
Refinement of TSL Specifications
for LTL Synthesis

Saarland University

Department of Computer Science

Bachelor’s Thesis

submitted by

Jonas Linn

Saarbrücken, September 2022

Supervisor: Prof. Bernd Finkbeiner, Ph.D.

Advisor: Malte Schledjewski

Reviewer: Prof. Bernd Finkbeiner, Ph.D.

Prof. Dr. Benjamin Kaminski

Submission: September 12, 2022

Abstract

Due to its high complexity, the synthesis problem is still a major challenge to computer

science. Even with modern computers, it is barely possible to synthesize reactive sys-

tems that handle even small amounts of data using classical synthesis methods. The

introduction of Temporal Stream Logic as a specification language is a big step in scal-

able reactive synthesis. It provides useful abstractions for data handling while being

similar to LTL. The synthesis of a TSL specification is possible by generating an under-

approximation of the specification in LTL, which is then refined in a CEGAR manner

and synthesized by using bounded synthesis. However, the suggested algorithms have

not yet been implemented.

In this thesis, we optimize the TSL synthesis process for implementation, while also

presenting a parallelized version of the algorithm. Furthermore, we propose a way of

generating initially stronger underapproximations for speeding up the CEGAR-loop.

Additionally, a more generalized way of generating additional assumptions is intro-

duced. Finally, we introduce a set of test specifications on which the implementations

are benchmarked.

Acknowledgements

I want to thank Prof. Bernd Finkbeiner for sparking my interest in temporal logics and

giving me the chance to work on this topic for my thesis. Also, I want to thank him

as well as Prof. Benjamin Kaminski for reviewing this thesis. Furthermore, I want to

thank my advisor Malte Schledjewski who was always a big help to me and who has

provided guidance to me for writing this thesis. Moreover, I want to thank my family

for always supporting me and giving me the opportunity to go to university. Special

thanks go to my fiancée Julia, who has always believed in me and my work.

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used any

other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die

Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree tomake both versions of my thesis (with a passing grade) accessible to the public

by having them added to the library of the Computer Science Department.

Saarbrücken, 12 September, 2022

Erklärung
Ich erkläre hiermit, dass die vorliegende Arbeit mit der elektronischen Version übere-

instimmt.

Statement
I hereby confirm the congruence of the contents of the printed data and the electronic

version of the thesis.

Saarbrücken, 12 September, 2022

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Linear Temporal Logic (LTL) . 3

2.1.1 Syntax . 3

2.1.2 Semantics . 3

2.1.3 Examples . 4

2.2 Church’s Problem . 6

2.3 Bounded Synthesis Problem . 7

2.4 Temporal Stream Logic (TSL) . 8

2.4.1 Terms in TSL . 8

2.4.2 Syntax . 9

2.4.3 Semantics . 9

2.4.4 Example . 11

2.5 TSL Synthesis . 12

2.5.1 Initial Approximation in LTL . 12

2.5.2 Spurious Counter-Strategies . 13

2.5.3 Refinement . 13

3 Optimizations and Adjustments 15
3.1 General Optimizations for Implementation 15

3.1.1 Removing Redundant Iterations . 15

3.1.2 Adjusting Spuriousness Check . 15

3.1.3 Partinioning Predicate Terms . 17

3.1.4 Caching Counter-strategy State . 17

3.1.5 Timestep Order . 17

3.1.6 Optimized Algorithm . 18

3.2 Parallelization . 20

3.3 Adding stronger initial assumptions . 22

xi

3.4 Generalized Assumptions . 24

3.5 Generating Exhaustive Assumptions . 25

4 Implementation 27
4.1 Main Algorithm . 28

4.1.1 BoSy . 30

5 Benchmarks 31
5.1 Specifications . 32

5.2 Results . 34

5.2.1 Parallelization . 34

5.2.2 Overall Runtime and Memory Usage 36

5.2.3 Refinement count . 39

6 Related Work 41

7 Conclusion 43

xii

Chapter 1
Introduction

In their early history, computational systems focused on implementing functions and

therefore, very simplified, took an input and eventually terminated with an output.

In contrast to that, we also know reactive systems, which are typically designed to

run without ever terminating and to constantly interact with their environment. This

includes hardware circuits and communication protocols, as well as embedded systems

[9]. Hence, nearly all computational systems we use today, may it be a smartphone,

an ATM, or the engine controller in a car, build upon reactive systems (and are ones

themselves). Implementation errors can consequently threaten the integrity of many

systems used by billions of people every day. This is especially problematic for safety-

critical systems.

A possible technique to eliminate those is formal verification, which aims on checking

some critical properties on already developed systems. But this approach does not

prevent implementation errors in the first place and there is no generalized way of

fixing an error if one exists. In this case, somemanual reprogramming is necessary. The

synthesis of reactive systems on the other hand focuses on the automatic generation of

reactive systems based on formal specifications. Such a specification does not specify

how the system should be constructed but rather what the system should do.

The problem of constructing a system from a specification was formalized by Church

in 1957 and is known as synthesis problem or Church’s problem [12]. Formally, this means

"the construction of a finite-state procedure that transforms any input sequence α letter

by letter into an output sequence β such that the pair (α,β) satisfies the given spec-

ification" [23]. This problem was first solved by Büchi and Landweber in 1969 using

specifications in monadic second-order logic of one successor (S1S). Unfortunately, the con-
struction from S1S turned out to be very complex. In 1977 Pnueli introduced the concept

of temporal reasoning over non-terminating cyclic programs [18], which are known to-

day as reactive systems, and invented Linear Temporal Logic (LTL) as a formal way of

arguing over the behavior of such systems. LTL allows specifying whether a condition

1

1. Introduction

on an execution path of a system is satisfied at the current or (n-th) next time step as

well as if it will hold on any timestep in the future or if it holds for every time step. The

introduction of LTL is a valuable step to a practical solution to Church’s problem since

it is not only much more intuitive to use than S1S, but the synthesis based on temporal

specifications is also much less complex [9].

Even though the complexity of the synthesis problem was significantly reduced by

using LTL to specify properties instead of S1S, its complexity is still double exponential

[9]. Therefore the computational effort for real-world problems with multiple inputs

and outputs is huge. Considering that in the traditional synthesis approach data has to

be encoded in the states of the system, even for simple applications synthesis becomes

unrealistically expensive in terms of computing time as well as size.

A promisingway to address this problem is to abstract from the actual data processed

by the system. More precisely, it is assumed that the actual implementation of functions

is handled by another approach and the focus lies solely on synthesizing the control

graph of a system.

This can be done using Temporal Stream Logic (TSL) [11]. The grammar of TSL is

similar to the one of LTL, but it has been adapted to make statements about when data

is handled by a function. However, it only refers abstractly to data handling, which is

useful for specifying systems that handle larger amounts of data since data is explicitly

not encoded in the states of the final system. Though, due to this abstraction, the

synthesis problem for TSL specifications is in general undecidable.

Yet, it is feasible to generate an underapproximation in LTL for TSL specifications

and to consequently obtain a solution through bounded synthesis. If this approximation

is realizable, the resulting system is a solution to the TSL synthesis problem, if not,

the counter-strategy may be inconsistent with the more expressive semantics of TSL

and therefore spurious. Then additional assumptions are generated in a counter-example
guided abstraction refinement (CEGAR) [7] manner. Eventually, either a realizable system

is returned or a consistent counter-strategy is found. The TSL specification is then either

realizable within a given bound or unrealizable respectively. Nonetheless, this is a task

that, in most real-life cases, cannot be done by hand due to its complexity.

In this thesis, we implement the algorithm suggested in [11] to approximate and

refine TSL specifications in LTL while using BoSy [8] as a synthesis tool. Prior to this,

we optimize it (Sect. 3.1) for implementation by taking some practical considerations: Sec. 3.1, p. 15

into account.

Furthermore, we introduce an adapted algorithm that aims at partly parallelizing the

spuriousness check in Sect. 3.2. Additionally we suggest a procedure for generating a: Sec. 3.2, p. 20

stronger initial approximation in Sect. 3.3, as well an alternative for generating more: Sec. 3.3, p. 22

generalized assumptions Sect. 3.4.: Sec. 3.4, p. 24

Using these algorithms, we conduct benchmarks in Chapter 5 on a set of test specifi-:Chapter 5, p. 31

cations and evaluate their runtime and memory use.

