ) ∶= ⋁
m∈(Π→S) with η(τ̂P ,âm)=true

curm

tK(Jcπ ↢ τ̂F K) ∶= ⋀
m∈(Π→S)

(curm⇒◯ (cellc=vs)π) where vs ∶= η(τ̂F , âm)

Theorem 5.4. For a HyperTSL formula ϕ and a TSL Kripke structure K, K satisfies
ϕ if and only if K satisfies tK(ϕ)

Proof. Let Z = L(K). Let Z
′
= {ζσ ∣ σ ∈ Paths(K)}. We show that for all
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t ∈ N, σ1 . . . σn ∈ Paths(K)

Z, t,∅[π1 → L(σ1)] . . . [πn → L(σn)] ⊧LTL tK(ϕ)
⇔ Z

′
, t,∅[π1, aL(σ1)] . . . [πn, aL(σn)] ⊧ ϕ

Proof by structural induction.

• Case ϕ = ∀π. ψ

Z, t,∅[π1 → L(σ1)] . . .∅[πn → L(σn)] ⊧LTL tK(∀π. ψ)
⇔ Z, t,∅[π1 → L(σ1)] . . .∅[πn → L(σn)] ⊧LTL ∀π. tK(ψ)
⇔ ∀σ ∈ Paths(K).

Z, t,∅[π1 → L(σ1)] . . . [πn → L(σn)][π → L(σ)] ⊧LTL tK(ψ)
⇔ ∀σ ∈ Paths(K). Z ′, t,∅[π1, aσ1] . . . [πn, aσn][π, aσ] ⊧ ψ
⇔ Z

′
, t,∅[π1, aσ1] . . . [πn, aσn] ⊧ ∀π.ψ

• The existential case is analogous.

• The remaining cases are analogous to those in the proof of Theorem 5.3

□

As before, the size of the formula can be reduced by using θ instead of curm. The
size of the translated formula is then at most ∣S∣n ⋅ ∣ϕ∣, where n is the number of
quantifiers in ϕ

5.3 Update Term Elimination

The direct translation of TSL to LTL increases the size of the formula a lot. We can
improve the performance of the model checking by observing that the TSL predicates
can be treated as atomic propositions: for every predicate appearing in the TSL
formula, we can create an atomic proposition that is true at the states where the
predicate evaluates to true. For the update terms, however, this is not directly possible
because whether an update term is satisfied not only depends on the current but also
the previous state. Therefore, in this section, we present the function elimUpd that
modifies the TSL-Kripke structure in such a way that all update terms can then be
translated to predicate terms.

The idea is to construct the new TSL Kripke structure elimUpd(K) in such a way
that each state of elimUpd(K) corresponds to a pair of consecutive states of K – a
current and a previous state. Thereby, when going to a new state, we remember the
state we came from. Whether an update term is true in K depends on two states of
K, but only on a single state of elimUpd(K). An example is shown in Figure 5.2.
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cellc=0

cellc=1cellc=2

cellc=0

cellc=1

cell←−c =0

cellc=1

cell←−c =1

cellc=0

cell←−c =2

cellc=2

cell←−c =1

Figure 5.2: Let K be the TSL Kripke structure on the left. Then the TSL-Kripke
structure on the right is elimUpd(K): Hereby denotes cell←−c =v that the previous value
of the cell c was v.

Definition 5.5. Let K = (S, s0, δ, AP,L) be a TSL-Kripke structure. We define
elimUpd(K) = (S ′, s0, δ

′
, AP

′
, L

′) where

S
′
∶= {s0} ∪ {(s1, s2) ∣ s1, s2 ∈ S ∧ (s1, s2) ∈ δ}

δ
′
∶= {((s1, s2), (s2, s3)) ∣ (s2, s3) ∈ δ} ∪ {(s0, (s0, s1)) ∣ (s0, s1) ∈ δ}

AP
′
∶= AP ∪̇ {cell←−c =v ∣ c ∈ C, v ∈ V} ∪̇ {in←−

i =v
∣ i ∈ I, v ∈ V}

L
′(s0) ∶= L(s0)

L((s1, s2)) ∶= L(s2) ∪ {cell←−c =v ∣ cellc=v ∈ L(s1)} ∪ {in←−
i =v

∣ ini=v ∈ L(s1)}

Note that elimUpd(K) is again a TSL-Kripke structure, but over the new set of cells

C ∪̇ {←−c ∣ c ∈ C} and the new set of inputs I ∪̇ {←−i ∣ i ∈ I}. K and elimUpd(K) are
‘equivalent’ as the following theorem says.

Theorem 5.6. Let K be a TSL-Kripke structure over the cells C and inputs I. A
TSL-formula over C and I is satisfied by elimUpd(K) if and only if it is satisfied by
K.

Proof. Let AP be the set of atomic propositions of K. We show that for all σ ∈

AP
ω
, σ ∈ L(K) if and only if σ∣AP ∈ L(elimUpd(K)), where σ∣AP means restricting

σ to AP . Note that

σ0, σ1, σ2 ⋅ ⋅ ⋅ ∈ Paths(K)⇔ σ0(σ0, σ1)(σ1, σ2) ⋅ ⋅ ⋅ ∈ Paths(elimUpd(K))
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moreover, L(σi, σi+1)∣AP = L(σi+1) □

The states of elimUpd(K) however additionally contain information about the pre-
vious state - this allows us to eliminate the update terms. To do that, we also define
elimUpd on TSL formulas.

Definition 5.7.

elimUpd(¬ϕ) ∶= ¬elimUpd(ϕ)
elimUpd( ϕ) ∶= elimUpd(ϕ)
elimUpd(ϕ ∧ ψ) ∶= elimUpd(ϕ) ∧ elimUpd(ψ)
elimUpd(ϕU ψ) ∶= elimUpd(ϕ)U elimUpd(ψ)
elimUpd(τP ) ∶= τP

elimUpd(Jc↢ τF K) ∶= c =←−τF

where ←−τF is τF with each cell c ∈ C renamed to ←−c and each input i ∈ I renamed to
←−
i . ←−τF thus evaluates to the value of τF in the previous step.

Theorem 5.8. Let K be a TSL Kripke structure and ϕ a TSL-formula. Then K
satisfies ϕ if and only if elimUpd(K) satisfies elimUpd(ϕ).

Proof. For a path σ ∈ S
ω
, define elimUpd(σ) as σ0(σ0, σ1)(σ1, σ2) . . . . Every path

σ of the Kripke structure K has a corresponding path elimUpd(σ) in elimUpd(K)
and vice versa. We show by structural induction over ϕ that for every path σ and
time point t

t, ζσ ⊧ ϕ⇔ t, ζelimUpd(σ) ⊧ elimUpd(ϕ)

• Case ϕ = Jc↢ τF K

t, ζelimUpd(σ) ⊧ elimUpd(Jc↢ τF K)
⇔ t, ζelimUpd(σ) ⊧ c =

←−τF

⇔ η(c =←−τF , (ζelimUpd(σ))t) = true
⇔ η(c =←−τF , a(σt−1,σt)) = true
⇔ η(τF,aσt−1) = aσt(c)
⇔ t, ζσ ⊧ Jc↢ τF K

• All other cases are straightforward.

□
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cellc=0

cellc=1

cell←−c =0

cellc=1

cell←−c =1

cellc=0

cell←−c =2

cellc=2

cell←−c =1

start

c = 1
cmod

c = 1

cmod

cmod

Figure 5.3: Let elimUpd(K) be the TSL-Kripke structure on the left and consider
the TSL-Formula ϕ = ( Jc ↢ (c + 1) mod 3K ∨ c = 1). elimUpd(ϕ) = ( (c =
(←−c +1) mod 3)∨ c = 1). Relabeling K according to definition 5.9 leads to the Kripke
structure on the right. In the drawing, we abbreviate cmod = (c = (←−c + 1) mod 3).

5.3.1 TSL Model Checking by Update Term Elimination

Theorem 5.8 allows us to simplify the model checking problem for TSL. Now it suffices
to give a model checking algorithm for TSL formulas without update terms to get an
algorithm for the full logic. This is what we will do in this section.

The idea is to treat all predicates as atomic propositions. We evaluate each predicate
at each state of the TSL-Kripke structure and then create a new Kripke structure
that is labeled with a predicate if this predicate is true at the corresponding state of
the TSL-Kripke structure. This process is formalized using the function relabel. An
example is shown in Figure 5.3

Definition 5.9. Let K = (S, s0, δ, AP,L) be a TSL-Kripke structure. Let ρ ⊆ TP .
We define relabel(K) = (S, s0, δ, TP , L

′) where

L
′(s0) = ∅
L
′(s) = {τP ∈ ρ ∣ η(τP , as) = true}

As the example in Figure 5.3 shows, directly using the LTL model checking algorithm
after eliminating the update terms and relabeling the TSL-Kripke structure would
not lead to correct results. The reason for that is an off-by-one problem: the path of
the TSL-Kripke structure starts one step earlier than the corresponding computation.
This issue can be solved for example by adding a next-operator in front of the formula.
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Theorem 5.10. Let K be a TSL-Kripke structure over the cells C and the inputs
I. Let ϕ be a TSL formula over C and I. Let ρ ⊆ TP be the set of predicate terms
appearing in elimUpd(ϕ). Then

K ⊧ ϕ⇔ relabel(elimUpd(K)) ⊧LTL (elimUpd(ϕ))

Proof. Let σ
′
∈ Paths(elimUpd(K)). We define P (σ′)t = {τP ∈ ρ ∣ η(τP , (ζσ′)t−1) =

true} and P (σ′) = P (σ′)0 P (σ′)1 . . . .

Relabeling elimUpd(K) changes a path σ
′

to P (σ′). This means that every path of
relabel(elimUpd(K)) is of the form P (σ′) for some σ

′
∈ elimUpd(K). Also note

that for all t, P (σ′)t+1 = Seq(ζσ′ , ρ,∅)t (Seq was defined in Definition 4.16). Now,
let σ ∈ Paths(K).

t, ζσ ⊧ ϕ ⇔ t, ζelimUpd(σ) ⊧ elimUpd(ϕ) (Theorem 5.8)

⇔ t, Seq(ζelimUpd(σ), ρ,∅) ⊧LTL elimUpd(ϕ) (Lemma 4.17)

⇔ t, P (elimUpd(σ)) ⊧LTL elimUpd(ϕ)

□

Theorem 5.10 gives a much more efficient reduction to LTL model checking than the
direct translation. The size of the formula is not increased, the size of the Kripke
structure is increased quadratically. This leads to much better performance, as the
complexity of the common LTL model checking algorithms is exponential in the size
of the formula, but only linear in the size of the system - therefore, a huge blow-up
of the size of the formula is more expensive than a quadratic blow-up of the size of
the system. The complexity of both approaches is analyzed formally at the end of
section 5.4.1.

5.4 HyperTSL Model Checking

Update term elimination works also for HyperTSL. However, the reduction from
TSL to LTL model checking from the previous section can still not be extended to
HyperTSL. The reason for that is that in the TSL Kripke structure, predicates relating
multiple traces, like cπ = c

′
π, can not be treated as atomic propositions anymore, as

atomic propositions always belong to one trace only. In this section, we instead modify
the HyperLTL model checking algorithm by Finkbeiner et. al. [27] for HyperTSL,
supporting at most one quantifier alternation.

Translating the checked formula to HyperLTL and then using the HyperLTL model
checking algorithm by Finkbeiner et. al. would roughly mean instantiating all pos-
sible values in the formula, translating the quantifier-free part of the formula to an
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automaton and then combining this automaton with the system. Our idea for im-
proving this algorithm is to first translate the quantifier-free part of the TSL formula
into an automaton and then only instantiate the concrete values when combining this
automaton with the system. This avoids an unnecessary blow-up of the formula au-
tomaton. However, having predicates instead of concrete values as transition labels
makes an important step of the HyperLTL model checking algorithm, the projection,
impossible in our setting. This is why our HyperTSL model checking algorithm is
limited to the fragment of HyperTSL with at most one quantifier alternation.

As before, we first eliminate update terms using the function elimUpd as defined in
Definitions 5.5, 5.7. Moreover, when given a HyperTSL formula ϕ = Q1π1. . . . Qnπn. ψ,
Qi ∈ {∀,∃}, we translate the underlying TSL formula ψ to an automaton Aψ, treat-
ing all predicates as atomic propositions. The transitions of this automaton are first
labeled with subsets of predicates, but we can reduce them to one predicate by con-
structing the conjunction.

