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Abstract

Lewis’ theory of counterfactuals is the foundation of many contemporary notions of
causality. In this paper, we extend this theory in the temporal direction to enable symbolic
counterfactual reasoning on infinite sequences, such as counterexamples found by a model
checker and trajectories produced by a reinforcement learning agent. In particular, our
extension considers a more relaxed notion of similarity between worlds and proposes two
additional counterfactual operators that close a semantic gap between the previous two in
this more general setting. Further, we consider versions of counterfactuals that minimize
the distance to the witnessing counterfactual worlds, a common requirement in causal
analysis. To automate counterfactual reasoning in the temporal domain, we introduce a
logic that combines temporal and counterfactual operators, and outline decision procedures
for the satisfiability and trace-checking problems of this logic.

1 Introduction

Evaluating counterfactual statements is a fundamental problem for many approaches to causal
reasoning [40]. Such reasoning can for instance be used to explain erroneous system behavior
with a counterfactual statement such as ‘If the input i at the first position of the observed
computation π had not been enabled then the system would not have reached an error e.’
which can be formalized using the counterfactual operator → and the temporal operator F:

π ⊨ (¬i) →(¬ F e) .

Since the foundational work by Lewis [38] on the formal semantics of counterfactual conditionals,
many applications for counterfactuals [28, 5, 34, 46, 3, 15] and some theoretical results on the
decidability of the original theory [37] and related notions [20, 2] have been discovered. Still,
certain domains have proven elusive for a long time, for instance, theories involving higher-order
reasoning and an infinite number of variables. In this paper, we consider a domain that combines
both of these aspects: temporal reasoning over infinite sequences. In particular, we consider
counterfactual conditionals that relate two properties expressed in temporal logics, such as the
temporal property ¬ F e from the introductory example. Temporal logics are used ubiquitously
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as high-level specifications for verification [21, 4] and synthesis [22, 41], and recently have also
found use in specifying reinforcement learning tasks [32, 39]. Our work lifts the language of
counterfactual reasoning to similar high-level expressions. We consider Quantified Propositional
Temporal Logic (QPTL) because it can characterize the full class of ω-regular properties and in
this way subsumes popular specification languages. This results in our logic QPTLcf , which mixes
QPTL with counterfactual conditionals and can be used to check counterfactual dependencies
between ω-regular properties. We abstract away from any concrete causal models in this paper
but refer to recent works by Halpern and Peters [29], and Coenen et al. [16] on extending these
models to infinitely many variables.

Focusing on the core counterfactual reasoning inherent to causality allows us to study several
key problems arising in the temporal domain. We believe the main reason higher-order reasoning
and an infinite number of variables induce difficulties for counterfactual reasoning is ultimately
tied to Lewis’ rejection of the Limit Assumption, which stipulates that for any world W and
property φ, there is a unique set of worlds minimally close toW that satisfy φ. If the assumption
holds in some domain, counterfactual reasoning is simple: A statement such as ‘If φ had held
then ψ would have held, too.’, formally expressed by the formula φ →ψ, then would only
need to compute the set of worlds minimally close to W that satisfy φ and check whether all of
them satisfy ψ, too. However, as Lewis points out, the assumption is generally not true in any
continuous domain, and as we will see later, it is also not generally true in the temporal domain.
Previous works on defining notions of causality in settings with infinitely many variables sidestep
the issue by restricting to similarity relations [27, 16] or logics for cause and effect [35] that
satisfy the Limit Assumption, but this imposes a significant toll on the precision of the inferred
causes, since this requires coarsely overapproximating the set of closest traces.

One of the key insights of this work is that it is possible to reason about counterfactuals
in the temporal domain even when rejecting the Limit Assumption. Without the assumption,
evaluating counterfactual conditionals requires complex quantification over the possibly infi-
nite chains of worlds ever closer to W . To solve these quantified statements in our domain,
we use recent advances in the study of hyperproperties [14] and their corresponding temporal
logics [13, 43], which originate in the verification of information-flow policies and allow to relate
multiple traces of a system to another. This pushes their decidability to the edge, for instance,
the satisfiability problem of HyperQPTL, which extends QPTL with quantification over traces, is
undecidable. While our counterfactual-temporal logic QPTLcf has inherently relational seman-
tics, its models are still traces, in contrast to the sets of traces modeled by HyperQPTL. Further,
in QPTLcf the trace-quantification is guarded by the counterfactual conditionals. We show that
together this yields decidability for the satisfiability, model-checking and trace-checking prob-
lems of QPTLcf by encoding them into the decidable model-checking problem of HyperQPTL.