2

Chapter 2
Preliminaries

2.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL)was introduced byPnueli [18] as a formal systemof reasoning

over infinite words. An infinite word consists of an infinitely long, ordered sequence of

letters α of an alphabet Σ. This can for example be an execution path of a reactive system

with each position in the word corresponding to the state of the system at a specific time

step. LTL was designed to unify notations for program verification of sequential and

concurrent programs together with making proof methods for verification significantly

more intuitive. Additionally, it turned out to be useful as a specification logic for

synthesis.

In the following subsections, the grammar and semantics of LTL are introduced. The

notation is based on Principles of Model Checking [3], as it is commonly used.

2.1.1 Syntax

Operators in LTL are either boolean (¬,∧) or temporal (©, U)

Definition 2.1 (LTL Formula)

An LTL formula φ over a set of Atomic Propositions AP is made up by the grammar Def. LTL formula

φ ::= > | a ∈ AP | ¬φ | φ∧ φ | © φ | φ U φ.

2.1.2 Semantics

The boolean operators in LTL are semantically identical to those in boolean logic. Intu-

itively, the unary temporal operator next (©) works as follows: φ holds exactly then when

3

2. Preliminaries

φ holds in the next step (Fig. 2.1). The binary operator until (U) states that φ1 U φ2 holds
iff φ2 holds anywhere in the future and φ1 holds from the current step until φ2 holds (Fig. 2.4).

Let σ be an infinite word over 2AP (σ ∈ (2AP)ω), then

σ |= >

σ |= a ⇐⇒ a ∈ σ(0)

σ |= φ1 ∧ φ2 ⇐⇒ φ1 |= σ∧ φ2 |= σ

σ |= ¬φ ⇐⇒ σ 2 φ

σ |=©φ ⇐⇒ σ[1...] |= φ

σ |= φ1 U φ2 ⇐⇒ ∃j > 0.σ[j...] |= φ2 ∧ σ[i...] |= φ1, ∀0 6 i < j

From there on, we can introduce all other boolean operators such as ∨,→, ⇐⇒ accord-

ing to boolean logic. Additionally, we can use the temporal operator U to introduce

the new temporal operators finally (♦) and globally (�). We can infer them depending on

U by

♦φ = > U φ

�φ = ¬♦¬φ.

♦φ can be described as φ holds eventually in a future state (Fig. 2.2) and �φ states that φ

holds in every state from now on (Fig. 2.3).

2.1.3 Examples

In the following, there are some common examples of paths satisfying LTL specifica-

tions.

Figure 2.1: Path satisfying©a

Figure 2.2: Path satisfying ♦a

4

2.1. Linear Temporal Logic (LTL)

Figure 2.3: Path satisfying �a

Figure 2.4: Path satisfying a U b

5

2. Preliminaries

2.2 Church’s Problem

In contrast to classical programs - which are designed to eventually terminate with an

output, given an input at the beginning - reactive systems transform an infinite stream of

inputs word by word into an infinite stream of outputs. Formally, Church’s problem [12]

considers two distinct sets of inputs I and outputs O which are valuations of boolean

variables. The problem is, given a specification Spec ⊆ (2I∪O)ω, to generate a system

that fulfills the given specifications. This problem was first solved for specifications in

monadic second-order logic of one successor (S1S) [6], however, due to the expressiveness of

S1S, the transformation from a specification to a system is very complex. Nonetheless,

by using a temporal logic such as Linear Temporal Logic (LTL) as a specification language

the complexity of the problem can be reduced.

6

2.3. Bounded Synthesis Problem

2.3 Bounded Synthesis Problem

While theoretically, the implementation of an LTL specification can be up to doubly

exponential in size, most realizable specifications can be implemented with much fewer

states [9]. However, classical synthesis approaches do not necessarily produce minimal

implementations. Furthermore, large implementations may not even be of interest

because they may "violate design considerations, such as available memory" [20].

The bounded synthesis problem [20] is a modification of the synthesis problem that

focuses on finding implementations within a predefined upper limit. The bounded

synthesis problem can be reduced to the boolean SATproblem, whichmakes its solution

comparatively efficient to implement. Moreover, it is possible to use bounded synthesis

for finding minimal and, therefore, simply structured implementations. For distributed

systems, where the synthesis problem is generally undecidable, bounded synthesis is

an efficient semi-decision procedure.

In this thesis, bounded synthesis is used for all synthesis tasks.

7

2. Preliminaries

2.4 Temporal Stream Logic (TSL)

Using LTL as a specification language for reactive synthesis comeswith the downside of

having to specify data handling in the system. Even in simple systems, the complexity

of data handling can quickly lead to too large specifications to synthesize. However, in

many cases, the data handling part of a system can be implemented by well-known and

verifiedmethods, whichwouldmake synthesizing these complicated parts unnecessary

in the first place.

Temporal Stream Logic (TSL) [11] is designed to handle these problems by abstracting

data handling, i.e., the specification only includes information on how data flows in

the system, rather than on how it is computed. Its syntax and semantics build up on

LTL, but it includes updates such as [[y� f(x)]] and predicates over arbitrary function

terms instead of atomic propositions. The implementation of functions and predicates is

excluded from the synthesis problem. Hence, only the control flow graph of the system

is synthesized. Therefore, this abstraction from actual data significantly reduces the

number of states to be computed. However, the synthesis problem for TSL specifications

is, in general, undecidable.

2.4.1 Terms in TSL

To formalize the handling of data, TSL introduces inputs I, outputs O, and cells C.
Additionally, there are function literals F, and predicate literals P such that P ⊆ F.
Let si ∈ I ∪C, so ∈ O ∪C, f ∈ F and p ∈ P be symbolic representatives of their sets, then

function terms τF, predicate terms τP and updates τU are defined as follows:

Definition 2.2 (Function Term)

A function term τF is either an input, a cell, or the application of a function to arbitraryDef. Function Term

many function terms.

τF := s
i
| f τ0F τ

1
F . . . τ

n−1
F

Definition 2.3 (Predicate Term)

A predicate term τP is the application of a function to arbitrary many function terms.Def. Predicate Term

τP := p τ0F τ
1
F . . . τ

n−1
F

8

2.4. Temporal Stream Logic (TSL)

Definition 2.4 (Update)
An update τU is an assignment from function terms τF to cells or outputs so ∈ I ∪O Def. Update

τU := [[so� τF]]

The set of all function terms, predicate terms, and updates is denoted by TF, TP, and

TU respectively.

2.4.2 Syntax

Definition 2.5 (TSL Formula)

A TSL formula is made up by the following grammar: Def. TSL Formula

φ := τ ∈ TF ∪ TU | ¬φ | φ∧ φ | © φ | φ U φ

2.4.3 Semantics

Definition 2.6 (Inputs)
A momentary input i ∈ I = V[I]

is an assignment of inputs i ∈ I to values v ∈ V. An Def. Inputs

Input stream ι ∈ Iω is an infinite sequence of momentary inputs. Def. Input Stream

Definition 2.7 (Outputs)

A momentary output o ∈ O = V[O]
is an assignment of outputs o ∈ O to values v ∈ V. Def. Outputs

An output stream ρ ∈ Oω is an infinite sequence of momentary outputs. Def. Output Stream

Definition 2.8 (Computation)

A computation step c ∈ C = T
[O∪C]
F is an assignment of outputs and cells so to function Def. Computation

Step
terms τF ∈ TF. A computation σ ∈ Cω is an infinite sequence of computation steps.

Def. Computation

Definition 2.9 (Evalutation)
Let 〈 · 〉 : F→ F be a function assignment and define ∀c ∈ C : initc ∈ F ∩V as an initial

value for each cell.