Definition 5.11. Let ψ be a HyperTSL formula without quantifiers or update terms.

Let A = (2T̂P , Q, δ, q0, Qacc) be the automaton obtained by treating all predicates as
atomic propositions and then using the LTL to Büchi automaton translation algorithm
on ψ. We define the automaton for ψ as Aψ = (T̂P , Q, δ′, q0, Qacc) where

δ
′
= {(q, τ̂P , q′) ∣ (q, S, q′) ∈ δ ∧ τ̂P = ⋀

τ̂P
′
∈S

τ̂P
′
∧ ⋀
τ̂P

′
∉S

¬τ̂P
′}

Observe that when choosing concrete paths σ1, . . . σn for the quantified trace variables,
we can determine using Aψ whether ψ is true for them. That is because ζσ1 . . . ζσn
define a sequence of predicate sets, containing all predicates that are true per time
point (see Definition 4.16). If this sequence is accepted by A, the formula is true
for this concrete choice of paths. Equivalently, we can ask whether there is a pred-
icate sequence accepted by Aψ, such that when plugging in the values according to
ζσ1 . . . ζσn into each predicate at each time point, all predicates are true. We name
a predicate sequence where all predicates evaluate to true a true predicate sequence.
The idea is now to gradually plug in the cell and input values for every quantified
trace variable into the labels of the formula automaton.

The operation of plugging in cell and input values for one trace variable is formalized
in the following: roughly, τ̂F [a/π] means replacing the cells labeled with π in τF
with their values according to a. We can lift this to traces by applying the definition
pointwise.

Definition 5.12. Let τ̂F ∈ T̂F , a ∈ A, π ∈ Π. We define ‘a plugged in for π into
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cellc=0

cellc=1cellc=2

s0

s1

T

T

cπ′ = cπ + 1

Figure 5.4: Left: a TSL Kripke structure, right: the automaton for the TSL formula
(cπ′ = cπ + 1)

τ̂F ’, written τ̂F [a/π] as

cπ[a/π] ∶= a(c) if τ̂F = cπ

cπ′[a/π] ∶= cπ′ if τ̂F = cπ′ ∧ π ≠ π
′

iπ[a/π] ∶= a(i) if τ̂F = iπ

iπ′[a/π] ∶= iπ′ if τ̂F = iπ′ ∧ π ≠ π
′

f( ˆτF1, . . . , ˆτFk)[a/π] ∶= f( ˆτF1[a/π], . . . , ˆτFk[a/π]) if τ̂F = f( ˆτF1, . . . , ˆτFk)

Let ζ ∈ Aω
, P ∈ T̂F

ω
. We define ‘ζ plugged in for π into P ’ as

P [ζ/π] ∶= P1[ζ1/π] P2[ζ2/π] . . .

5.4.1 The Alternation-Free Fragment

Consider first the case of an existential formula ∃π. ∃π′. ψ. For HyperLTL, ψ is
first translated to an automaton and then intersected with the Kripke structure in
such a way that the resulting automaton now accepts all traces over the atomic
propositions corresponding to π, such that ∃π′. ψ is true for this choice of π. We
do something similar for HyperTSL: we first translate ψ to an automaton and then
construct an automaton that when plugging in a concrete trace for π into its traces,
the automaton accepts a true predicate sequence if and only if ∃π′. ψ is true for this
choice of π. For achieving this, the idea is to combine the Kripke structure and the
formula automaton in such a way that an accepted predicate sequence of the resulting
automaton corresponds to a concrete choice of a trace for π

′
, and still captures the

conditions for the choice of π that are necessary to make ψ true.
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Figure 5.5: The automaton for the TSL formula ∃π′. (cπ′ = cπ + 1)
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Example 5.13. Consider the Kripke structure shown in Figure 5.4 on the left and
the HyperTSL-formula ∃π. ∃π′. (cπ′ = cπ + 1). The automaton for (cπ′ = cπ + 1)
is shown in Figure 5.4 on the right.

The automaton for ∃π′. (cπ′ = cπ + 1) is shown in Figure 5.5. This automaton
accepts for example the trace P = (1 = cπ + 1) Tω. This corresponds to choosing for
π
′
the computation (a(c) = 1)ω which itself corresponds to the trace cellc=0 cellc=1

ω
of

the Kripke structure. One choice for π that makes P [ζ/π] a true predicate sequence
would be ζ = (a(c) = 0)ω

Definition 5.14. Let (T̂P , Q, δψ, q0, Qacc) be a Büchi automaton (for a formula ψ).
Let (S, s0, δK , AP, L) be a TSL-Kripke structure. We define the automaton for
∃π. ψ as the Büchi automaton (T̂P , S ×Q, δ, (s0, q0), Qacc × S) where

δ = {((s, q), τ̂P [as′/π], (s′, q′)) ∣ (q, τ̂P , q′) ∈ δψ ∧ (s, s′) ∈ δK}

We get the automaton for a formula with multiple existential quantifiers by repeated
application of Definition 5.14. In the end, the automaton for the complete HyperTSL-
formula accepts any true predicate sequence if and only if the formula is satisfied.

Correctness Proof

To be able to prove the correctness of our algorithm inductively, we need the following
definition that is fulfilled by the constructed automaton Aϕ for any existential formula
ϕ. Intuitively, the definition states that when choosing and plugging in computations
for the remaining free variables, there should be an accepted true predicate sequence
if and only if the formula is true for this choice of the remaining computations.

Definition 5.15. Let K be a TSL-Kripke structure. Let Z = {ζσ ∣ σ ∈ Paths(K)}.
We say that an automaton correctly models a HyperTSL formula ϕ with free trace
variables π1 . . . πn if for all ζ1, . . . ζn ∈ Aω

there is an accepted predicate sequence
P ∈ T̂P

ω
with P [ζ1/π1] . . . [ζn/πn] a true predicate sequence if and only if

Z,∅[π1, ζ1] . . . [πn, ζn], 0 ⊧ ϕ

Lemma 5.16. Let ψ be a HyperTSL-formula without quantifiers or update terms.
Let Aψ be the automaton for ψ. Aψ correctly models ψ.

Proof. Let ζ1 . . . ζn ∈ Aω
. We define ζ̂ = ∅[π1, ζ1] . . . [πn, ζn] and

Pt = ⋀
τ̂P∈Seq(ζ̂)t

τ̂P ∧ ⋀
τ̂P∉Seq(ζ̂)t

¬τ̂P

P = P0 P1 . . .
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We require that this induces for the same predicate sets the same ordering the as
Definition 5.11. It is clear that P [ζ1/π1] . . . [ζn/πn] is always a true predicate se-
quence as τ̂P [ζ1/π1] . . . [ζn/πn] true is equivalent to ζ̂ ⊧ τ̂P . Moreover, this holds
for no other predicate sequence accepted by Aψ. By the correctness of the LTL to
Büchi automaton algorithm, we also know that P is accepted by Aψ if and only if

Seq(ζ̂) ⊧LTL ψ Thus it suffices to show that,

Seq(ζ̂) ⊧LTL ψ⇔ 0, Z, ζ̂ ⊧ ψ

This is true by Lemma 4.17. □

Lemma 5.17. Let K be a TSL-Kripke structure. Let ψ be a HyperTSL-formula and
π1, . . . πn be the free trace variables appearing in ψ. Let Aψ be an automaton that
correctly models ψ. Then, the automaton Aϕ for ϕ = ∃π1. ψ correctly models ∃π1. ψ

Proof. Let ζ2, . . . ζn ∈ Aω
.

⇒ Assume that Aϕ accepts the predicate sequence Pϕ ∈ T̂P
ω
, and assume that

Pϕ[ζ2/π2] . . . [ζn/πn] is a true predicate sequence. Then there is an accepting run
(s0, q0)(s1, q1)(s2, q2) . . . . By the construction of Aϕ, p = s0s1 . . . is a path of the
Kripke structure and q0q1 . . . is an accepting run of the automaton for ψ. Let Pψ be
the predicate sequence induced by the accepting run of the automaton for ψ. We show
that Pψ[ζp/π1] . . . [ζn/πn] is a true predicate sequence: for all i, Pϕ,i = Pψ,i[ζi/π1]
by Definition 5.14. Thus, Pψ[ζp/π1] . . . [ζn/πn] = Pϕ[ζ2/π2] . . . [ζn/πn] which is a
true predicate sequence by assumption. By the correctness of Aψ, this means that
Z,∅[π1, ζp] . . . [πn, ζn], 0 ⊧ ϕ. Moreover, ζp ∈ Z, so Z,∅[π2, ζ2] . . . [πn, ζn], 0 ⊧
∃π1. ψ

⇐ Let Z,∅[π2, ζ2] . . . [πn, ζn], 0 ⊧ ∃π1. ψ. Then, there exists a ζp for a path p =
p0p1 . . . of the Kripke structure such that Z,∅[π1, ζp] . . . [πn, ζn], 0 ⊧ ψ. By the

correctness of Aψ, this means that there is an accepted predicate sequence Pψ ∈ T̂P
ω

with P [π1/ζp] . . . [πn, ζn] true. Let s0s1 . . . be the accepting run. We show that
(s0, p0)(s1, p1) . . . is an accepting run of Aϕ. For all i, note that

((si, pi), (Pψ)i[(ζp)i/π1], (si+1, pi+1)) ∈ δ

because (pi, (Pψ)i, pi+1) ∈ δψ and (si, si+1) ∈ δK . Let Pϕ be the induced predicate
sequence. As before, Pϕ[ζ2/π2] . . . [ζn/πn] = Pψ[ζp/π1] . . . [ζn/πn] which is true by
assumption. □

Theorem 5.18. Let ϕ be a HyperTSL formula with only existential quantifiers and
without update terms. Let K be a TSL-Kripke structure. The automaton for ϕ accepts
any true predicate sequence if and only if K ⊧ ϕ
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Proof. By induction, Lemma 5.16 and Lemma 5.17 we know that the automaton for
ϕ correctly models ϕ. As there are no free trace variables, this means that there is
an accepted true predicate sequence if and only if Z,∅, 0 ⊧ ϕ which is the definition
of K ⊧ ϕ. □

Theorem 5.18 gives an algorithm for model checking the existential fragment of Hyper-
TSL: we repeatedly apply Definition 5.14 to construct an automaton for the formula,
then delete all transitions where the predicate label evaluates to false, and then test
whether the automaton is nonempty. For the universal fragment, test the negated
formula instead, which is existential.

Complexity Comparision

Let ϕ = ∃π1. . . .∃πn. ψ be a HyperTSL formula and K = (S, s0, δ, AP,L) be a TSL
Kripke structure.

Translation. As analyzed before, the size of the HyperLTL formula for a HyperTSL
formula is at most ∣S∣n ⋅ ∣ψ∣. The HyperLTL model checking algorithm presented in
[27] first translates the quantifier-free part of the formula to an alternating automaton.
In this process, a new state is added for every operator and atomic proposition, so
the size of the alternating automaton is then in O(∣S∣n ⋅ ∣ψ∣). Next, the alternating
automaton is translated into an equivalent Büchi automaton, raising the automaton

size to 2
O(∣S∣n⋅∣ψ∣)

. Then, this automaton is intersected with the system n times and

checked for emptiness, leading to a total complexity of O(∣S∣n ⋅ 2
O(∣S∣n⋅∣ψ∣))

Direct TSL Model Checking. Here, first, the update terms are eliminated. This
does not increase the asymptotic size of ϕ, but introduces a new system state for every
transition of K, thus there ∣δ∣ states in elimUpd(K). The number of transitions
is at most ∣δ∣ ⋅ ∣S∣. Then, elimUpd(ψ) is also translated into an automaton of

size O(2O(∣ψ∣)). Next, Definition 5.14 is applied. This leads to an automaton with

∣δ∣n ⋅O(2O(∣ψ∣)) states and ∣δ∣n ⋅ ∣S∣n ⋅O(2O(∣ψ∣)) transitions as the number of states
is for every quantifier multiplied by the number of states of elimUpd(K), and the
number of transitions is for every quantifier multiplied by the number of transitions
of elimUpd(K). This leads to a total running time of

O(∣δ∣n ⋅ ∣S∣n ⋅ 2
O(∣ψ∣))

this is better than the translation if the system is significantly larger than the formula
(as ∣δ∣ ∈ O(∣S∣2), which is usually the case in model checking.