We address several limitations of Lewis’ original theory of counterfactuals, with the goal that
our logic QPTLcf can be practically used to specify notions of temporal causality. For instance,
the original theory requires a similarity relation between worlds that is total, i.e., for any two
worlds W1 and W2 it needs to be possible to assess which one is closer to the reference world
W . This turns out to be far too restrictive for reasonable similarity relations between infinite
traces, and hence we extend Lewis’ theory to non-total similarity relations. However, since in
such relations, there may be several incomparable sets of worlds that may count as the worlds
minimally close to W , this opens a semantic gap between Lewis’ two proposed counterfactual
operators. The crux is that, for instance, a naive extension of the ‘Would’ counterfactual →
quantifies existentially over these sets of closest worlds, meaning its enough if there is one path
from W to worlds satisfying φ where the closest worlds then also satisfy ψ. But there may be
other paths to φ where the closest worlds do not satisfy ψ. A similar problem exists with Lewis’
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semantics of the ‘Might’ counterfactual. We argue that for both operators, the naive extensions
to non-total similarity relations do not match the intended semantics of the counterfactual
statements they are supposed to formalize, and propose fixed semantics for non-total similarity
relations. Another common requirement for causes is a notion of minimality [26, 25, 30, 16, 15],
such that negating the cause describes the minimal changes necessary to avoid the effect. This
notion is not covered by Lewis’ original theory. To enable our logic to express the minimality
condition, we introduce minimal counterfactual operators. The intuition behind a minimal
counterfactual such as φ →

min
ψ is that it is meant to minimize the path from the reference

world to the counterfactual worlds satisfying ψ. This boils down to a second-order requirement
that quantifies over properties φ′ to see whether some of them characterize a superset of φ
and still qualify in the counterfactual. Since the second-order quantification is guarded by
the minimal counterfactual operators, we can eliminate it by giving equisatisfiable first-order
formulas that only quantify over traces.

We show that with an appropriate choice of underlying universe, QPTLcf can express several
notions of causality proposed in previous literature, and use it to forge an interesting link
between event-based actual causation and property-based counterfactual causation.

Contributions. In summary, our contributions are as follows:

• We extend Lewis’ theory of counterfactual conditionals to non-total similarity relations
(Section 3.1) by proposing two additional counterfactual conditionals that capture the
intended semantics of ‘Would’ and ‘Might’ on these relations (Section 3.3).

• We study a minimality criterion for counterfactuals that captures necessary reasoning for
causal analysis and introduce minimal counterfactual operators (Section 3.4).

• We build a logic that mixes the classic counterfactuals due to Lewis and our newly pro-
posed counterfactual conditionals with temporal properties expressed in QPTL, and show
that the corresponding satisfiability and trace-checking problems are decidable (Section 4).

Necessary preliminaries on temporal logics are introduced in the following section (Section 2),
and Lewis’ original counterfactual conditionals are discussed in Section 3.2.

Related Work. Our theory is an extension of Lewis’ theory of counterfactuals [38, 37] both in
terms of the language of the antecedents and consequents, as well as for more general similarity
relations and reasoning about minimality. Previous works in the context of axiomatizing causal
modeling have extended the language of consequents to arbitrary Boolean formulas [24] as
well as to counterfactual consequents [10]. Our work lifts the language of cause and effect to
restricted first- and second-order reasoning in an infinite domain and is in this way related to
recent efforts by Halpern and Peters [29] on causal reasoning with infinitely many variables.

While to our knowledge there has been no previous work extending Lewis’ logic of counter-
factuals to temporal reasoning, there are works that have proposed some notion of temporal
causality in, e.g., Markov Decision Processes [47] and reactive systems [16]. Several previous
works have made a connection between causality and hyperproperties [1, 18, 16, 15].

2 Temporal Logics

We consider temporal logics whose models are infinite traces t = t[0]t[1] . . . ∈ (2AP )ω over
some finite set of atomic propositions AP . As a basic temporal logic we consider Linear-time
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Temporal Logic (LTL) [42]. LTL formulas are built with the following grammar, where a ∈ AP :

φ ::= a | ¬φ | φ ∧ φ | Xφ | φ Uφ .

The semantics of LTL are given by the following satisfaction relation, which recurses over the
positions i of the trace.

t, i ⊨ a iff a ∈ t[i]
t, i ⊨ ¬φ iff t, i ⊭ φ
t, i ⊨ φ ∧ ψ iff t, i ⊨ φ and πi ⊨ ψ
t, i ⊨ Xφ iff t, i+ 1 ⊨ φ
t, i ⊨ φ Uψ iff ∃j ≥ i. t, j ⊨ ψ ∧ ∀i ≤ k < j. t, k ⊨ φ

We say a trace t satisfies a formula φ iff the formula holds at the first position: t, 0 ⊨ φ, we
also write t ⊨ φ to denote this. We also consider the usual derived Boolean (∨, →, ↔) and
temporal operators (φ Rψ ≡ ¬(¬φ U¬ψ), Fφ ≡ true Uφ, Gφ ≡ false Rφ).