The evaluation function η〈 · 〉 : Cω × Iω × N× TF → V is given by: Def. Evaluation
Function

9

2. Preliminaries

η〈 · 〉(σ, ι, t, si) =

ι(t)(s

i
) if s

i
∈ I

inits
i

if s
i
∈ C∧ t = 0

η〈 · 〉(σ, ι, t− 1, σ(t− 1)(si)) if s
i
∈ C∧ t > 0

η〈 · 〉(σ, ι, t, f τ0 . . . τm−1) = 〈f〉 η〈 · 〉(σ, ι, t, τ0) . . . η〈 · 〉(σ, ι, t, τm−1)

Then:

∀t ∈ N,o ∈ O :

ρ〈 · 〉,σ,ι(t)(o) = η〈 · 〉(σ, ι, t,o)

Semantics Boolean operators follow standard boolean logic, temporal operators are

defined analogously to LTL Sect. 2.1. Operators in TSL have the following semantics:: Sec. 2.1, p. 3

σ, ι, t |=〈 · 〉 p τ0 . . . τm−1 :⇔ η〈 · 〉(σ, ι, t,p τ0 . . . τm−1)

σ, ι, t |=〈 · 〉 [[s� τ]] :⇔ σ(t)(s) ≡ τ

σ, ι, t |=〈 · 〉 ¬ψ :⇔ σ, ι, t 2〈 · 〉 ψ
σ, ι, t |=〈 · 〉 ϑ∧ψ :⇔ σ, ι, t |=〈 · 〉 ϑ∧ σ, ι, t |=〈 · 〉 ψ
σ, ι, t |=〈 · 〉 ©ψ :⇔ σ, ι, t+ 1 |=〈 · 〉 ψ
σ, ι, t |=〈 · 〉 ϑ U ψ :⇔ ∃t ′′ > t. ∀t 6 t ′ < t ′′. σ, ι, t ′ |=〈 · 〉 ϑ∧ σ, ι, t ′′ |=〈 · 〉 ψ

Similar to LTL, other temporal and boolean operators can be derived.

A computation σ and an input stream ι satisfy a TSL formula ϕ if σ, ι, t |=〈 · 〉 ϕ

Realizability The realizability problem of a TSL specification is defined over uninter-

preted, arbitrary function terms, i.e. even though functions and predicates are part of

a TSL specification, their definition is not considered for the TSL realizability problem.

Note that since all functions and predicates are considered to be functional relations it

must hold that they always evaluate to the same value given the same input.

A TSL Specification ϕ is realizable iff there is an implementation satisfying ϕ for all

possible interpretations of functions and predicates.

10

2.4. Temporal Stream Logic (TSL)

Definition 2.10 (Realizability Problem for TSL)

The realizability problem for TSL is given by the following statement: Given a TSL Def. Realizability
Problem for TSL

formula ϕ, is there a strategy σ ∈ C[I+]. such that for every input ι ∈ Iω and function

implementation 〈 · 〉 : F→ F, the branch σ o ι satisfies ϕ, i.e.,

∃σ ∈ C[I+]. ∀ι ∈ Iω. ∀〈 · 〉 : F→ F. σ o ι, ι |=〈 · 〉 ϕ

ϕ is called realizable iff a strategy σ exists.

Definition 2.11 (Realizability Problem for TSL)

The synthesis problem for TSL is to find concrete instantiation of σ in the realizability Def. Synthesis
Problem for TSL

problem (Def. 2.10).

:Def. 2.10, p. 11

2.4.4 Example

The following statement is an example of a TSL specification with an input i, cell c,

function f and predicate p.

Example 2.4.1.

p(i) U ([[x� f(i)]]→©p(x))

4

11

2. Preliminaries

2.5 TSL Synthesis

To synthesize a TSL specification it is initially approximated by a weaker LTL specifica-

tion which is then synthesized for a given bound using bounded synthesis. If this LTL

specification is realizable, the solution is also a solution to the TSL synthesis problem.

However, the LTL specification may be unrealizable even though the TSL specification

is realizable. In this case, the counter-strategy given by the LTL-solver is called a spu-
rious counter-strategy. The LTL approximation is then refined in a counterexample-guided
abstraction refinement (CEGAR) [7] fashion until it is either realizable or a non-spurious

counter-strategy is found. Note, that the specification may be only unrealizable for the

given bound.

Theorem 1. [11] If ϕ
LTL

is realizable, then ϕ
TSL

is realizable.

2.5.1 Initial Approximation in LTL

For a TSL formula ϕ
TSL

, the set of predicate terms, and the set of updates that appear

in it are denoted by TP, TU respectively. Then, the sets

∀so ∈ O ∪ C : T
so

U := {[[so� s
i
]] ∈ TU | s

i
∈ I ∪ C},

∀c ∈ C : Tc

U/id := Tc

U ∪ {[[c� c]]},

∀o ∈ O : To

U/id := To

U,

TU/id :=
⋃

so∈O∪C
T
so

U/id

can be derived.

The syntactic conversion to LTL of a TSL formula is simply given by the formula itself,

however reinterpreting updates and predicate terms as atomic propositions in LTL.

Since updates lose their semantic meaning in the conversion, it must be made sure that

a cell or an output is only written to once per timestep.

Definition 2.12 (Initial LTL Approximation)

The initial LTL approximation ϕ
LTL

of a TSL specification ϕ
TSL

is given by:Def. Initial LTL
Approximation

ϕ
LTL

:= �

 ∧
so∈O∪C

∨
τ∈Tso

U/id

τ∧ ∧
τ ′∈Tso

U/id
\{τ}

¬τ

∧ SyntacticConversion(ϕ

TSL
)

12

2.5. TSL Synthesis

2.5.2 Spurious Counter-Strategies

The semantic meaning of predicate and function terms is lost in the LTL approximation.

In synthesis, this may lead to a counter-strategy that is called spurious, since it is not

a valid counter-strategy for the underlying TSL specification. Such a counter-strategy

exploits the semantics lost in the approximation from TSL to LTL.

Definition 2.13 (Spurious Counter-Strategy)
A counter-strategy is spurious, iff there is a branch πoσ for some computation σ ∈ Cω, for Def. Spurious

Counter-Strategy
which the strategy chooses an inconsistent evaluation of two equal predicates applied to

the same value (that therefore evaluate equally according to TSL semantics) at different

points in time.

∃σ ∈ Cω. ∃t, t ′ ∈ N. ∃τP, τ ′P ∈ TP.

τP ∈ π(σ(0)σ(1)...σ(t− 1))∧ τ ′P /∈ π(σ(0)σ(1)...σ(t ′ − 1)) ∧

∀〈 · 〉 : F→ F. η〈 · 〉(σ, π o σ, t, τP) = η〈 · 〉(σ, π o σ, t ′, τ ′P)

2.5.3 Refinement

The specification is synthesized using bounded synthesis (Sect. 2.3). Therefore, only : Sec. 2.3, p. 7

systems up to a given bound b are considered. Since the counter-strategy is represented

by a finite state transition systemwithm states, it is sufficient to only check the responses

of the system up to a depth of m ∗ b for spurious behavior. Any further exploration

would only result in repetitive checking of some states.

Syntactic equivalence of the evaluation over identity for two predicate terms τP, τ
′
P

on a computation v at times t, t ′ is a sufficient condition for these predicate terms

evaluating equally for every possible definition of predicates and functions. Hence, a

counter-strategy that includes τP at time t, but not τ ′P at time t ′ is spurious.

Using the following algorithm, the spuriousness of a counter-strategy can be deter-

mined.

13

2. Preliminaries

Algorithm 1: Check-Spuriousness
Input: bound b, counter-strategy π : C∗ → 2TP (finitely represented usingm

states)

1 for v ∈ Cm∗b, τP, τ
′
P ∈ TP, t, t

′ ∈ {0, 1, . . . ,m ∗ b− 1} do
2 if η〈 · 〉id(v, ιid, t, τP) ≡ η〈 · 〉id(v, ιid, t ′, τ ′P) ∧

τP ∈ π(v0 . . . vt−1) ∧ τ ′P /∈ π(v0 . . . vt ′−1) then
3 w← reduce(v, τP, t);
4 w ′ ← reduce(v, τ ′P, t ′);
5 return �(

∧t−1
i=0 ©iwi ∧

∧t ′−1
i=0 ©iw ′i → (©tτP ⇐⇒ ©t ′τ ′P)) ;

6 return "non-spurious" ;

14

Chapter 3
Optimizations and
Adjustments

3.1 General Optimizations for Implementation

Alg. 1 iterates over all possible combinations of computations, predicate terms, and

timesteps. However, the order of execution is not specified. No matter the order, in

the case of a non-spurious counter-strategy the algorithm will always return after the

maximumpossible number of iterations. Even in the case of a spurious counter-strategy,

its spuriousnessmay not be determined until the last possible iteration. Nonetheless, by

fixing a specific nesting for the respective loops, it is possible to implement the algorithm

in an optimized way.