5.4.2 The ∀∗∃∗ and ∃∗∀∗ Fragments

Let us now consider the case of a HyperTSL-formula ∀π. ∃π1. . . .∃πn.ψ. We extend
the previously presented algorithm to this fragment. Recall that when plugging in
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a concrete trace for π into the traces of the automaton for the existential part, it
accepts a true predicate sequence if and only if the existential part of the formula
is fulfilled for this choice of π. Thus, we need to check whether this is the case for
all the traces of the Kripke structure. We first intuitively describe the algorithm for
checking this: First, we again construct the product automaton similar to Definition
5.14. As there are now no free trace variables anymore, we know whether a transition
label evaluates to true. If this is the case, we relabel this transition with the labels of
the trace that was plugged in for π. If this is not the case, the transition is deleted.
The resulting automaton now accepts all traces of the Kripke structure (up to an
off-by-one problem) that fulfill the existential part of the formula - it remains to test
whether these are all the traces of the Kripke structure.

The algorithm can be extended to multiple universal quantifiers by applying the
technique of self-composition. Self-Composition is a technique commonly used to
reduce the model checking problem for alternation-free hyperproperties to a simpler
model checking problem for another system [3, 4, 26]. The idea is to compose multiple
instances of the system such that each trace of the composed system corresponds to an
interleaving of multiple traces of the original system. Self-composition for TSL-Kripke
structures is formally defined as follows:

Definition 5.19. Let Π = {π1, . . . πn} be a set of trace variables and let ∣Π∣ = n
Let K = (S, s0, δ, AP,L) be a TSL Kripke structure. We define the n−fold self-
composition of K as K

n
= (Sn, s0

n
, δ
n
, AP ×Π, L

n) where

S
n
=S × ⋅ ⋅ ⋅ × S

s0
n
=(s0, . . . , s0)

δ
n
={((s1 . . . sn), (s1

′
. . . sn

′)) ∣ (s1, s1
′) ∈ δ ∧ ⋅ ⋅ ⋅ ∧ (sn, sn′) ∈ δ}

L
n((s1, . . . , sn)) ={cellcπj=v ∣ 1 ≤ j ≤ n ∧ cellc=v ∈ L(sj)} ∪

{iniπj=v ∣ 1 ≤ j ≤ n ∧ ini=v ∈ L(sj)}

Note that the self-composition is again a TSL-Kripke structure over the new set of
inputs I ×Π and the new set of cells C ×Π.

The next definition formalizes the construction of the automaton containing all the
traces satisfying the existential part of the formula (up to an off-by-one problem)

Definition 5.20. Let n ∈ N. Let (T̂P , Q, δψ, q0, Qacc) be a Büchi automaton (for a
formula ψ). Let K be a TSL-Kripke structure and let K

n
= (S, s0, δK , AP, L) be its

n-fold self-composition. We define the automaton for ∀π1 . . .∀πn. ψ as the Büchi
automaton (AP, S ×Q, (s0, q0), δ, Qacc × S) where

δ = {((s, q), L(s′), (s′, q′)) ∣ ∃τ̂P . (q, τ̂P , q′) ∈ δψ ∧ (s, s′) ∈ δK ∧ η(τ̂P , as′) = true}
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Theorem 5.21. Let K be a TSL-Kripke structure. Let Aψ be a Büchi automaton
that correctly models ψ. Let Aϕ be the Büchi automaton for ϕ = ∀π1 . . .∀πn. ψ.
Then K ⊧ ϕ if and only if

{σ1σ2 ⋅ ⋅ ⋅ ∣ σ0σ1σ2 ⋅ ⋅ ⋅ ∈ Paths(Kn)} ⊆ Paths(Aϕ)

Proof. ⇒ Let K ⊧ ϕ. Then {ζσ ∣ σ ∈ Paths(K)} ⊧ ∀π1 . . .∀πn. ψ. Let σ =

σ0σ1 ⋅ ⋅ ⋅ ∈ Paths(Kn). σ corresponds to n paths of K: for all i, σi = (σ1
i , . . . , σ

n
i ) and

for 1 ≤ j ≤ n, σ
j
= σ

j
0, σ

j
1 ⋅ ⋅ ⋅ ∈ Paths(K). By assumption, ∅[π1, ζσ1] . . . [πn, ζσn] ⊧

ψ. By the correctness of Aψ, this means that there is an accepted predicate sequence
P with P [ζσ1/π1] . . . [ζσn/πn] true in Aψ. Let p be the corresponding accepting
run. We show that (σ0, p0) (σ1, p1) . . . is an accepting run of Aϕ. Indeed, for all
i, (pi, Pi, pi+1) ∈ δψ ∧ (σi, σi+1) ∈ δKn ∧ η(Pi, aσi+1) = true - the latter one is
true because P [ζσ1/π1] . . . [ζσn/πn] is a true predicate sequence. There are infinitely
many accepting states visited because p is an accepting run, thus (σ0, p0)(σ1, p1)
is an accepting run - the corresponding accepted word is σ1, σ2 . . . , so σ1σ2 ⋅ ⋅ ⋅ ∈
Paths(Aϕ).

⇐ Let Paths(Aϕ) ⊇ {σ1σ2 ⋅ ⋅ ⋅ ∣ σ0σ1σ2 ⋅ ⋅ ⋅ ∈ Paths(Kn))}. We have to show that

{ζσ ∣ σ ∈ Paths(K)} ⊧ ∀π1 . . .∀πn. ψ. Let σ
1
. . . σ

n
be paths of K. Then, σ =

(σ1
0, . . . , σ

n
0 ) (σ1

1, . . . σ
n
1 ) . . . is a path of K

n
. By assumption, σ1σ2 ⋅ ⋅ ⋅ ∈ Paths(Aϕ).

Let (σ0, p0) (σ1, p1) be the accepting run. We know that for all i, there exists a Pi such
that (pi, Pi, pi+1) ∈ δψ and η(Pi, aσi+1) = true. Then, P [ζσ1/π1] . . . [ζσn/πn] is a true
predicate sequence. By the correctness ofAψ, this means that∅[π1, ζσ1] . . . [πn, ζσn] ⊧
ψ. As σ

1
, . . . , σ

n
were chosen arbitrarily, we are have shown that K ⊧ ∀π1 . . .∀πn. ψ.

□

Theorem 5.21 gives an algorithm for model checking the ∀∃ fragment. Let ϕ be
a ∀∃-HyperTSL formula with n universal quantifiers. As before, we first translate
the existential part ψ of the formula into an automaton Aψ by applying Definition
5.14. Next, we compute the n-fold self-composition of the Kripke structure and apply
Definition 5.20 on the self-composition and Aψ to get an automaton Aϕ. Then, to fix
the off-by-one-problem, we add an initial state to Aϕ, and a transition labeled with

{cellcπj=v ∣ 1 ≤ j ≤ n ∧ ζ−1(c) = v} ∪ {iniπj=v ∣ 1 ≤ j ≤ n ∧ ζ−1(i) = v}

from the new initial to every other state. Name this automaton Aϕ
′
. Next, we check

whether Aϕ
′ \Kn

is empty. This involves one complementation (just as the model
checking algorithm for ∀∃-HyperLTL [27]) and is thus computationally expensive.

This also gives an algorithm for the ∃∀ fragment - we can test the negated formula
and apply the algorithm for the ∀∃ fragment.
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Complexity. Following the same reasoning as in Section 5.4.1 leads to a complexity

of O(∣δ∣n ⋅ ∣S∣n ⋅ 2
O(∣ψ∣)) for constructing the automaton for a HyperTSL formula

ϕ with n quantifiers and one quantifier alternation. Testing whether {σ1σ2 ⋅ ⋅ ⋅ ∣
σ0σ1σ2 ⋅ ⋅ ⋅ ∈ Paths(Kn)} ⊆ Paths(Aϕ) involves one complementation, thus leading
to a total running time of

2
O(∣δ∣n⋅∣S∣n⋅2O(∣ψ∣))

model checking by translation instead leads to a running time of

2
O(∣S∣n⋅2O(∣S∣n⋅∣ψ∣))

Thus, the direct model checking algorithm is again better than the translation if the
system is much larger than the formula.



Chapter 6

Software Model Checking

In this chapter, we develop software model checking algorithms for TSL and Hyper-
TSL. As the system, we use a Büchi automaton labeled with program statements [33].
Our TSL software model checking algorithm is an adaption of the automata-based
LTL software model checking algorithm by Dietsch et al. [25]. They already express
atomic propositions as predicates over memory cells, but we need to extend the al-
gorithm for update terms and predicates over inputs. Then, We further extend this
algorithm to alternation-free HyperTSL by applying the technique of self-composition.
The n-fold self-composition of a program automaton is again a program automaton
where each execution is an interleaving of n executions of the original program.

Next, we propose an algorithm for finding counterexamples for ∀∗∃∗ HyperTSL
formulas or, dually, witnesses for ∃∗∀∗ HyperTSL formulas.

6.1 TSL Software Model Checking

6.1.1 The Algorithm

We present the LTL software model checking algorithm by Dietsch et al. [25], adapted
for Temporal Stream Logic.

We model the program as a Büchi automaton labeled with program statements [33]
with all states accepting. As basic program statements, we allow assertions and mem-
ory cell assignments. Later, we will also label transitions with multiple statements:

Definition 6.1. We define the set of basic program statements Stmt0 by

s0 ∶∶= assert(τP ) ∣ c ∶= τF ∣ c ∶= ∗ where c ∈ C, τP ∈ TP , τF ∈ TF
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l1

l2 l3

l4

l6

l5

l7

n ∶= i1

A(n ≥ 0)

A(n ≥ 0)

A(n < 0)

A(n = 0)

A(n ≠ 0) p ∶= 0

n − −

A(true)
1 n = read stream (1)
2 a s s e r t (n >= 0)
3 while (n >= 0 ) :
4 i f (n == 0 ) :
5 p = 0
6 n−−

Figure 6.1: The program shown on the right can be modeled as the automaton on
the left. Thereby, we abbreviate assert as A. For example, the condition of the
while-loop is modeled using the two outgoing transitions from state l3 – one with the
assertion that the condition is true, the other with the assertion that the condition
is false. A self-loop labeled with A(true) can be added to the state l7 to extend each
trace to infinity.

the set of program statements Stmt is defined by

s ∶∶= s0 ∣ s; s where s0 ∈ Stmt0

The assignment c ∶= ∗ means that any value could be assigned to c - for example, if
c is chosen as a random number.

A program automaton is an automaton P = (Stmt,Q, q0, δ, Qacc) for some set of
program locations Q, an initial location q0 ∈ Q, a transition relation δ ⊆ Q×Stmt×Q
and a set of accepting states Qacc ⊆ Q. For now, Stmt = Stmt0 and Qacc = Q, but
we will later also construct other program automata. An example of a program
automaton is shown in Figure 6.1

Note that using such a model with the basic program statements only, we can model
if statements, while loops, and also non-deterministic choices. However, not every
trace of the program automaton corresponds to a program execution. For example,
the trace n ∶= input1; assert(n > 0); assert(n < 0); assert(true)ω does not – the
second assertion will always fail. We call such a trace infeasible. In contrast, a feasible
trace corresponds to a program execution where all the assertions may succeed. We
now define the feasible traces over the basic statements formally:
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Definition 6.2. A computation ζ matches a trace σ ∈ Stmt
ω
0 at time point t,

written ζ ◃t σ if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

if σt = assert(τP ) ∶ η(τP , ζt−1) = true ∧∀c ∈ C. ζt(c) = ζt−1(c)
if σt = c ∶= τF ∶ η(τF , ζt−1) = ζt(c) ∧∀c′ ∈ C\{c}. ζt(c′) = ζt−1(c′)
if σt = c ∶= ∗ ∶ ∀c ∈ C\{c}. ζt(c) = ζt−1(c)

where ζ−1 is the initial assignment.

A computation ζ matches a trace σ ∈ Stmt
ω
0 , written ζ ◃ σ if

∀t ∈ N. ζ ◃t σ

We can extend the definition to traces over all program statements by ‘flattening’ the
trace, eliminating sequential composition. The following function flatten ∶ Stmtω →
Stmt0

ω
takes a sequence of program statements and transforms it into a sequence of

basic program statements by converting a composed program statement into multiple
basic program statements.