3.1.1 Removing Redundant Iterations

Per definition of Alg. 1 some checks of spuriousness are redundant. For two dis-

tinct computations v, v ′ ∈ Cm∗b and two timesteps t, t ′ ∈ {0, 1, . . . ,m ∗ b − 1} with

v[...max(t, t ′)] = v ′[...max(t, t ′)], the algorithm iterates over both computations, even

though it would be sufficient to check only one. To counteract this, the iteration over

computations must be nested within the iteration over timesteps, while also limiting

the length of a computation tomax(t, t ′), i.e. v ∈ Cmax(t,t
′)
. This eliminates redundant

iterations in Alg. 1.

3.1.2 Adjusting Spuriousness Check

The number of iterations necessary can be reduced further. For two pairs of predicate

terms (τP1, τ
′
P1), (τP2, τ

′
P2) ∈ TP, two pairs of timesteps (t1, t

′
1), (t2, t

′
2) ∈ {0, 1, . . . ,m∗b−

15

3. Optimizations and Adjustments

1}2 and a computation v ∈ Cmax(t,t
′)
with τP1 = τ ′P2, τ

′
P1 = τP2, t1 = t ′2, t

′
1 = t2 the

spuriousness check is partially symmetrical.

η〈 · 〉id(v, ιid, t1, τP1) ≡ η〈 · 〉id(v, ιid, t ′1, τ ′P1)∧ τP1 ∈ π(v0 . . . vt1−1)∧ τ ′P1 /∈ π(v0 . . . vt ′1−1)

∨η〈 · 〉id(v, ιid, t2, τP2) ≡ η〈 · 〉id(v, ιid, t ′2, τ ′P2)∧ τP2 ∈ π(v0 . . . vt2−1)∧ τ ′P2 /∈ π(v0 . . . vt ′2−1)

⇐⇒

η〈 · 〉id(v, ιid, t1, τP1) ≡ η〈 · 〉id(v, ιid, t ′1, τ ′P1)
∧(τP1 ∈ π(v0 . . . vt1−1)∧ τ

′
P1 /∈ π(v0 . . . vt ′1−1)∨ τ

′
P1 ∈ π(v0 . . . vt ′1−1)∧ τP1 /∈ π(v0 . . . vt1−1))

⇐⇒

η〈 · 〉id(v, ιid, t1, τP1) ≡ η〈 · 〉id(v, ιid, t ′1, τ ′P1)∧ (τP1 ∈ π(v0 . . . vt1−1)⊕ τ
′
P1 ∈ π(v0 . . . vt ′1−1))

Furthermore, the generated assumptions for both cases are equal.

It holds that

w1 = reduce(v, τP1, t1) = reduce(v, τ
′
P2, t

′
2) = w

′
2

w ′1 = reduce(v, τ
′
P1, t

′
1) = reduce(v, τP2, t2) = w2

then,

�(
t1−1∧
i=0

©iw1i ∧

t ′1−1∧
i=0

©iw ′1i → (©t1τP1 ⇐⇒ ©t ′1τ ′P1))

= �(

t ′2−1∧
i=0

©iw ′2i ∧

t2−1∧
i=0

©iw2i → (©t ′2τ ′P2 ⇐⇒ ©t2τP2))

By using the above-mentioned spuriousness condition in Alg. 1 some iterations:Alg. 1, p. 14

turn redundant. This allows to reduce iterations over timesteps to (t, t ′) ∈ {(t, t ′) ∈
{0, 1, . . . ,m ∗ b− 1}2 | t > t ′}
The same approach could be used to cut down iterations by reducing the number of

pairs of predicate terms. However, this would introduce an additional comparison in

the check, whereas the above-mentioned technique strips a logical "and" and introduces

a "xor" comparison, keeping the overall number of logical computations the same while

reducing the number of iterations.

16

3.1. General Optimizations for Implementation

3.1.3 Partinioning Predicate Terms

For a pair of predicate terms τP, τ
′
P the spuriousness check is performed even if these

terms are made up by different predicates. However, a counter-strategy cannot be

spurious along them since they will never evaluate to the same value for all possible

definitions of their respective predicate. Hence, it is sufficient to only check for spuri-

ousness between predicate terms with the same predicate. Thus, predicate terms are

partitioned into]p∈PTpP , and another loop, iteration over predicates is introduced. This

optimization significantly reduces the overall iteration count when there is more than

one predicate in the specification.

3.1.4 Caching Counter-strategy State

In every iteration of the algorithm, it is checked for two predicate terms whether they

are an element of the counter-strategy at a specific computation. To perform this check

it is necessary to play against the counter-strategy with the given computation. This

reveals the set of all predicate terms that hold at this point. Hence, it is sufficient to

perform the necessary computations only once per combination of (t, t ′) and v ∈ Ct.

The result can then be cached and reused for all iterations over predicate terms.

3.1.5 Timestep Order

Consider the TSL Specification

I = {x}

C = {y}

O = ∅

ϕTSL = �([[y� x]]∨ [[y� y]])∧ (♦p(x)→ ♦p(y))

whose initial approximation in LTL is not realizable. When the counter-strategy of

the initial approximation is checked for spuriousness on (t, t ′) = (1, 2), it is correctly

identified as spurious and the additional assumption

�(© i_to_a→ (© p_i ⇐⇒ ©© p_a))

is generated. However, this additional assumption is neither minimal nor sufficient, i.e.

the initial approximation in LTL is still not realizable under this assumption. Another

refinement step is required to generate the additional assumption

�(i_to_a→ (p_i ⇐⇒ © p_a)),

17

3. Optimizations and Adjustments

which would be sufficient by itself. Furthermore, since the complexity of synthesis is

double exponential to the length of the LTL specification [17], the synthesis effort mas-

sively increases with an unnecessary large assumption. Hence, the order of timesteps

for which a counter-strategy is checked heavily affects the performance of the algo-

rithm. Yet, this only applies to checking counter-strategies that are spurious, since for a

non-spurious counter-strategy all paths have to be checked for spuriousness before its

non-spuriousness can be established.

Two predicate terms could evaluate inconsistently at any point. Nonetheless,

timesteps can be ordered such that the generated assumption is minimal and no

unnecessary assumptions are generated, which ensures that the number of refinements

needed is minimal.

The order for iterations over timestep tuples is given by the statement:

∀(t, t ′), (t̃, t̃ ′) ∈ N2 :

(t, t ′) < (t̃, t̃ ′) := max(t, t ′) < max(t̃, t̃ ′)∨max(t, t ′) = max(t̃, t̃ ′)∧min(t, t ′) < min(t̃, t̃ ′).

Example 3.1.1. Ordered Timestep Tuples

(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), (0, 3), (1, 3), (2, 3), (3, 3), (0, 4), (1, 4), (2, 4), . . .

4

3.1.6 Optimized Algorithm

The stated optimizations also depend on a specific order of nesting of the loops and

therefore define it. All these optimizations are implemented in Alg. 2.

18

3.1. General Optimizations for Implementation

Algorithm 2: Optimized Check-Spuriousness

Input: bound b, counter-strategy π : C∗ → 2TP (finitely represented usingm

states)

1 for t ′ ∈ {0, . . . ,m ∗ b− 1} do
2 for t ∈ {0, . . . , t ′} do
3 for v ∈ Ct do
4 state← π(v0 . . . vt−1) ;

5 state
′ ← π(v0 . . . vt ′−1) ;

6 for p ∈ P do
7 for τP, τ ′P ∈ T

p

P do
8 if η〈 · 〉id(v, ιid, t, τP) ≡ η〈 · 〉id(v, ιid, t, τ ′P)∧

(τP ∈ state⊕ τ ′P ∈ state) then
9 w← reduce(v, τP, t) ;
10 w ′ ← reduce(v, τ ′P, t ′) ;
11 return

�(
∧t−1
i=0 ©iwi ∧

∧t ′−1
i=0 ©iw ′i → (©tτP ⇐⇒ ©t ′τ ′P)) ;

12 return "non-spurious" ;

19

3. Optimizations and Adjustments

3.2 Parallelization

All iterations performed in Alg. 2 are independent of each other. Consequently, it is

possible to split iterations and run them in independent threads on multicore systems.

Because of this independence, it would be possible to start a thread for every iteration.

Anyway, the workload in each iteration is very small, so the parallelization itself must

not generate too much overhead. It is furthermore important that as much workload as

possible can be performed concurrently.