Example 6.3.

flatten( (i ∶= ∗; n ∶= 8) (i ∶= ∗; n ∶= 17; assert(true)) ) =
(i ∶= ∗) (n ∶= 8) (i ∶= ∗) (n = 17) (assert(true))

Definition 6.4.

flatten(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τP if s = τP

c ∶= τF if s = c ∶= τF
c ∶= ∗ if s = c ∶= ∗

flatten(s) flatten(s′) if s = s; s
′

flatten(s1 s2 s3 . . . ) = flatten(s1) flatten(s2) flatten(s3) ...

Note that flattening changes the notion of time steps: a single time step in the original
trace can correspond to multiple time steps in the flattened trace.

Definition 6.5. A trace σ ∈ Stmt
ω

matches a computation ζ, written ζ ◃ σ if
ζ ◃ flatten(σ).
A trace σ ∈ Stmt

ω
is feasible if there is a computation ζ such that ζ ◃ σ.

Definition 6.6. A program automaton P over the basic statements Stmt0 satisfies
a TSL-formula ϕ, if for all traces σ of P

∀ζ ∈ Aω
. ζ ◃ σ⇒ ζ ⊧ ϕ
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We now present an algorithm to check whether a program automaton satisfies a TSL
formula. It is an adaption of the automaton-based LTL software model checking ap-
proach by Podelski et. al [25], where the basic idea is to first translate the negated
formula into an automaton A¬ϕ, then combine the formula automaton and the pro-
gram automaton to a new one that is called the Büchi program product. The program
satisfies the formula if and only if the Büchi program product accepts no feasible
trace.

In [25], the Büchi program product is constructed similarly to the standard product
automaton construction. However, to make the result again a program automaton,
the transitions are not labeled with pairs (s, l) ∈ Stmt0 × 2

AP
, but instead with the

program statement (s; assert(l)). A feasible accepted trace of the Büchi program
product then corresponds to a counterexample proving that the program does not
satisfy the formula. In the following, we discuss how we can adapt the Büchi program
product construction for TSL such that this property - a feasible trace corresponds
to a counterexample - is also true for TSL. Moreover, we want to construct the TSL
Büchi program product in such a way that we can use the same algorithm as in [25]
for testing if there is a feasible accepted trace.

For the construction of A¬ϕ, we treat all update- and predicate terms as atomic
propositions and use any algorithm for the translation of an LTL formula to an
automaton. For the construction of the Büchi program product, we have to define how
to combine a transition label s of the original program automaton with a transition
label l of the formula automaton into a single program statement. We want the
combined statement to succeed if and only if l holds for the statement s. l is a set
of update and predicate terms and for the update terms Jc ↢ τF K we can not just
use an assertion to check if they are true. We instead need to ‘save’ the value of τF
before the statement s is executed.

There is still a second adaption needed: the feasibility definition from [25] differs
slightly from ours, as their program statements do not explicitly involve input streams.
To be able to use their algorithm for testing if there is a feasible accepted trace, we
model the behavior of the input streams by using fresh memory cells that receive a
new value at every time step.

In the following, we formally define the function combine ∶ Stmt × P(TP ∪ TU) that
combines a program statement s and a transition label l to a new program statement
that succeeds if and only if l is true for s.

Definition 6.7. Let υ = {Jc1 ↢ τF1K, . . . , Jcn ↢ τFnK} be the set of update terms
appearing in ϕ, let ρ be the set of predicate terms appearing in ϕ. Let l ⊆ (υ ∪ ρ)
be a transition label of A¬ϕ. Let (tmpj)j∈N be a family of fresh cells. Let I =
{i1, . . . im}. In the following, we define the function combine ∶ Stmt × P(TP ∪
TU) → Stmt. The result of combine(s, l) is composed of the program statements



6.1. TSL Software Model Checking 49

in save valuesl, s, new inputs, check predsl and check updatesl

save values ∶= tmp1 ∶= τF1; . . . ; tmpn ∶= τFn
new inputs ∶= i1 ∶= ∗; . . . ; im ∶= ∗

check predsl ∶= assert
⎛
⎜
⎝
⋀
τP∈l

τP ∧ ⋀
τP∈ρ\l

¬τP
⎞
⎟
⎠

check updatesl ∶= assert
⎛
⎜⎜
⎝

⋀
Jcj↢τFjK∈υ

{cj = tmpj if Jcj ↢ τFjK ∈ l
cj ≠ tmpj else

⎞
⎟⎟
⎠

combine(s, l) ∶= save values; s; new inputs; check predsl; check updatesl

We can extend this definition for combining a program trace and a predicate trace by
applying it per timepoint. This leads to a function combine ∶ Stmtω×P(TP ∪TU)ω →
Stmt

ω
.

Note that the result of combine is again a program statement in Stmt (or a trace
Stmt

ω
) over the new set of cells C ∪ I ∪ (tmpj)j∈N, which we call C∗.

Example 6.8. Let I = {i}

combine(n ∶= 42, {Jn↢ n + 7K, n > 0}) =
tmp0 ∶= n + 7; n ∶= 42; i ∶= ∗; assert(n > 0); assert(n = tmp0)

Definition 6.9. (Büchi Program Product) Let P = (Stmt,Q, q0, δ, Q) be a pro-
gram automaton and A = (P(TP ∪ TU), Q′, q′0, δ′, Q′acc) be a Büchi automaton (for
example, the automaton A¬ϕ). The Büchi program product P ⊗ A is a program

automaton B = (Stmt,Q ×Q′, (q0, q
′
0), δB, QaccB) where

δB = {((p, q), combine(s, l), (p′, q′)) ∣ (p, s, p′) ∈ δ ∧ (q, l, q′) ∈ δ′}

and

QaccB = {(q, q′) ∣ q ∈ Q ∧ q′ ∈ Q′acc}

Theorem 6.10. Let P be a program automaton over the basic statements Stmt0 with
all states accepting. Let ϕ be a TSL formula. P satisfies ϕ if and only if P ⊗ A¬ϕ
has no feasible trace.

For the proof, see subsection 6.1.2.

We can now apply theorem 6.10 to solve the model checking problem: we have to test
whether P ⊗ A¬ϕ accepts no feasible trace. This can be done exactly as described
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in [25], Section 5. The algorithm is based on counterexample-guided abstraction
refinement (CEGAR [16]) - when a trace that is accepted by the automaton is found,
the trace is checked for feasibility. First, finite prefixes of the trace are checked for
feasibility using an SMT-solver. If they are feasible, a ranking function synthesizer
is then used to check whether the whole trace eventually terminates. If the trace is
feasible, a counterexample is found. If not, the automaton is refined such that it now
does no more include the spurious counterexample trace, and the process is repeated.
For more details, we refer to [25].

The limitations of SMT-solvers and ranking function synthesizers also limit the func-
tions and predicates that can be used in both the program and the TSL formula.

6.1.2 Correctness

The main idea of the correctness proof is a construction that, given a computa-
tion ζ that matches a program trace σ, constructs a computation matching the
combined trace combine(σ, Seq(ζ)) and vice versa (Seq was defined in Definition
4.16). This gives us the necessary feasibility proofs. To do so, we define two opera-

tions, (̃−) and (−)∣σ that ‘nearly’ invert each other: we have that (ζ̃)∣σ = ζ and if

ζ ◃ combine(σ,X) for some X, we also have that ζ̃∣σ = ζ. In Lemma 6.13 we show
that if ζ◃combine(σ,X) for some X, then ζ∣σ◃σ. In Lemma 6.14 we show that then,
we also have that X = Seq(ζ∣σ). Lemma 6.15 states the other direction: if ζ ◃σ, then

also ζ̃◃combine(σ, Seq(ζ)). Those three lemmata give us the feasibility proofs needed
for the algorithm’s correctness. Lemma 4.17 then gives the equivalence between the
violation of the TSL-formula by ζ and the sequence Seq(ζ) being accepted by A¬ϕ,
needed for reasoning about the existence of a trace combine(σ, Seq(ζ)) in the Büchi
program product.

We start with definining the operation (̃−). Let σ ∈ Stmt
ω

and ζ ◃ σ. We need
to extend this computation to one that matches combine(σ, Seq(ζ)). For every time
point t, we need to introduce computation steps that match combine(σt, Seq(ζ)t) =
save valuesSeq(ζ)t ; σt; new inputs; check predsSeq(ζ)t ; check updatesSeq(ζ)t . While
executing save valuesSeq(ζ)t , the values of the temporary variables are changed as
required by the statements tmpj ∶= τFj . When the actual statement σt is executed,
the computation changes to ζt, but still with the ‘old’ input values and extended with
values for the temporal variables. Next, when executing new inputs, we stepwise
change the input values to those in ζt. Then, the assertions are executed and the
computation cannot change anymore.

In the following, we also need the notion of extending an assignment: we define
a[c↦ v](c) = v and a[c↦ v](c′) = a(c′) for c ≠ c

′
.

Let υ ⊆ TU be in the following the set of update terms, and ρ ⊆ TP the set of predicate
terms appearing in the formula ϕ.
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Definition 6.11. Let I = {i1, . . . in} be the set of inputs and υ = {Jc1 ↢ τF1K, . . . , Jcm ↢
τFmK}. Given a computation ζ, we define the adapted computation ζ̃ as follows.

a
tmp1
t ∶= ζt−1[tmp1 ↦ η(τF1, ζt−1)]
a
tmpj
t ∶= a

tmpj−1[tmpj ↦ η(τFj , ζt−1)] for 1 < j ≤ m

at ∶= ζt[tmp1 ↦ η(τF1, ζt−1), . . . , tmpm ↦ η(τFm, ζt−1),
i1 ↦ ζt−1(i1), . . . , in ↦ ζt−1(in)]

a
i1
t ∶= at[i1 ↦ ζt(i1)]
a
ij
t ∶= a

ij−1[ij ↦ ζt(ij)] for 1 < j ≤ n

ζ̃t ∶= a
tmp1
t . . . a

tmpm
t at a

i1
t . . . a

in
t a

in
t a

in
t

ζ̃ ∶= ζ̃0 ζ̃1 . . .

Note that this is the only possibility to adapt a computation ζ◃σ such that the result
could match combine(σ,X) for any X.

Also note that a
in
t = ζt[tmp1 ↦ η(τF1, ζt−1), . . . , tmpm ↦ η(τFm, ζt−1)].

We can also define the left inverse of this operation: reducing a computation that
matches combine(σ,X) to a computation that matches σ.

Definition 6.12. Let σ ∈ Stmt
ω
, X ∈ P(TP ∪ TU)ω and ζ ◃ combine(σ,X). We

define the reduced computation ζ∣σ as follows.

ι(j) ∶= (∣I∣ + ∣υ∣ + 3) ⋅ (j + 1) − 3

ζ∣σ(U) ∶= (ζι(0))∣(I∪C) (ζι(1))∣(I∪C) . . .

where a∣(I∪C) means restricting the domain of the assignment to the original inputs
and cells, thus excluding the temporal variables tmp1, tmp2 . . .

Note that if ζ ◃ combine(σ,X), we also have that ζ = ζ̃∣σ, as this is the only com-
putation that could potentially match combine(σ,X) and equals ζ∣σ when restricted
to σ.

Lemma 6.13. If ζ ◃ combine(σ,X), then ζ∣σ ◃ σ.

Proof. We have to show that ∀t ∈ N. ζ∣σ ◃t σ

Recall that ζ = ζ̃∣σ and

(̃ζ∣σ)t = atmp1t . . . a
tmpm
t at a

i1
t . . . a

in
t a

in
t a

in
t
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• Case σt = assert(τP )
We know that ζ ◃ι(t)−∣I∣ combine(σ,X). The corresponding statement is σj ,
thus

η(τP , ζι(t)−∣I∣−1) = true ∧∀c ∈ C∗. ζι(t)−∣I∣(c) = ζι(t)−∣I∣−1(c)

Moreover, (ζι(t)−∣I∣−1) = a
tmpm
t . This equals (ζ∣σ)t−1 extended with values for

the temporary variables. As τP does not contain the temporal variables, this
means that η(τP , ((ζ∣σ)t−1)∣(I∪C)) is also true. It remains to show that

∀c ∈ C. (ζι(t−1))∣(I∪C)(c) = (ζι(t))∣(I∪C)(c)

This is true as the only cells changed in ζι(t−1) . . . ζι(t)−∣I∣−1 and in ζι(t)−∣I∣, . . . ζι(t)
are cells from C∗\C.

• The two remaining cases are analogous.
□

Lemma 6.14. If ζ ◃ combine(σ,X), then X = Seq(ζ∣σ).

Proof. We prove ∀t. Xt = Seq(ζ∣σ)t. We know that ζ ◃ι(t)+1 combine(σ,X). The

corresponding statement is check predsXt . Set h = (⋀τP∈Xt
τP ∧⋀τP∈ρ\Xt ¬τP ).

This means that

η(h, ζι(t)+1) = true ∧∀c ∈ C∗. ζι(t)+1(c) = ζι(t)(c)

This implies that true = η((h, ζι(t))∣(I∪C)) = η(h, (ζ∣σ)t). Therefore, for all τP ∈ ρ

τP ∈ Seq(ζ∣σ)t⇔ t, ζ∣σ ⊧ τP ⇔ η(τP , ζι(t)) = true⇔ τP ∈ Xt

For the update terms, we know that ζ ◃ι(t)+2 combine(σ,X). The corresponding

statement is check updatesXt . Set h = (⋀Jcj↢τFjK∈υ {
cj = tmpj if Jcj ↢ τFjK ∈ Xt

cj ≠ tmpj else
)

As before, we know that η(h, (ζ∣σ)t) = true. Moreover, we know that for each j,
(ζ∣σ)t(tmpj) = η(τFj , (ζ∣σ)t−1) by definition 6.11 Therefore, for every Jcj ↢ τFjK ∈ υ,

Jcj ↢ τFjK ∈ Seq(ζ∣σ)t⇔ t, ζ∣σ ⊧ Jcj ↢ τFjK
⇔ η(τFj , ζι(t−1)) = η(cj , ζι(t))
⇔ η(cj = tmpj , ζι(t)) = true
⇔ Jcj ↢ τFjK ∈ Xt

□

Lemma 6.15. If ζ ◃ σ, then ζ̃ ◃ combine(σ, Seq(ζ))
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Proof. We have to show that for all t, ζ̃ ◃t combine(σ, Seq(ζ)). This is clear for all
time steps except for those of kind check preds or check updates by the definition of
ζ̃.

First consider check preds. We need to show that ∀t, ζ̃ ◃ι(t)+1 combine(σ, Seq(ζ)).
This boils down to

η
⎛
⎜
⎝
⎛
⎜
⎝

⋀
τP∈Seq(ζ)t

τP ∧ ⋀
τP∈ρ\Seq(ζ)t

¬τP
⎞
⎟
⎠
, ζ̃ι(t)

⎞
⎟
⎠
= true

As the temporary variables tmp1, tmp2 . . . are not used in any τP ∈ ρ, this is by
definition 6.11 equivalent to

∀τP ∈ ρ. τP ∈ Seq(ζ)t⇔ η(τP , ζt) = true
This is true by the definition of Seq(ζ)t.
Now consider check updates. We need to show that ∀t, ζ̃ ◃ι(t)+2 combine(σ, Seq(ζ)).
This boils down to

η
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

⋀
Jcj↢τFjK∈υ

{cj = tmpj if Jcj ↢ τFjK ∈ Seq(ζ)t
cj ≠ tmpj else

⎞
⎟⎟
⎠
, ζ̃ι(t)

⎞
⎟⎟
⎠
= true

Which is equivalent to

∀Jcj ↢ τFjK ∈ υ. η(cj = tmpj , ζ̃ι(t)) = true⇔ Jcj ↢ τFjK ∈ Seq(ζ)t
We know that ζ̃ι(t)(tmpj) = η(τFj , ζt−1). Thus this is equivalent to

∀Jcj ↢ τFjK ∈ υ. η(τFj , ζt−1) = ζt(c)⇔ Jcj ↢ τFjK ∈ Seq(ζ)t
which is again true by the definition of Seq(ζ)t. □

Now, we have all the lemmas needed to prove Theorem 6.10

Proof. (Theorem 6.10)
⇒ Assume that P ⊗A¬ϕ has a feasible trace. Then, this is a trace combine(σ,X) for
some σ ∈ L(P ) and X ∈ L(A¬ϕ). Moreover, ζ ◃ combine(σ,X) for some ζ ∈ Aω

. By
Lemma 6.14, we know that X = Seq(ζ) and by Lemma 6.13 we know that ζ ◃ σ. By
the correctness of Aϕ, we know that Seq(ζ) ⊧LTL ¬ϕ, which by Lemma 4.17 means
that ζ ⊧ ¬ϕ. Thus ζ is a counterexample that proves that P does not satisfy ϕ.

⇐ Assume that P does not satisfy ϕ. Then, there is a trace σ ∈ L(P ) and a computa-
tion ζ such that ζ ◃σ and ζ ⊧ ¬ϕ. This means by Lemma 4.17 that Seq(ζ) ⊧LTL ¬ϕ,
so Seq(ζ) is accepted by A¬ϕ. Then, combine(σ, Seq(ζ)) is a trace of P ⊗ A¬ϕ. By

Lemma 6.15, ζ̃ ◃ combine(σ, Seq(ζ)), so this is also a feasible trace.

□
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6.2 Alternation-Free HyperTSL Software Model Check-
ing

In this section, we apply the technique of self-composition to extend the algorithm
from the previous section for alternation-free HyperTSL, similarily to Section 5.4.2,
but now for a program automaton. Self-composition is a technique commonly used
for the verification of hyperproperties [3, 4, 26]

6.2.1 The Algorithm

First, we need to define what it means for a program automaton to satisfy a HyperTSL
formula.

Definition 6.16. Let P be a program automaton over the basic statements Stmt0,
let ϕ be a HyperTSL formula and let

Z = {ζ ∈ Aω ∣ ∃σ. ζ ◃ σ and σ is a trace of P}

P satisfies ϕ if Z ⊧ ϕ.

Definition 6.17. Let P = (Stmt,Q, q0, δ, Q) be a program automaton. We define the
n-fold self-composition of P as P

n
= (Stmt′, Qn, qn0 , δn, Qn) where Stmt

′
are program

statements over the set of inputs I ×Π and the set of cells C ×Π and

Q
n
= Q × ⋅ ⋅ ⋅ ×Q

q
n
0 = (q0, . . . , q0)
δ
n
= {((q1, . . . , qn), ((s1)π1 ; . . . ; (sn)πn), (q

′
1, . . . , q

′
n)) ∣ ∀1 ≤ i ≤ n. (qi, si, q′i) ∈ δ}

where (s)π means renaming the cells in s from c to cπ and the inputs from i to iπ.

Theorem 6.18. A program automaton P over the basic statements Stmt0 satisfies
a universal HyperTSL formula ϕ = ∀π1. . . .∀πn. ψ if and only if P

n ⊗ A¬ψ has no
feasible trace.

Theorem 6.19. A program automaton P over the basic statements Stmt0 satisfies
an existential HyperTSL formula ϕ = ∃π1. . . .∃πn. ψ if and only if P

n⊗Aψ has any
feasible trace.

The proof is given in the following in Section 6.2.2. As the two theorems are dual, it
suffices to give the proof for Theorem 6.18.

6.2.2 Correctness

The proof is analogous to the proof of Theorem 6.10, but we have to deal with multiple
traces and thus even more indices now. We give it here for completeness.
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Given n program traces σπ1 , . . . σπn , we define σj = ((σπ1)π1j ; (σπ2)π2j ; . . . (σπn)πnj)
and σ = σ1σ2 . . . . Let ζπ1◃σπ1∧⋅ ⋅ ⋅∧ζπn◃σπn . Let ζ̂ = ∅[π1, ζπ1] . . . [πn, ζπn]. Those

computations are extendable to a computation that matches combine(σ, Seq(ζ̂))
For every time point t, we need to introduce the computation steps that match
combine(σt, Xt) = save values; σt; new inputs; check predsXt ; check updatesXt .
While executing save values, the values of the relevant temporary variables are
changed as required by the statements tmpj ∶= ˆτFj . After the actual statements

σt are executed, the computation changes to ζ̂t, but still with the ‘old’ inputs and
extended with values for the temporal variables. Next, when executing new inputs,
we stepwise change the input values to those in ζ̂t. Then, the assertions are executed
and the computation cannot change anymore.

In the following, we also need the notion of extending a hyper-assignment: we define
â[c↦ v](c) = v and â[c↦ v](c′) = â(c′) for c ≠ c

′
.

Let υ ⊆ T̂U be in the following the set of update terms and ρ ⊆ T̂P the predicate
terms appearing in the formula ϕ.

Definition 6.20. Let I × Π = {i1, . . . ik} be the set of inputs and υ = {Jc1 ↢

ˆτF1K, . . . , Jcm ↢ ˆτFmK}. Given computations ζπ1 . . . ζπn , let ζ̂ = ∅[π1, σπ1] . . . [πn, σπn].
We define the adapted computation ̃(ζπ1 , . . . , ζπn).

â
tmp1
t ∶= ζ̂t−1[tmp1 ↦ η(τF1, ζ̂t−1)]
â
tmpj
t ∶= â

tmpj−1[tmpj ↦ η(τFj , ζ̂t−1)] for 1 < j ≤ m

â
πj
t = (ζ̂t−1[π1, ζπ1] . . . [πj , ζπj])t[i1 ↦ ζt−1(i1), . . . , ik ↦ ζt−1(ik),

tmp1 ↦ η(τF1, ζ̂t−1), . . . , tmpm ↦ η(τFm, ζ̂t−1)]
â
i1
t ∶= â

πn
t [i1 ↦ ζ̂t(i1)]

â
ij
t ∶= â

ij−1[ij ↦ ζ̂t(ij)] for 1 < j ≤ k

̃(ζπ1 , . . . , ζπn)t ∶= â
tmp1
t . . . â

tmpn
t â

π1
t . . . â

πn
t â

i1
t . . . â

ik
t â

ik
t â

ik
t

̃(ζπ1 , . . . , ζπn) ∶= ̃(ζπ1 , . . . , ζπn)0 ̃(ζπ1 , . . . , ζπn)1 . . .

Note that this is the only possibility to extend the computations ζπ1◃σπ1 , . . . , ζπn◃σπn
to a computation that potentially matches combine(σ,X) for any X.

We can also define the left inverse of this operation: reducing a computation that
matches combine(σ,X) to computations that match σπ1 , . . . , σπn as follows.

Definition 6.21. Let 1 ≤ j ≤ n, σ ∈ Stmt
ω
, X ∈ P(T̂P ∪T̂U)ω and ζ̂◃combine(σ,X).

We define the index of the computation step of (σπj)t in combine(σ,X)

ι(t) ∶= (∣I ×Π∣ + ∣υ∣ + n + 2) ⋅ (t + 1) − 3
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We define the reduced computation ζ∣πj .

ζ∣πj ∶= (ζι(0))∣(I∪C)πj (ζι(1))∣(I∪C)πj . . .

where â∣(I∪C)πj means restricting the domain of the assignment to the cells and in-
puts labeled with πj , thus excluding the temporal variables tmp1, tmp2 . . . and the
variables from other traces. Moreover, the cells and inputs are again renamed from
cπj to c or iπj to i.

Note that if ζ̂ ◃ combine(σ,X), we also have that ζ̂ is the adapted computation of
(ζ̂∣π1 , . . . , ζ̂∣πn) as this is the only computation that could match combine(σ,X) and
equals ζ∣πj when restricted to πj .

Lemma 6.22. If ζ̂ ◃ combine(σ,X) and σ = ((σπ1)π1 , . . . , (σπn)πn), then ζ̂∣πj ◃ σπj
for every 1 ≤ j ≤ n.

Proof. We show that ∀t ∈ N. ζ̂∣πj ◃t σπj .

Recall that ζ̂ is the adapted computation of (ζ̂∣π1 , . . . , ζ̂∣πn) .