The following algorithm parallelizes Alg. 2 over pairs of timestamps (t, t ′). The

function addOperation adds the code inside to a queue, where it is executed in parallel.

Its implementation is not discussed here since this would highly depend on the system

the algorithm is run on. However, it is assumed, that it starts as many threads as it is

possible to efficiently run to execute its given code blocks. Before more tasks are pushed

to the queue, it is checked if there were already assumptions generated. Then, the

algorithm returns immediately with the generated assumptions to prevent overhead.

Note, that read andwrite operations to assumptions have to be synchronized in order

to prevent data races. Furthermore, the algorithm can return multiple assumptions

at once, since the assumption generation itself is not, and should not be, synchronized

since thiswould defeat the purpose of parallelization. However, as soon as an additional

assumption is found it is written to a set of assumptions. All other threads then detect

that an assumption has been found and terminate. The algorithm can then return the

assumptions that have been generated.

20

3.2. Parallelization

Algorithm 3: Parallized Check-Spuriousness

Input: bound b, counter-strategy π : C∗ → 2TP (finitely represented usingm

states)

1 assumptions← {} ;

2 for t ′ ∈ {0, . . . ,m ∗ b− 1} do
3 for t ∈ {0, . . . , t ′} do
4 for v ∈ Ct do
5 state← π(v0 . . . vt−1) ;

6 state
′ ← π(v0 . . . vt ′−1) ;

7 if ¬isEmpty(assumptions) then
8 return (assumptions) ;

9 addOperation(for p ∈ P do
10 for τP, τ ′P ∈ T

p

P do
11 if η〈 · 〉id(v, ιid, t, τP) ≡ η〈 · 〉id(v, ιid, t, τ ′P)∧

(τP ∈ state⊕ τ ′P ∈ state) then
12 w← reduce(v, τP, t) ;
13 w ′ ← reduce(v, τ ′P, t ′) ;
14 assumptions.insert(�(

∧t−1
i=0 ©iwi ∧

∧t ′−1
i=0 ©iw ′i →

(©tτP ⇐⇒ ©t ′τ ′P))) ;
15 cancelAllOperations;

16)

17 waitUntilAllOperationsAreFinished;

18 if isEmpty(assumptions) then
19 return "non-spurious" ;
20 else
21 return assumptions ;

21

3. Optimizations and Adjustments

3.3 Adding stronger initial assumptions

Spurious counter-strategies rely on an inconsistent evaluation of predicate terms and

function terms in LTL since the LTL conversion loses its semanticmeaning. In Alg. 1 this:Alg. 1, p. 14

is counteracted by enforcing the correct behavior by adding an assumption based on the

path of the spurious counter-strategy. However, it is possible to make further strength-

ening assumptions that prevent spurious behavior in some cases, solely based on the

TSL specification without the necessity of path exploration of the counter-strategy. This

is especially the case, but not limited, to TSL specifications that do not contain function

terms. The idea behind this is to add assumptions that guarantee that predicate terms

evaluate consistently with TSL semantics as long as the values are not modified by

functions.

Let arg : TU → TF and dest : TU → O ∪ C be defined by

arg([[so� τF]]) := τF

dest([[so� τF]]) := so

Furthermore, let

∀s
i
∈ I ∪ C : T̃U

s
i

:= {[[c� s
i
]]) ∈ TU/id | c ∈ C}

T̃P := {p(s0
i
. . . sm−1

i
) | p ∈ P ∧ p(s̃

i

0

. . . s̃
i

m−1

) ∈ TP ∧

∀n < m. ∃µ ∈ T∗U/id ∃t. arg(µ(0)) = s̃
i

n

∧

dest(µ(t)) = s
n

i
∧

s
n

i
∈ C∧ s̃

i

n ∈ I ∪ C}

∀p(s
i

0 . . . s
i

m−1) ∈ T̃P : T̃U
τp

:= {(τ0u . . . τ
m−1
u) | ∀n,n ′ < m. τnu ∈ T̃U

sni
∧

(n = n ′ ∨ dest(τnu) 6= dest(τn
′
u))}

Definition 3.1 (Stronger initial assumptions)Def. Stronger initial
assumptions Stronger initial assumptions are given by∧

τp∈T̃P

∧
(τ0u...τ

m−1
U)∈T̃U

τp

�

((
m−1∧
n=0

τnu

)
→ (p(arg(τ0u) . . . arg(τ

n−1
u)) ⇐⇒ ©p(dest(τ0u) . . . dest(τn−1u)))

)

22

3.3. Adding stronger initial assumptions

This approach will most likely result in a more complex synthesis problem in LTL

since it introduces new predicate terms. Additionally, since it may introduce predicate

terms, the synthesis step is more expensive. Nevertheless, it may also result in a less

expensive refinement process. Experimental results of this strategy are evaluated in

Chapter 5. There are TSL formulas that are not expressible with LTL formulas of :Chapter 5, p. 31

finite length [11]. However, when using bounded synthesis it is possible to generate

assumptions that prevent all possible spurious counter-strategies. This is discussed in

Sect. 3.5

Corollary 2. For any TSL specification ϕ with TP = TF and ∀τu ∈ TU. arg(τu) ∈ O ∪ C the
synthesis problem of ϕ can be reduced to an LTL synthesis problem.

23

3. Optimizations and Adjustments

3.4 Generalized Assumptions

The assumptions generated by Alg. 2 are specific for a sequence of computation steps.:Alg. 2, p. 19

Another approach is to generate multiple assumptions that fix predicate values for the

next time step based on their current evaluation and on updates. All assumptions

combined then also imply the correct behaviour for the specific computation. However,

this may introduce new predicate terms.

Algorithm 4: Optimized check-spuriousness with generalized assumptions

Input: bound b, counter-strategy π : C∗ → 2TP (finitely represented usingm

states)

1 for t ′ ∈ {0, . . . ,m ∗ b− 1} do
2 for t ∈ {0, . . . , t ′} do
3 for v ∈ Ct do
4 state← π(v0 . . . vt−1) ;

5 state
′ ← π(v0 . . . vt ′−1) ;

6 for p ∈ P do
7 for τP, τ ′P ∈ T

p

P do
8 if η〈 · 〉id(v, ιid, t, τP) ≡ η〈 · 〉id(v, ιid, t, τ ′P)∧

(τP ∈ state⊕ τ ′P ∈ state) then
9 w← reduce ′(v, τP, t) ;
10 w ′ ← reduce ′(v, τ ′P, t ′) ;
11 return �(

∧t−1
i=0 wi → (p(arg(wi)) ⇐⇒ ©p(dest(wi))));

12 return "non-spurious" ;

24

3.5. Generating Exhaustive Assumptions

3.5 Generating Exhaustive Assumptions

Bounded synthesis is used to synthesize LTL approximations of TSL specifications.

Thm. 1 states that a solution to the synthesis problem of the LTL approximation of a :Thm. 1, p. 12

TSL specification is also a solution to the TSL synthesis problem. If a counter-strategy

returned by the LTL solver is non-spurious, it also implies, that the TSL specification

is unrealizable [11]. The fact that all spurious counter-strategies can be prevented by

additional assumptions generated by Alg. 1 and that the number of possible additional :Alg. 1, p. 14

assumptions is finite for a given bound leads to the following conclusion:

Corollary 3. The bounded synthesis problem for TSL is decidable.

The simplest method to generate exhaustive assumptions is to adapt Alg. 2 in a way :Alg. 2, p. 19

that assumptions are added for all cases, independently of an existing counter-strategy.

Note that in Alg. 2 t, and t ′ is limited by m ∗ b − 1, where m is the size of the counter-

strategy. However, the counter-strategy is omitted from the following algorithm. Any

counter-strategy would nonetheless be also limited by b, as we use bounded synthesis.

Hence, path exploration in the algorithm can be limited to a depth of b2 − 1.

Algorithm 5: Generate exhaustive assumptions

Input: bound b
1 assumptions← {};

2 for (t, t ′) ∈ {(t, t ′) ∈ {0, 1, . . . , b2 − 1}2 | t > t ′} do
3 for v ∈ Ct do
4 for p ∈ P do
5 for τP, τ ′P ∈ T

p

P do
6 if η〈 · 〉id(v, ιid, t, τP) ≡ η〈 · 〉id(v, ιid, t ′, τ ′P) then
7 w← reduce(v, τP, t) ;
8 w ′ ← reduce(v, τ ′P, t ′) ;
9 assumptions.insert(�(

∧t−1
i=0 ©iwi ∧

∧t ′−1
i=0 ©iw ′i →

(©tτP ⇐⇒ ©t ′τ ′P))) ;

10 return assumptions ;

The number of additional assumptions grows by the bound. Also, in almost any case

many unnecessary assumptions are generated which would not be generated by Alg. 1.