• Case σt = assert(τP )
We know that ζ̂ ◃ι(t)−∣I×Π∣−(n−j) combine(σ,X), and thus

η(τ̂P , ζ̂ι(t)−∣I×Π∣−(n−j)−1) = true ∧

∀c ∈ C∗. ζ̂ι(t)−∣I×Π∣−(n−j)(c) = ζ̂ι(t)−∣I×Π∣(n−j)−1(c)

Moreover, (ζ̂ι(t)−∣I×Π∣−(n−j)−1) equals â
tmpm
t if j = 0 and else â

πj−1
t , which both

equals (ζ̂∣πj)t−1 when restricted to the inputs and variables from πj . τP does not

contain variables from other traces or temporary variables, thus η(τP , (ζ̂∣πj)t−1)
is also true. It remains to show that

∀c ∈ C. ((ζ̂)ι(t−1))∣(I∪C)πj (c) = ((ζ̂)ι(t))∣(I∪C)πj (c)

This is also true as the only cells changed in ζ̂ι(t−1) . . . ζ̂ι(t)−∣I×Π∣−(n−j)−1 and in

ζ̂ι(t)−(n−j)−∣I×Π∣, . . . ζ̂ι(t) are cells from C∗\C or cells from other traces.

• The two remaining cases are analogous.

□
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Lemma 6.23. If ζ̂ ◃ combine(σ,X), then X = Seq(∅[π1, ζ̂∣π1] . . . [πn, ζ̂∣πn])

Proof. Set ζ̂
′
= ∅[π1, ζ̂∣π1] . . . [πn, ζ̂∣πn]. We prove ∀t. Xt = Seq(ζ̂ ′)t. We know

that ζ̂ ◃ι(t)+1 combine(σ,X). The corresponding statement is check predsXt . Set

h = (⋀τP∈Xt
τ̂P ∧⋀τ̂P∈ρ\Xt ¬τP ). This means that

η(h, ζ̂ι(t)+1) = true ∧∀c ∈ C∗. ζι(t)+1(c) = ζ̂ι(t)(c)

Recall that ζ̂ι(t)+1 is by Definition 6.20 equal to

(ζ̂ ′t−1[π1, ζ̂
′
π1] . . . [πj , ζ̂

′
πn])t [tmp1 ↦ η( ˆτF1, ζ̂

′
t−1), . . . , tmpm ↦ η( ˆτFm, ζ̂

′
t−1)]

= ζ̂
′
t [tmp1 ↦ η( ˆτF1, ζ̂

′
t−1), . . . , tmpm ↦ η( ˆτFm, ζ̂

′
t−1)]

h does not contain the temporal variables, so this implies that η(h, ζ̂ ′t) = true. There-
fore, for all τP ∈ P

τP ∈ Seq(ζ̂ ′)t⇔ t, ζ̂
′
⊧ τP ⇔ η(τP , ζ ′t) = true⇔ τP ∈ Xt

The last equivalence holds by the definition of h.

For the update terms, we know that ζ ◃ι(t)+2 combine(σ,X). The corresponding

statement is check updatesXt . Set h = (⋀Jcj↢ ˆτFjK∈υ {
cj = tmpj if Jcj ↢ ˆτFjK ∈ Xt

cj ≠ tmpj else
)

As before, we know that η(h, ζ̂ ′t) = true. Moreover, we know that for each j,
ζ̂ι(t)+1(tmpj) = η( ˆτFj , ζ̂

′
t−1) again by Definition 6.20 Therefore, for every Jcj ↢ ˆτFjK ∈

υ,

Jcj ↢ ˆτFjK ∈ Seq(ζ̂ ′)t⇔ t, ζ̂
′
⊧ Jcj ↢ ˆτFjK

⇔ η( ˆτFj , ζ̂
′
t−1) = η(cj , ζ̂ ′t)

⇔ η(cj = tmpj , ζ̂ ′t) = true
⇔ Jcj ↢ ˆτFjK ∈ Xt

The last equivalence is again true by the definition of h. □

Lemma 6.24. If ζπ1 ◃σπ1∧⋅ ⋅ ⋅∧ζπn ◃σπn, then ̃(ζπ1 , . . . , ζπn)◃combine(σ, Seq(ζ̂
′)),

where ζ̂
′
= ∅[π1, ζπ1] . . . [πn, ζπn]

Proof. Set ζ̂ = ̃(ζπ1 , . . . , ζπn). We have to show that for all t, ζ̂◃t combine(σ, Seq(ζ̂ ′)).
This is clear for all time steps except for those of kind check preds or check updates
by the definition of ζ̂.
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First consider check preds. We need to show that ∀t, ζ̂ ◃ι(t)+1 combine(σ, Seq(ζ̂ ′)).
This boils down to

η
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

⋀
τ̂P∈Seq(ζ̂ ′)t

τ̂P ∧ ⋀
τ̂P∈ρ\Seq(ζ̂ ′)t

¬τ̂P
⎞
⎟⎟
⎠
, ζ̂ι(t)+1

⎞
⎟⎟
⎠
= true

Recall that ζ̂ι(t)+1 is by Definition 6.20 equal to

(ζ̂ ′t−1[π1, ζ̂
′
π1] . . . [πj , ζ̂

′
πn])t [tmp1 ↦ η( ˆτF1, ζ̂

′
t−1), . . . , tmpm ↦ η( ˆτFm, ζ̂t−1)]

= ζ̂
′
t [tmp1 ↦ η( ˆτF1, ζ̂

′
t−1), . . . , tmpm ↦ η( ˆτFm, ζ̂t−1)]

Thus, as the temporary variables are not used in τ̂P , this is equivalent to

∀τ̂P ∈ ρ. τ̂P ∈ Seq(ζ ′)t⇔ η((τ̂P ), ζ ′t) = true

This is true by the definition of Seq(ζ)t.
Now consider check updates. We need to show that ∀t, ζ̂ ◃ι(t)+2 combine(σ, Seq(ζ̂ ′)).
This boils down to

η
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

⋀
Jcj↢ ˆτFjK∈υ

{cj = tmpj if Jcj ↢ ˆτFjK ∈ Seq(ζ̂ ′)t
cj ≠ tmpj else

⎞
⎟⎟
⎠
, ζ̂ι(t)+2

⎞
⎟⎟
⎠
= true

Which is again equivalent to

∀Jcj ↢ τFjK ∈ υ. η(cj = tmpj , ζ̂ι(t)+2) = true⇔ Jcj ↢ τFjK ∈ Seq(ζ̂ ′)t

We know that ζ̂ι(t)+2(tmpj) = ζ̂ ′t−1(τFj). Thus this is equivalent to

∀Jcj ↢ ˆτFjK ∈ υ. η( ˆτFj , ζ̂
′
t−1) = ζ̂ ′t(c)⇔ Jcj ↢ ˆτFjK ∈ Seq(ζ̂ ′)t

Which is again true by the definition of Seq(ζ̂ ′)t. □

Now, we have all the lemmas needed to prove Theorem 6.18

Proof. (Theorem 6.18)
⇒ Assume that P

n ⊗ A¬ϕ has a feasible trace. Then, this is a trace combine(σ,X)
for some σ ∈ L(Pn) and X ∈ L(A¬ϕ). We know that σt = ((σπ1)π1 t; . . . ; (σπn)πn t).
Moreover, ζ̂ ◃ combine(σ,X) for some ζ̂ ∈ Âω

. By Lemma 6.22, we know that
ζ̂∣π1◃σπ1∧⋅ ⋅ ⋅∧ ζ̂∣πn◃σπn . Set ζ̂

′
= ∅[π1, ζ̂∣π1] . . . [πn, ζ̂∣πn]. By Lemma 6.23, we know

that X = Seq(ζ̂ ′). By the correctness of Aψ this means that Seq(ζ̂ ′) ⊧LTL ¬ϕ which
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by Lemma 4.17 means that ζ̂
′
⊧ ¬ϕ. Thus, ζ̂∣π1 . . . ζ̂∣πn are feasible counterexample

traces proving that ∀π1. . . .∀πn. ψ does not hold.

⇐ Assume that P does not satisfy ϕ. Then, there are trace σπ1 , . . . σπn ∈ L(P ) and
computations ζπ1 , . . . ζπn such that ζπ1 ◃ σπ1 ∧ ⋅ ⋅ ⋅ ∧ ζπn ◃ σπn and

ζ̂
′
= ∅[π1, ζπ1] . . . [πn, ζπn] ⊧ ¬ϕ. This means by Lemma 4.17 that Seq(ζ̂ ′) ⊧LTL ¬ϕ,

so Seq(ζ̂ ′) is accepted by A¬ϕ. Set σt = ((σπ1)π1 t; . . . ; (σπn)πn t) and σ = σ0σ1 . . . .

Then, combine(σ, Seq(ζ)) is a trace of P ⊗ A¬ϕ. By Lemma 6.24, ̃(ζπ1 , . . . , ζπn) ◃
combine(σ, Seq(ζ ′)), so this is also a feasible trace.

□

6.3 Finding Counterexamples for the ∀∗∃∗ - Fragment

In this section, we give a sound but incomplete algorithm for finding counterexamples
for ∀∗∃∗ HyperTSL formulas in software model checking. To the best of our knowl-
edge, there is also for HyperLTL no such algorithm yet, thus this also gives the first
software model checking algorithm for finding counterexamples for ∀∗∃∗ HyperLTL
formulas. We also obtain an algorithm for finding witnesses proving ∃∗∀∗ HyperTSL
or HyperLTL formulas as such witnesses are counterexamples for the negated formula.

It is not directly possible to combine the algorithm from the previous sections with
the finite-state HyperLTL model checking algorithm [27] to obtain an algorithm for
infinite-state ∀∗∃∗ HyperTSL model checking. The reason for that is that the finite-
state HyperLTL model checking algorithm involves complementation. The automaton
for ∃∗ψ is complemented, constructing an automaton containing all the traces that
are either not from the system or do not satisfy ψ. However, in our infinite-state
algorithm, the automaton for ∃∗ψ still contains all the system traces that do not
satisfy ψ (they correspond to infeasible traces in the automaton for ∃∗ψ). This
means that when complementing the automaton in our setting, the traces that do not
satisfy ψ would not be accepted by the complemented automaton. To summarize,
when complementing an automaton containing infeasible traces, the infeasible traces
are lost.

Removing all infeasible traces from the automaton is impossible in general as the
resulting automaton would be a finite-state system describing an infinite-state system.
Therefore, the main idea of this section is to remove only parts of the infeasible traces
from the automaton before complementing it. This can already be sufficient for
identifying a counterexample.
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6.3.1 The Algorithm

For finding counterexamples for ∀∗∃∗ HyperTSL formulas, we again construct an
automaton from the program and the formula with the property that if it has a feasible
trace, then the property is violated. However, the converse is not true anymore - if
it has no feasible trace, then the formula will not necessarily hold. Consequently, the
algorithm can only find counterexamples, but not verify correctness.

Consider in the following a HyperTSL formula ϕ = ∀π1. . . .∀πm. ∃πm+1. . . .∃πn. ψ
and a program automaton P . First, we construct the Büchi program product P

n⊗Aϕ,
whose feasible traces correspond to tuples of n traces that satisfy ϕ. Next, we remove
some infeasibility from the automaton.

More precisely, we propose two techniques for removing infeasibility. The first tech-
nique removes k-infeasibility from the automaton, that is, a local inconsistency in a
trace, occurring within k consecutive time steps. When choosing k, there is a tradeoff:
if k is larger, more counterexamples can be identified, but the algorithm is also slowed
down.

The second technique removes infeasible accepting cycles from the automaton. It
might not be possible to remove all of them, thus the number of iterations has to be
bounded.

Example 6.25. The trace

(n − −; assert(n >= 0)) (n ∶= 1; assert(n >= 0)) (n − −; assert(n >= 0))ω

is 3-infeasible because no matter what the value of n is before the second time step,
the assertion in the fourth time step will fail. In contrast, the trace

(n ∶= ∗) (n − −; assert(n >= 0))ω

is not k-infeasible for any k, because the value of n can always be large enough to make
the first k assertions succeed. Still, the trace is infeasible because n cannot decrease
forever without dropping below zero. If such a trace is accepted by an automaton,
n−−; assert(n >= 0) corresponds to an infeasible accepting cycle of this automaton.