The reason for that is that additional assumptions are generated even for unreachable

cases. Furthermore, the algorithm may generate many assumptions that are implied

by smaller assumptions. Note, that this algorithm has not been implemented since

its result would not be useful at all. Nonetheless, it is included here for the sake of

completeness.

25

Chapter 4
Implementation

The TSL translation tool on which all tests were run is written in Swift [22]. The tool

implements an object-oriented structure for TSL and LTL formulas. TSL specifications

are parsed by an ANTLR [2] generated parser. LTL synthesis is handled by automatic

calls to BoSy [8] [5]. In case a counter-strategy is returned by BoSy it is given as an

And-Inverter Graphs (AIGs) [1]. The AIG is then parsed by the main tool, which also

implements the exploration of the counter-strategy as needed for Alg. 2. :Alg. 2, p. 19

27

4. Implementation

4.1 Main Algorithm

The algorithm starts by trying to synthesize the LTL conversion of the TSL specification

by bounded synthesis with the given bound. In the case of a realizable strategy, the

algorithm returns with a solution, if a counter-strategy is returned by BoSy it is checked

for spuriousness. BydefinitionofAlg. 2 a counter-strategy is checkedup todepthb∗m−1:Alg. 2, p. 19

where b is the bound and m is the number of states representing the counter-strategy.

Since the counter-strategy returned by BoSy is given as an And-Inverter-Graph (AIG)

[1], an upper bound for the number of states can be estimated by 2 to the power of the

number of latches in the AIG. Note, that the implementation uses this estimate. Though

it would be possible to determine the exact number of states by path exploration, which

is not implemented in the tool due to its complexity.

let ltlTranslation = translator.getTranslation()

var bosy_result = Bosy.Result.UNKNOWN

var aigText = ""

while((bosy_result != Bosy.Result.REALIZABLE)){

(bosy_result , aigText) = Bosy.synthesize(

inputs: predicateTerms ,

outputs: translator.updates,

bound: bound,

assumptions: assumptions ,

guarantees: [ltlTranslation]

)

if (bosy_result == Bosy.Result.UNREALIZABLE)

{

let start_ref = Date()

let aig = try AIG.parse(aag: aigText)!

let m = aig.numberOfStates()

var refiner : Refinement = Refinement(aig, updates,

predicateTerms , bound*m)

let assumptions_ = refiner.checkSpuriousness()

predicateTerms = refiner.getPredicateTerms()

// The counter-strategy is non-spurious if there are

no additional assumptions

if(assumptions_.isEmpty){

28

4.1. Main Algorithm

print("non-spurious counter-strategy")

break

}

assumptions = assumptions.concat(assumptions_)

}

}

Note, that some details of the implementation have been omitted from the code snippet

above.

Predicate terms are treated as inputs for the LTL solver. This is because predicates are

assumed to be controlled by the environment for LTL synthesis since their implemen-

tation is not fixed. BoSy does only accept alphanumericial values with underscores as

names for atomic propositions. It is therefore not possible to keep the notation of up-

dates, predicate terms, and function terms for their respective LTL conversion. Instead,

they are transformed as follows:

synCon(f τ0F . . . τ
n−1
F) := f+ "_"+ synCon(τ0F) + "_"+ . . . + synCon(τn−1F)

synCon(p τ0F . . . τ
n−1
F) := p+ "_"+ synCon(τ0F) + "_"+ . . . + synCon(τn−1F)

synCon([[so ← τF]]) := synCon(τF) + "_to_"+ synCon(so)

29

4. Implementation

4.1.1 BoSy

BoSy [8] is called by themain implementation over the command line. For this purpose,

a helper class has been implemented that manages not only calls to BoSy but also parses

the results. For more control over the process BoSyBackend is used as a synthesis tool.

It is configured to use ltl3ba as an automaton tool, the search strategy is fixed to linear.

The semantics for the output system is configured to mealy.

30

Chapter 5
Benchmarks

The benchmarkswere conductedwith runsolver [19] on an Intel(R) Xeon(R) CPUE3-1271

v3 @ 3.60GHz with 32GB RAM. Timeout was set to 1800 seconds wallclock time and

3600 seconds CPU time. All tests were run at least three times to ensure the results were

consistent. The values given in the graphs are average values from these runs.

The bound for specifications 1, 2, 3, and 4 was set to 16, while the bound for specifi-

cation 5 was set to 8.

31

5. Benchmarks

5.1 Specifications

This section introduces sets of test specifications, onwhich the benchmarks in Chapter 5

are performed. Note, that these specifications do not define any kind of useful system.

Their only purpose is to serve as scalable examples for TSL synthesis.

The following notation is used for the n-times composition of a function with itself:

f◦n := f ◦ · · · ◦ f︸ ︷︷ ︸
n times

Specification 1

C :={c0, ..., cn}

I :={in}

O :={}

spec
1
n :=�([[c0� in]]∨ (

∨
∀i∈N,i<n

[[ci+1� ci]])∨ (
∨

∀i∈N,i6n
[[ci� ci]]))

∧ (♦p(in)→ ♦p(cn))

Specification 2

C := {c0, ..., cn}

I := {in}

F := {f}

O := {}

spec
2
n := �([[c0� in]]∨ (

∨
∀i∈N,i<n

[[ci+1� f(ci)]]))∧ (♦p(f◦n(in))→ ♦p(ci))

Specification 3 (n > 1)

C :={c, c0, ..., ci}

I :={in}

O :={}

spec
3
n :=�([[c� in]]∨ (

∨
∀i∈N,i<n

[[ci� c]])∧
∧

∀i∈N,i<n
(p(ci) ⇐⇒ p(ci+1)))

32

5.1. Specifications

Specification 4 (n > 1)

C :={c, c0, ..., ci}

I :={in}

O :={}

spec
4
n :=�([[c� in]]∨ (

∨
∀i∈N,i<n

[[ci� f(c)]]∨ [[ci� g(c)]])∧
∧

∀i∈N,i<n
(p(ci) ⇐⇒ p(ci+1)))

Specification 5

C :={a}

I :={in}

O :={}

spec
5 :=(�([[a� in]]∨ [[a� a]]))∧ (♦(p(i))→ ♦(¬p(a)))

Note, that this specification is unrealizable. Therefore, only the benchmarks for parallel

and classical spurious checking are performed on it.

33

5. Benchmarks

5.2 Results

In this section, the results of benchmarking the specifications fromSect. 5.1 are evaluated: Sec. 5.1, p. 32

and discussed.

5.2.1 Parallelization

The approach of parallelizing the check-spuriousness algorithm (Alg. 3) is only com-:Alg. 3, p. 21

pared against the non-parallelized version. This is because the other approaches aim

at generating customized assumptions, rather than on speeding up the check for spuri-

ousness.

1 2 3 4 5

0.001

0.1

10

n

R
e
fi
n
e
m
e
n
t
T
i
m
e
[
s
]

Specification 1

Classical Parallel

1 2 3 4 5

0.001

0.1

10

n

R
e
fi
n
e
m
e
n
t
T
i
m
e
[
s
]

Specification 2

Classical Parallel

34

5.2. Results

2 3 4

0.5

1

1.5

2
· 10−2

n

R
e
fi
n
e
m
e
n
t
T
i
m
e
[
s
]

Specification 3

Classical Parallel

2 3 4

0

5 · 10−2

0.1

0.15

n

R
e
fi
n
e
m
e
n
t
T
i
m
e
[
s
]

Specification 4

Classical Parallel

1 2 3 4 5

1

2

3

4

5

n

R
a
t
i
o

Specification 1

Specification 2

Specification 3

Specification 4

Figure 5.3: Refinement Time Ratio (Parallel / Classical)

For specifications where spuriousness can be detected early in the algorithm, the

overhead generated by parallelization overweights the benefits. For specification 3 and

specification 4 parallelization performed worse for every variant except spec34, where

parallelization ran 13% faster. For larger assumptions, the parallelization approach

slightly outperformed the classical approach. For specification 5, which is the only

unrealizable assumption in the test set, a complete exploration of all possible counter-

35

5. Benchmarks

Classical Parallel

35.2s 16.3s

Table 5.4: Specification 5: Check-Spuriousness Time

strategy paths is necessary to establish its spuriousness. In this case, the algorithm

massively benefits from parallelization, as the runtime of the parallelized algorithm

was only 46.3% of the classical version, as shown in Tbl. 5.4.

An overview of the comparative performance between the two approaches is given

in Fig. 5.3.

5.2.2 Overall Runtime and Memory Usage

In this section, the overall wallclock time and memory usage for synthesis is compared

between the implementations of Alg. 2, and its variants described in Sect. 3.3 and:Alg. 2, p. 19

: Sec. 3.3, p. 22 Sect. 3.4.

: Sec. 3.4, p. 24 On specification 1 and 3 the process reached timeout after 1800 seconds for every

approach for n = 4 and n = 5, also for specification 3 all benchmarkes timed out for

n = 5, for specification 4 all benchmarks timed out for n = 4 and n = 5.

For specifications 1, 3, and 4, synthesis with strengthened initial assumptions ran

fastest. For specification 2, this method was slightly slower than the classical approach.

However, for this specification, there are no stronger initial assumptions given by the

chosen procedure since every update contains functions. Synthesis with generalized as-

sumptions performed roughly equivalent or worse to the classical approach concerning

synthesis time, except for spec12 and spec
1
3, where it was slightly faster. The largest differ-

ence between the classical and an alternative approach was for spec32, spec
4
2, and spec

4
3

where stronger initial assumptions produced results in only 62% of the time needed by

the classical strategy.

The refinement time though made up only a small portion of synthesis time, but as

can be seen from the results, the strategy for assumption generation has a huge impact

on the synthesis process.

For memory usage, the results were much more inconsistent. No strategy performed

significantly better than another over a large portion of the test set. The overall memory

usage between the approacheswas generally in the same range, though therewere some

outliers.

36

5.2. Results

1 2 3

1

10

n

R
u
n
t
i
m
e
[
s
]

Synthesis Time

Classical

Stronger Initial

Generalized

1 2 3

60

80

n

M
e
m
o
r
y
[
M
i
B
]

MaximumMemory

Classical

Stronger Initial

Generalized

Figure 5.5: Specification 1

1 2 3

1

10

n

R
u
n
t
i
m
e
[
s
]

Synthesis Time

Classical

Stronger Initial

Generalized

1 2 3

60

70

80

90

n

M
e
m
o
r
y
[
M
i
B
]

MaximumMemory

Classical

Stronger Initial

Generalized

Figure 5.6: Specification 2

37

5. Benchmarks

2 3 4

1

10

100

n

R
u
n
t
i
m
e
[
s
]

Synthesis Time

Classical

Stronger Initial

Generalized

2 3 4

100

200

300

n

M
e
m
o
r
y
[
M
i
B
]

MaximumMemory

Classical

Stronger Initial

Generalized

Figure 5.7: Specification 3

2 3
1

10

n

R
u
n
t
i
m
e
[
s
]

Synthesis Time

Classical

Stronger Initial

Generalized

2 3
50

100

150

n

M
e
m
o
r
y
[
M
i
B
]

MaximumMemory

Classical

Stronger Initial

Generalized

Figure 5.8: Specification 4

38

5.2. Results

5.2.3 Refinement count

As shown in Tbl. 5.9, generalized assumptions did not decrease the number of refine-

ment iterations needed. However, even though it was not the case for all specifications

in the test set, stronger initial assumptions did significantly decrease the number of

necessary refinements.

Note, that for spec1 and spec2 there was no difference in refinement count for each

size-variant of a specification.

Specification Classical Stronger Initial Generalized

spec1n 1 0 1

spec2n 1 1 1

spec32 3 1 3

spec33 5 2 5

spec34 7 3 7

spec42 3 1 3

spec43 5 2 5

spec44 7 3 7

Table 5.9: Refinement count by specification and algorithm

39

Chapter 6
Related Work

The synthesis problem was introduced in [12] by Alonzo Church and is therefore also

known as Church’s Problem. It asks for the construction of a reactive system, given a

specification describing the desired behavior. Since its introduction, there have been

many attempts to tackle the problem. Büchi and Landweber established the decidability

of the problem for specifications in monadic second-order logic of one successor (S1S)

and provided a solving algorithm [6]. However, the computational complexity of the

translation from formulas S1S to Büchi automata is nonelementary [21].

By using Linear Temporal Logic (LTL) [18] instead of S1S, the complexity of the

problem can be reduced to double exponential [9]. Nevertheless, for many practical

applications, this is still computationally expensive. Other attempts to find a more

efficient solution for the problem focus on specific fragments of LTL. An example of

this is Generalized Reactivity (1) (GR(1)) [16], which further reduces the complexity to

quadratic. These fragments, however, come at the cost of a less expressive specification

language. Although it is possible to synthesize some specifications which can not be

explicitly expressed in GR(1), they then require an expensive pre-processing step.

Another approach is bounded synthesis [20]. While the possible size of a system

generated by a specification is high, many can be implemented with a comparatively

small number of states. Bounded synthesis then reduces the synthesis problem to only

find solutions up to a given number of states. This approach is suitable to construct

minimal and therefore simply structured solutions. Furthermore, it is feasible to use

it as a semi-decision procedure for the unbounded synthesis problem of distributed

systems, which is in general undecidable.

For some systems that base on several reusable components, it is the case that synthesis

leads to increasingly larger systems when compared to manual implementations [4].

Parameterized synthesis [14] can be used to counteract this problem for synthesizing

the AMBA AHB protocol [4].

41

6. Related Work

All these processes have in common that they perform poorly when handling data

since it has to be encoded in the states of the system. Apossible approach to efficient and

scalable reactive synthesis is based onTemporal StreamLogic (TSL) [11]. TSL has similar

syntax and semantics to LTL, however, it introduces useful abstractions on data han-

dling. The synthesis technique is then based on the idea of synthesizing a controller for

the data flow, without concretely specifying any data processing parts of the system. On

the downside, the TSL synthesis problem is in general undecidable. A TSL specification

is synthesized by under-approximating it in LTL with no environmental assumptions

at all and then obtaining a simple solution by bounded synthesis. If the approximation

is unrealizable due to increased freedom of the environment, counterexample-guided

abstraction refinement (CEGAR) [7] is used to generate additional assumptions. Further

research on synthesizing TSL specification focuses on extending TSL with first-order

theories [10], which identified semi-decidable fragments of TSL for its satisfiability

problem and introduced a corresponding algorithm. Moreover, there is a synthesis

algorithm for TSL synthesis under theories [15].

TSL synthesis has already been used to successfully synthesize complex systems such

as a music player app [11] as well as a small game on a handheld device [13]. Both tasks

require an intense amount of data handling, which would not have been possible to

synthesize using other approaches.

42

Chapter 7
Conclusion

In this thesis, we optimized the TSL check-spuriousness algorithmAlg. 1 for implemen-

tation. By nesting the loops in a specific order, it is possible to reduce the number of

iterations over computations Furthermore, by taking advantage of partial symmetry in

the algorithm and the generated assumption, the iterations can be cut down further.

Another step to reducing iterations is possible by partitioning the predicate terms by

their predicate, and only iterating over the respective set. Additionally, by exploring

a counter-strategy only once for a given strategy computational effort can be reduced.

Besides, by fixing the order of timestep pairs, it can be ensured that the number of

necessary refinements is minimal.

By taking advantage of the fact that iterations over computations are independent of

each other we introduced a parallelized version of the optimized algorithm. Moreover,

we proposed a possible way of strengthening initial assumptions by adding assump-

tions that ensure equivalent predicate evaluation over values that are not the results of

functions. Furthermore, we introduced an alternative, more generalizedway of generat-

ing additional assumptions that does not rely on complete paths implying the necessary

behavior.

Finally, we benchmarked the suggested variants of the algorithms on a set of test speci-

fications. Its results suggest, that the strengthening of initial assumptions is a promising

way to reduce synthesis time for TSL synthesis. Moreover, parallelization improves the

runtime of spuriousness checks at least for large or unrealizable specifications.

Anyway, the results also showed that the actual time needed for checking the spu-

riousness of counter-strategies is minuscule compared to the overall synthesis time.