Definition 6.26. Let k ∈ N, σ ∈ Stmt
ω
. We call σ k-infeasible if there exists a

j ∈ N such that σj σj+1 . . . σj+k−1 assert(true)ω is infeasible for all possible initial
assignments ζ−1. We then also call the subsequence σj σj+1 . . . σj+k−1 infeasible. If
a trace is not k-infeasible, we call it k-feasible.

Whether a subsequence σj σj+1 . . . σj+k−1 is a witness of k-infeasibility can be checked
using an SMT-solver e.g [11, 13, 15, 24]. For removing k-infeasibility from an automa-
ton, we reuse the idea from the update term elimination in Section 5.3 to construct
an automaton that ’remembers’ the k− 1 previous statements. The nodes of the new
automaton correspond to paths of k nodes in the original automaton. We only add a
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transition labeled with l between two nodes p and q if we can extend the trace of the
path of p with l such that the resulting trace subsequence is k-feasible.

Definition 6.27. Let P = (Stmt,Q, q0, δ, Qacc) be a program automaton. Let k ∈ N.
We define P without k-infeasibility, as Pk = (Stmt,Q′, q0, δ

′
, Q

′
acc) where

Q
′
∶={(q1, s1, q2 . . . , sk−1, qk) ∣ (q1, s1, q2) ∈ δ ∧ ⋅ ⋅ ⋅ ∧ (qk−1, sk−1, qk) ∈ δ} ∪

{(q0, s0, q1 . . . , sk′−1, qk′) ∣ k′ < k − 1 ∧ (q0, s0, q1) ∈ δ ∧ ⋅ ⋅ ⋅ ∧ (qk′−1, sk′−1, qk′) ∈ δ}
δ
′
∶={((q1, s1, q2 . . . , sk−1, qk), sk, (q2, s2, . . . , qk, sk, qk+1)) ∈ Q′ × Stmt ×Q′

∣ s1 . . . sk feasible} ∪
{((q0, s0, q1 . . . , sk′−1, qk′), sk′ , (q0, s0, . . . , qk′ , sk′ , qk′+1)) ∈ Q′ × Stmt ×Q′

∣ k′ < k − 1 ∧ s0 . . . sk′ feasible}
Q
′
acc ∶={(q1, s1, q2 . . . , sk−1, qk) ∈ Q′ ∣ qk ∈ Qacc} ∪

{(q0, s0, q1 . . . , sk′−1, qk′) ∈ Q′ ∣ k′ < k − 1 ∧ qk′ ∈ Qacc}

Theorem 6.28. Pk accepts exactly the k-feasible traces of the program automaton P .

Proof. ⇒ Let q0, q1, q2 ⋅ ⋅ ⋅ ∈ Q
ω

be a run of P on the k-feasible trace σ. Then, for
every j ∈ N,

ej = ((qj , σj , qj+1 . . . , σj+k−2, qj+k−1), σj+k−1, (qj+1, σj+1, . . . , qj+k−1, σj+k−1, qj+k))

is a transition of Pk. Moreover, for every k
′
< k,

ek′ = ((q0, s0, q1 . . . , σk′−1, qk′), σk′ , (q0, σ0, . . . , qk′ , σk′ , qk′+1))

is also a transition of Pk. Thus, q0, q1, . . . is accepted by Pk.

⇐ Let σ be a trace of P accepted by Pk. Then, there exist states of P q0, q1 . . . such
that for every j ∈ N, ej from above is a transition of Pk. Thus, by the definition of
Pk for every j, σj . . . σj+k−1 is feasible. Thus, σ is k-feasible. □

Definition 6.29. Let P = (Stmt,Q, q0, δ, Qacc) be a program automaton. Let % =
(q1, s1, q2) (q2, s2, q3) . . . (qn, sn, q1) be a sequence of transitions of P . We call % an
infeasible accepting cycle if there is a 1 ≤ j ≤ n with qj ∈ Qacc and (s1 s2 . . . sn−1)ω
is infeasible for all possible initial assignments ζ−1.

For removing infeasible accepting cycles, we first enumerate all simple cycles of the
automaton. To do so, we use the algorithm from [35]. This algorithm does not include
the cycles induced by self-loops, so we have to add them to the set of cycles afterward.
For each cycle % that contains at least one accepting state, we test its feasibility using
first an SMT-solver to test if % is locally infeasible and then using a ranking function
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s0 s2 s1

∗

n − −

n − −

assert(n ≥ 0)

Figure 6.2: The automaton A% for the infeasible cycle % = (s1, n − −, s2)
(s2, assert(n > 0), s1). The edge label ∗ denotes an edge for every (relevant)
statement

synthesizer e.g [5, 10, 20, 32, 44] to test if %
ω

is infeasible. If we successfully prove
infeasibility, we refine the model, using the methods from [33, 34]. This refinement is
formalized in the following.

Definition 6.30. Let P be a program automaton and C ⊆ (Q×Stmt×Q)ω be a set of
infeasible accepting cycles of P . Let % = (q1, s1, q2) (q2, s2, q3) . . . (qn−1, sn−1, qn) ∈
C. We define the automaton for %, written A% as

A% = (Stmt,Q = {q0, q1, . . . qn}, q0, δ, Q\{q0}) where

δ = {(q0, s, q0) ∣ s ∈ Stmt} ∪ {(qj , sj , qj+1) ∣ 1 ≤ j < n} ∪ {(q0, s1, q2), (qn, sn, q1)}

A% accepts exactly the traces that end with %
ω
, without any restriction on the prefix.

See Figure 6.2 for an example. We want to exclude the traces in A% from P . Thus
we define

PC ∶= P\
⎛
⎜
⎝
⋃
%∈C

A%
⎞
⎟
⎠

This construction can be repeated to exclude the infeasible accepted cycles that are
newly created in PC . If we iterate this process k

′
times, we name the result PC(k′).

Consider now a HyperTSL formula ϕ = ∀π1. . . .∀πm. ∃πm+1 . . .∃πn. ψ and a pro-
gram automaton P . For finding a counterexample, we first construct the Büchi pro-
gram product P

n ⊗ Aψ. Each feasible accepted trace of P
n ⊗ Aψ corresponds to a

combination of n feasible program traces that make ψ true. Next, we eliminate k-
infeasibility and remove k

′
-times infeasible accepting cycles from the Büchi program

product, constructing an automaton (Pn ⊗ Aψ)k,C(k′). Using this modified Büchi
program product, we can obtain an overapproximation of the program execution
combinations satisfying the existential part of the formula. Each trace of the Büchi
program product is a combination of n program executions and a predicate/update
term sequence. We can ‘extract’ the m universally quantified program executions
from a feasible trace, obtaining a tuple of m program executions that fulfill the exis-
tential part of the formula. Applying this ‘extraction’ (formally called projection) to
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all traces of (Pn⊗Aψ)k,C(k′) leads to an overapproximation of the program executions
satisfying the existential part of the formula. In the following, we formally define the
projection.

Definition 6.31. Let P be a program automaton, n,m ∈ N,m ≤ n and Aψ be the
automaton for the formula ψ. Let (Pn ⊗A)k,C(k′) = (Stmt,Q, q0, δ, Qacc). We define

the projected automaton (Pm ⊗A)∀k,C(k′) = (Stmt,Q, q0, δ
∀
, Qacc) where

δ
∀
= {(q, (s1; . . . ; sm), q′) ∣ ∃sm+1, . . . sn, l. (q, combine(s1; . . . ; sn, l), q′) ∈ δ}

Now, it only remains to check whether the overapproximation contains all tuples of
m feasible program executions. If not, a counterexample is found. This boils down to
testing if P

m\(Pn⊗Aψ)∀k,C(k′) has any feasible trace, which we can check as described
in the previous sections.

The following theorem states the soundness of our algorithm:

Theorem 6.32. Let ϕ = ∀π1. . . .∀πm. ∃πm+1. . . .∃πn. If P
m\(Pn⊗Aψ)∀k,C(k′) has

a feasible trace, then P does not satisfy ϕ.

For the proof, see section 6.3.2.

6.3.2 Correctness

We now prove Theorem 6.32. To do that, we need the following lemma: recall that
for a program execution σπ, (σπ)π means renaming every cell c in σπ to cπ and every
input i to iπ.

Lemma 6.33. Let σ ∈ Stmt
ω

be feasible and σt = (((σπ1)π1)t, . . . , ((σπn)πn)t) for
some σπ1 , . . . σπn. Then σπ1 , . . . , σπn are also all feasible.

Proof. As σ is feasible, we know that ζ̂ ◃ σ for some ζ̂. For all 1 ≤ j ≤ n, we define
ζπj by

(ζπj)t = (ζ̂t⋅n+j−1)∣(I∪C)πj
ζπj = (ζπj)0 (ζπj)1 . . .

where â∣(I∪C)πj as before means restricting the domain of the assignment to the cells
and inputs labeled with πj , thus excluding the variables from other traces. Moreover,
the cells and inputs are again renamed from cπj to c or iπj to i. t ⋅m + j − 1 is the
index of (σπj)t in σ.

We show that for all time points t, ζπj ◃t σπj
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• Case (ζπj)t = assert(τP )
We know that ζ̂ ◃t⋅m+j−1 σ and thus

η(τ̂P , ζ̂t⋅m+j−1) = true ∧∀c ∈ C ×Π. ζ̂t⋅m+j−1(c) = ζ̂t⋅m+j−2.

Moreover η(τP , (ζπj)t) is also true as τP does not contain variables from other
traces. It remains to show that

∀c ∈ C. ((ζπj)t)(c) = (ζπj)t−1(c)

This is also true as the only cells changed in ζ̂(t−1)⋅m+j−1, . . . ζ̂t⋅m+j−2 are cells
from other traces.

• The remaining two cases are analogous.

□

We now proof Theorem 6.32

Proof. Assume that P
m\(Pn ⊗ Aψ)∀k,C(k′) has a feasible trace σ with ζ̂ ◃ σ. By

Lemma 6.33, this means that ζπ1 ◃ σπ1 ∧ ⋅ ⋅ ⋅ ∧ ζπm ◃ σπm . It suffices to show that
∅[π1, ζ1] . . . [πm, ζm] ì ∃πm+1. . . .∃πn. ψ as this implies that ζ1, . . . ζm are a coun-
terexample proving that P does not satifsfy ϕ.

Proof by contradiction. Assume that ∅[π1, ζ1] . . . [πm, ζm] ⊧ ∃πm+1. . . .∃πn. ψ.
Then, there are traces σπm+1 , . . . σπn and computations ζπm+1 . . . ζπn such that ζπm+1 ◃

σπm+1 ∧ ⋅ ⋅ ⋅ ∧ ζπn ◃ σπn and ζ̂
′
= ∅[π1, ζπ1] . . . [πn, ζπn] ⊧ ψ.

Set σ
′
t = ((σπ1)π1 t; . . . ; (σπn)πn t) and σ

′
= σ

′
0 σ

′
1 . . . . Now, by Lemma 4.17 and the

correctness of Aψ, we know that Seq(ζ̂ ′) is accepted by Aψ, thus combine(σ′, Seq(ζ̂ ′))
is accepted by P

n⊗Aψ. Moreover, by Lemma 6.23, we know that combine(σ′, Seq(ζ̂ ′))
is also feasible, so it is also k-feasible and thus accepted by (Pn⊗Aψ)k. Moreover, does
not end with an infeasible cycle and is thus also accepted by (Pn⊗Aψ)k,C(k′) But this

means that σ is accepted by (Pn⊗Aψ)∀k,C(k′). and thus not by P
m\(Pn⊗Aψ)∀k,C(k′).

Contradiction. □

6.3.3 Example Applications

In this section, we apply the algorithm to two simple examples to show that removing
some infeasibility can already be sufficient for identifying a counterexample.
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s0s1 s2

assert(i < 0) assert(i ≥ 0)

c ∶= 0 c ∶= 1

Figure 6.3: The program automaton P used in the first example

Example 1

In the first example, removing local inconsistency is already sufficient. The property
we check here is generalized noninterference [40], a formula stating that when ob-
serving an output cell c, an observer can not gain any information about the secret
input i. We’ve already seen noninterference as an example in Section 4.2. Compared
to noninterference, generalized noninterference is a weaker property as it does not
require determinism, but is already sufficient for the system to be secure. Intuitively,
generalized noninterference states that when replacing the values of the secret input
i with a dummy value λ, the output c should not be changed.