Consequently, the step of refining specifications has little room for optimizations, how-

ever, TSL synthesis would massively benefit from further improvements in bounded

synthesis.

43

7. Conclusion

Further Work For further work, it would be possible to make at least some assump-

tions on the evaluation of predicates and functions. This could easily be done by

adjusting the evaluation function that is used for checking the spuriousness of a path.

Consequently, this would make it possible to synthesize specifications that would be

unrealizable under the theory of uninterpreted functions and predicates. Furthermore,

it could be investigated if this opens up new ways of strengthening the initial assump-

tions or generating generalized assumptions. Additionally, there may be other ways

of improving initial assumptions or generating generalized assumptions that have not

been considered in this thesis.

44

Bibliography

[1] AIGER Format Description. http://fmv.jku.at/papers/Biere-FMV-TR-07-
1.pdf. Accessed: 2022-09-05.

[2] ANTLR Parser Generator. https://www.antlr.org/. Accessed: 2022-09-05.

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT

Press, 2008. isbn: 026202649X. url: http : / / www . amazon . com / Principles -

Model - Checking - Christel - Baier / dp / 026202649X % 3FSubscriptionId %

3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%

26creative%3D165953%26creativeASIN%3D026202649X.

[4] Roderick Bloem, Swen Jacobs, and Ayrat Khalimov. “Parameterized Synthesis

Case Study: AMBAAHB”. In: Electronic Proceedings in Theoretical Computer Science
157 (July 2014), pp. 68–83. issn: 2075-2180. doi: 10.4204/eptcs.157.9. url:

http://dx.doi.org/10.4204/EPTCS.157.9.

[5] BoSy on Github. https://github.com/reactive-systems/bosy. Accessed: 2022-
09-05.

[6] J. Richard Buchi and Lawrence H. Landweber. “Solving Sequential Conditions

by Finite-State Strategies”. In: Transactions of the American Mathematical Society
138 (1969), pp. 295–311. issn: 00029947. url: http://www.jstor.org/stable/

1994916.

[7] Edmund Clarke et al. “Counterexample-GuidedAbstraction Refinement for Sym-

bolic Model Checking”. In: J. ACM 50.5 (Sept. 2003), pp. 752–794. issn: 0004-5411.

doi: 10.1145/876638.876643. url: https://doi.org/10.1145/876638.876643.

[8] Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. “BoSy: An Experi-

mentation Framework for Bounded Synthesis”. In: Proceedings of CAV. Vol. 10427.
LNCS. Springer, 2017, pp. 325–332. doi: 10.1007/978-3-319-63390-9_17.

45

http://fmv.jku.at/papers/Biere-FMV-TR-07-1.pdf
http://fmv.jku.at/papers/Biere-FMV-TR-07-1.pdf
https://www.antlr.org/
http://www.amazon.com/Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D026202649X
http://www.amazon.com/Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D026202649X
http://www.amazon.com/Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D026202649X
http://www.amazon.com/Principles-Model-Checking-Christel-Baier/dp/026202649X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D026202649X
https://doi.org/10.4204/eptcs.157.9
http://dx.doi.org/10.4204/EPTCS.157.9
https://github.com/reactive-systems/bosy
http://www.jstor.org/stable/1994916
http://www.jstor.org/stable/1994916
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-63390-9_17

Bibliography

[9] Bernd Finkbeiner. “Synthesis of Reactive Systems”. In:Dependable Software Systems
Engineering. Ed. by Javier Esparza, Orna Grumberg, and Salomon Sickert. Vol. 45.

NATO Science for Peace and Security Series, D: Information and Communication

Security. IOS Press, 2016, pp. 72–98. isbn: 978-1-61499-626-2.

[10] Bernd Finkbeiner, Philippe Heim, and Noemi Passing. “Temporal Stream Logic

modulo Theories”. In: Foundations of Software Science and Computation Structures.
Ed. by Patricia Bouyer and Lutz Schröder. Cham: Springer International Publish-

ing, 2022, pp. 325–346. isbn: 978-3-030-99253-8.

[11] Bernd Finkbeiner et al. “Temporal Stream Logic: Synthesis Beyond the Bools”. In:

Computer Aided Verification. Ed. by Isil Dillig and Serdar Tasiran. Cham: Springer

International Publishing, 2019, pp. 609–629. isbn: 978-3-030-25540-4.

[12] Joyce Friedman. “Church Alonzo. Application of Recursive Arithmetic to the

Problem of Circuit Synthesis Summaries of Talks Presented at the Summer Insti-

tute for Symbolic Logic Cornell University, 1957, 2nd Edn., Communications Re-

search Division, Institute for Defense Analyses, Princeton, N. J., 1960, Pp. 3?50. 3a-

45a”. In: Journal of Symbolic Logic 28.4 (1963), pp. 289–290. doi: 10.2307/2271310.

[13] Gideon Geier et al. “Syntroids: Synthesizing a Game for FPGAs using Temporal

Logic Specifications”. In: 2019 Formal Methods in Computer Aided Design (FMCAD).
2019, pp. 138–146. doi: 10.23919/FMCAD.2019.8894261.

[14] Swen Jacobs and Roderick Bloem. “Parameterized Synthesis”. In: Logical Methods
in Computer Science Volume 10, Issue 1 (Feb. 2014). doi: 10.2168/LMCS-10(1:

12)2014. url: https://lmcs.episciences.org/736.

[15] BenediktMaderbacher andRoderickBloem. “Reactive SynthesisModuloTheories

Using Abstraction Refinement”. In: arXiv e-prints, arXiv:2108.00090 (July 2021),

arXiv:2108.00090. arXiv: 2108.00090 [cs.LO].

[16] Nir Piterman,AmirPnueli, andYaniv Sa’ar. “Synthesis ofReactive(1)Designs”. In:

Verification, Model Checking, and Abstract Interpretation, 7th International Conference,
VMCAI 2006, Charleston, SC, USA, January 8-10, 2006, Proceedings. Ed. by E. Allen

Emerson and Kedar S. Namjoshi. Vol. 3855. Lecture Notes in Computer Science.

Springer, 2006, pp. 364–380. doi: 10.1007/11609773_24. url: https://doi.org/

10.1007/11609773%5C_24.

[17] A. Pnueli and R. Rosner. “On the Synthesis of a Reactive Module”. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’89. Austin, Texas, USA: Association for Computing Machinery,

1989, pp. 179–190. isbn: 0897912942. doi: 10.1145/75277.75293. url: https:

//doi.org/10.1145/75277.75293.

[18] Amir Pnueli. “The temporal logic of programs”. In: 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977). 1977, pp. 46–57. doi: 10.1109/SFCS.

1977.32.

46

https://doi.org/10.2307/2271310
https://doi.org/10.23919/FMCAD.2019.8894261
https://doi.org/10.2168/LMCS-10(1:12)2014
https://doi.org/10.2168/LMCS-10(1:12)2014
https://lmcs.episciences.org/736
https://arxiv.org/abs/2108.00090
https://doi.org/10.1007/11609773_24
https://doi.org/10.1007/11609773%5C_24
https://doi.org/10.1007/11609773%5C_24
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

Bibliography

[19] runsolver. http://www.cril.univ-artois.fr/~roussel/rech.php. Accessed:
2022-09-05.

[20] Sven Schewe and Bernd Finkbeiner. “Bounded Synthesis”. In: Proc. ATVA.
Springer-Verlag, 2007, pp. 474–488.

[21] Larry J. Stockmeyer. “The Complexity of Decision Problems in Automata Theory

and Logic”. In: 1974.

[22] Swift Programming Language. https://swift.org. Accessed: 2022-09-05.

[23] WolfgangThomas. “Solution ofChurch’s Problem:A tutorial”. In:NewPerspectives
on Games and Interaction 4 (Jan. 2008).

47

http://www.cril.univ-artois.fr/~roussel/rech.php
https://swift.org

	Introduction
	Preliminaries
	Linear Temporal Logic (LTL)
	Church's Problem
	Bounded Synthesis Problem
	Temporal Stream Logic (TSL)
	TSL Synthesis

	Optimizations and Adjustments
	General Optimizations for Implementation
	Parallelization
	Adding stronger initial assumptions
	Generalized Assumptions
	Generating Exhaustive Assumptions

	Implementation
	Main Algorithm

	Benchmarks
	Specifications
	Results

	Related Work
	Conclusion