∀π. ∃π
′
. (iπ′ = λ ∧ cπ = cπ′)

We model-check this property on the simple program automaton P shown in Figure
6.3 that violates it since for the trace (assert(i < 0) c ∶= 0)ω there exists no other
trace where c is always equal, but i is always zero.

P
2

is shown in Figure 6.4. For brevity, we write A for assert and write consecutive
assertions as one.

We choose as a dummy value λ = 0. The automaton for ψ = (iπ′ = 0 ∧ cπ = cπ′)
consists of a single accepting state with the self-loop labeled with τP = (iπ′ = 0∧ cπ =
cπ′). The Büchi program product is shown in Figure 6.5

For this simple example, it suffices to choose k = 1. Then (P 2 ⊗ Aψ)k is the Büchi
program product with all locally inconsistent transitions removed. The automaton
(P 2 ⊗Aψ)∀k is shown in Figure 6.6

This automaton for example does not contain the trace assert(i < 0) (c ∶= 0)ω
which is a feasible trace of P . This trace is therefore a feasible trace accepted by
P\(P 2 ⊗ Aψ)∀k . Thus, we know that this trace is a counterexample proving that P
does not satisfy generalized noninterference – there is no feasible trace that agrees
on the value of the output cell c but has always i = 0. For this example, it is not
necessary to remove infeasible cycles.
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s0s0

s1s1

s1s2

s2s1

s2s2

A(iπ < 0 ∧ iπ ′ < 0)

A(iπ ≥ 0 ∧ iπ ′ ≥ 0)

A(iπ
≥

0 ∧
iπ′
<

0)

A(iπ
<

0 ∧
iπ′
≥

0)

c
π ∶= 0; c

π ′ ∶= 0

c
π ∶= 1; c

π ′ ∶= 1

cπ
∶=

1; cπ
′ ∶=

0

cπ
∶=

0; cπ
′ ∶=

1

Figure 6.4: The program automaton P
2
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s1s2

s2s1
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π
<

0 ∧
i
π ′
<

0 ∧
τ
P )

i ∶=
∗;A(i

π
≥
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i
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≥

0 ∧
τ
P )

i ∶
=
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A(i

π
≥

0 ∧
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′ <

0 ∧
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)

i ∶
=
∗;
A(i

π
<

0 ∧
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0 ∧
τP

)

i ∶=
∗; c

π ∶=
0; c
π ′ ∶=

0;A(τ
P )

i ∶=
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π ∶=
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1;A(τ
P )

i ∶
=
∗;
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0;
A(τ

P
)

i ∶
=
∗;
cπ
∶=
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1;
A(τ

P
)

Figure 6.5: The program automaton P
2 ⊗Aϕ
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s0s0

s1s1

s1s2

s2s1

s2s2

assert(i ≥ 0)ass
ert

(i <
0)

c ∶= 0

c ∶= 1

Figure 6.6: The program automaton (P 2 ⊗Aψ)∀k

s0 s1 s2

s3

s4

n ∶= ∗ p ∶= ∗

A(p = 0)

A(p ≠ 0)

n − −

n ∶= n − 2

Figure 6.7: The program automaton P used in the second example

Example 2

Next, we show an example where removing k-infeasibility is not sufficient, but remov-
ing infeasible accepting cycles leads to a counterexample. We check the property

ϕ = ∀π. ∃π
′
. (pπ ≠ pπ′ ∧ nπ < n′π)

on the program automaton shown in Figure 6.7.

ϕ states that for every trace π, there is another trace π
′

where p differs, but n is
always greater. This property is not fulfilled, the trace n ∶= ∗; p ∶= ∗; assert(p =
0); (n−−)ω is a counterexample, as any trace π

′
where p is different will decrease its

n by two in every time step, and thus nπ′ will eventually drop below nπ. P
2

is shown
in Figure 6.8.

In the Büchi program product, the structure of the automaton stays the same, but
the assertion assert(pπ ≠ pπ′ ∧ nπ < n

′
π) is added to every state. Then, we remove
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s0s0

s1s1

s2s2

s3s4 s4s3

s3s3 s4s4

nπ ∶= ∗;nπ′ ∶= ∗

pπ ∶= ∗; pπ′ ∶= ∗

A(pπ
=

0 ∧
pπ

′ =
0) A(p

π ≠ 0 ∧ p
π ′ ≠ 0)

A
(p
π
=

0
∧
p π

′
≠

0)

A(p
π
≠

0
∧
p
π
′
=

0)

nπ − −;nπ′ − − nπ ∶= nπ − 2;nπ′ ∶= nπ′ − 2

nπ ∶= nπ − 2;nπ′ − −nπ − −;nπ′ ∶= nπ′ − 2

Figure 6.8: The program automaton P
2
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local infeasibility. We again choose k = 1, but the only 1-infeasible transition is the
transition from s2s2 to s3s3 - our counterexample trace is still in the automaton.
Choosing a greater k is also not helpful here, as the remaining traces of the Büchi
program product are not k-infeasible for any k.

However, the self-loop at s3s4 is an infeasible accepting cycle – the sequence

(nπ − −; nπ′ ∶= nπ′ − 2; assert(nπ < nπ′))ω

must eventually terminate. We choose k
′
= 1 and thus remove all traces ending with

this cycle. Next, we project the automaton to the universal part. Then, the trace
n ∶= ∗; p ∶= ∗; assert(p = 0); (n − −)ω which we identified as a counterexample at

the very beginning of this section, is not accepted by the automaton (P 2⊗Aψ)∀1,C(1).
But it is in P and feasible, thus it is identified as a counterexample when computing
P\(P 2 ⊗Aψ)∀1,C(1).





Chapter 7

Discussion

7.1 Conclusion

In this thesis, we have developed TSL and HyperTSL model checking algorithms
both for finite-state (Chapter 5) and infinite-state systems (Chapter 6). We have
shown that for a concrete finite data domain, (Hyper)TSL is not more expressive
than (Hyper)LTL by giving a translation algorithm from the former to the latter.
Still, many properties can be expressed more compactly in (Hyper)TSL. Therefore,
we have also given direct model checking algorithms for TSL and HyperTSL with
at most one quantifier alternation which are more efficient than model checking an
equivalent (Hyper)LTL formula. We leave the implementation of these algorithms
to future work. The implementation will allow evaluating whether the (Hyper)TSL
model checking algorithms are indeed also faster in practice on suitable systems and
properties.

In the infinite-state case, (Hyper)TSL is more expressive than (Hyper)LTL. We have
extended the automata-based LTL software model checking algorithm by Dietsch et
al. [25] for TSL. Remarkably, this extension comes at no additional cost in the sense
that the size of the automaton that is checked for a feasible trace is not increased. By
applying the technique of self-composition, we have further generalized the algorithm
for model checking alternation-free HyperTSL.

We have extended this further to a sound but incomplete algorithm for finding coun-
terexamples disproving ∀∗∃∗ HyperTSL formulas and witnesses proving ∃∗∀∗ Hy-
perTSL formulas. Our algorithm makes it possible to find program executions vi-
olating important security properties like generalized noninterference, that are only
expressible by using a combination of universal and existential quantifiers. For find-
ing a counterexample, the key idea was to remove some infeasibility from the Büchi
program product for overapproximating the set of program execution combinations
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satisfying the existential part of the formula. We remove the local k-infeasibility and
traces ending with infeasible accepting cycles.

For software model checking hyperproperties with quantifier alternations, there was,
to the best of our knowledge, also no algorithm yet for HyperLTL. It remains open
whether there is also an algorithm for proving ∀∗∃∗ hyperproperties.

7.2 Future Work

Evaluation of the Model Checking Algorithms. The contributions of this thesis
are purely theoretical. It would be interesting to implement our model checking algo-
rithms to evaluate how efficient and scalable they are in practice. For the finite-state
case, this would allow comparing the practical performance of (Hyper)TSL model
checking with the performance of model checking equivalent (Hyper)LTL formulas to
examine whether (Hyper)TSL model checking could be a promising, more efficient
alternative for suitable systems and properties.
For the infinite-state case, the implementation would in particular make it possible
to test whether the partial algorithm for finding counterexamples disproving ∀∗∃∗-
HyperTSL formulas like generalized noninterference succeeds also on larger program
snippets than the examples examined in Chapter 6.

Proving ∀∗∃∗ hyperproperties on programs. Our HyperTSL software model
checking algorithm can only find counterexamples disproving ∀∗∃∗ hyperproperties.
If the algorithm does not find a counterexample, this does not necessarily mean that
the formula holds. Proving ∀∗∃∗ hyperproperties is more difficult - while a coun-
terexample is a single trace, a proof is a function mapping each trace to a witness for
the existential part of the formula. As our algorithm overapproximates the set of exe-
cutions satisfying the existential part of the formula, the naive approach for adapting
this algorithm for proving ∀∗∃∗ hyperproperties would be to underapproximate the
set of traces satisfying the existential part. However, an underapproximation that
contains all the system executions is not an approximation, but an automaton that
exactly contains all program executions. The set of all program executions is usually
not an ω-regular language and can thus not be the language of a Büchi automaton.
Therefore this approach could only succeed on very special programs. This means that
proving ∀∗∃∗ hyperproperties for infinite-state systems requires a different approach
than ours.

Extensions for more quantifier alternations. Both our finite-state and infinite-
state HyperTSL model checking algorithms are limited to the fragment with one
quantifier alternation. For the finite-state algorithm, translating the formula to Hy-
perLTL and applying HyperLTL model checking also gives a full HyperTSL model
checking algorithm, but it would be interesting if there is also a more efficient one. For
the infinite-state case, there is no algorithm yet for model checking hyperproperties
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with more than one quantifier alternation, neither for HyperTSL nor for HyperLTL.
It would be interesting whether partial algorithms for more quantifier alternations
could be found.
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Charles Grégoire, Gerard J. Holzmann, and Doron A. Peled, editors, The Spin
Verification System, Proceedings of a DIMACS Workshop, New Brunswick, New
Jersey, USA, August, 1996, volume 32 of DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, pages 51–63. DIMACS/AMS, 1996.
doi:10.1090/dimacs/032/05.

[37] Nils Klarlund. Progress measures for complementation of omega-automata with
applications to temporal logic. In 32nd Annual Symposium on Foundations of
Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 358–367.
IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185391.

[38] Saul Kripke. Semantical considerations of the modal logic. Studia Philosophica,
1, 2007.

[39] Benedikt Maderbacher and Roderick Bloem. Reactive synthesis modulo theories
using abstraction refinement. CoRR, abs/2108.00090, 2021.

[40] Daryl McCullough. Noninterference and the composability of security properties.
In Proceedings of the 1988 IEEE Symposium on Security and Privacy, Oakland,
California, USA, April 18-21, 1988, pages 177–186. IEEE Computer Society,
1988. doi:10.1109/SECPRI.1988.8110.

[41] Shohei Mochizuki, Masaya Shimakawa, Shigeki Hagihara, and Naoki Yonezaki.
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Steffen, and Wang Yi, editors, Model Checking, Synthesis, and Learning - Es-
says Dedicated to Bengt Jonsson on The Occasion of His 60th Birthday, vol-
ume 13030 of Lecture Notes in Computer Science, pages 8–40. Springer, 2021.
doi:10.1007/978-3-030-91384-7 2.

https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/BFb0015772
https://doi.org/10.1007/978-3-030-91384-7_2

	Abstract
	Introduction
	Overview
	(Hyper) Temporal Stream Logic with Theories
	Finite-State Model Checking
	Software Model Checking


	Related Work
	Preliminaries
	Kripke Structures and Büchi Automata
	(Hyper) Linear Temporal Logic

	(Hyper) Temporal Stream Logic with Theories
	Recap: Temporal Stream Logic with Theories
	HyperTSL with Theories
	Similiarity of LTL and TSL

	Finite-State Model Checking
	TSL Kripke Structures
	Translation to (Hyper)LTL
	Update Term Elimination
	TSL Model Checking by Update Term Elimination

	HyperTSL Model Checking
	The Alternation-Free Fragment
	The * * and * * Fragments


	Software Model Checking
	TSL Software Model Checking
	The Algorithm
	Correctness

	Alternation-Free HyperTSL Software Model Checking
	The Algorithm
	Correctness

	Finding Counterexamples for the * * - Fragment
	The Algorithm
	Correctness
	Example Applications


	Discussion
	Conclusion
	Future Work

	Bibliography