Example 1. To illustrate how LTL can specify the dynamics of a system, consider an elevator
that moves up (u) and down (d) between three floors bottom (b), middle (m), and top (t). We
have a set of atomic propositions AP = A ∪ S composed of two subsets A = {u, d} for actions
and S = {b,m, t} for states. The dynamics of the system starting at the lowest floor can be
specified in an LTL formula:

φelevator ≡ b ∧ G
(
(b ∧ u→ Xm) ∧ (b ∧ d→ X g) ∧ (m ∧ u→ X t) ∧ (m ∧ d→ X g)∧
(t ∧ u→ X t) ∧ (t ∧ d→ Xm) ∧ (t ̸↔ b) ∧ (b ̸↔ m) ∧ (m ̸↔ t)

)
.

The ‘Globally’ operator G universally quantifies over all time points in one sequence, requiring
that all of the conjuncts in its body hold. The conjuncts themselves encode the dynamics, e.g.,
b ∧ u → Xm ensures that when the elevator moves up from the bottom floor, it reaches the
middle floor in the next state (which the ‘Next’ operator X accesses). The formulas in the last
line encode that the elevator can only be on one floor at the same time, together with the others
they also ensure that only one action can be done at any time point. The traces that satisfy the
formula then describe all the valid dynamics of the system, e.g.:

t = {b, u}{m, d}({b, u}{m, d})ω

is a trace where the elevator cycles between the bottom and the middle floor. The ω-superscript
symbolizes that this part of the trace is repeated infinitely often.

LTL is of practical significance because its corresponding decision procedures are of com-
paratively low complexity. However, this comes at a cost in expressivity, such that it cannot
specify that, e.g., an atomic proposition eventually holds at an odd position. To make our
results applicable to as many properties as possible, we therefore consider Quantified Propo-
sitional Temporal Logic (QPTL), introduced by Sistla [45], throughout the technical sections of
this paper. QPTL extends LTL by quantification over atomic propositions. Its syntax is built
atop of LTL as follows, where q ̸∈ AP is a fresh atomic proposition, and φ is an LTL formula:

ψ ::= ∃q. ψ | ∀q. ψ | φ .

As presented by Finkbeiner et al. [23], the semantics of the formulas quantifying over proposi-
tions can be stated using a replacement function t[q 7→ tq] that given a trace t ∈ (2AP )ω and
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a trace tq ∈ (2{q})ω sets the occurrences of q in t to the ones in tq, i.e., t[q 7→ tq] ={q} tq and
t[q 7→ tq] =AP\{q} t, where t =E t′ means the truth value of the subset E ⊆ AP agrees on all
positions of the two traces.

ti ⊨ ∃q. ψ iff ∃tq ∈ (2{q})ω. t[q 7→ tq] ⊨ ψ
ti ⊨ ∀q. ψ iff ∀tq ∈ (2{q})ω. t[q 7→ tq] ⊨ ψ

For a formula φ in QPTL (and hence also in the fragment LTL), we denote by L(φ) the set of
traces that satisfy it.

Example 2. Quantification over propositions allows limited forms of counting in QPTL, such
as in the following formula φodd that tracks the parity of positions with q and hence can express
that the atomic proposition b eventually holds at an odd position:

φodd ≡ ∃q.¬q ∧ G(¬q → X q) ∧ F(q ∧ b) .

Since on trace π from Example 1 b only holds at even positions we have that π ⊭ φodd.

The semantics of the counterfactual conditionals we consider in this work require quantifi-
cation over the worlds described by their antecedents and consequents. In our case, the worlds
are traces. To express quantification over traces, we make use of hyperlogics [13, 17], temporal
logics that originated in information-flow security and relate multiple traces to one another.
The hyper-counterpart to QPTL is HyperQPTL [43] and extends the syntax with trace quantifiers
over a set of trace variables V, where π ∈ V. Since HyperQPTL is only used for decidability
proofs, and all proofs are found in the appendix due to space reasons, we also state the syntax
and semantics of HyperQPTL only in Appendix A.1.

3 Counterfactuals

We now outline our extended version of Lewis’ theory of counterfactual conditionals. First,
we extend Lewis’ notion of a similarity relation to non-total orders (Section 3.1). Then, we
introduce the classic counterfactuals (Section 3.2) and two new operators (Section 3.3), and
lastly, we consider a minimality criterion for counterfactual antecedents (Section 3.4). Since
the concepts discussed in this section are not only applicable to the traces and temporal logics
discussed in the previous section, we will adopt Lewis’ modal nomenclature and speak of worlds
and properties. We assume a set of worlds U called universe. If not stated explicitly otherwise,
all quantifiers in this section will quantify over U . Further, we assume some logic L and a
satisfaction relation that tells us for any world W ∈ U , whether it satisfies some property
φ ∈ L, which we denote with W ⊨ φ. We will make the connection to the previous section clear
by using traces as worlds and LTL formulas as properties in our concrete examples.

3.1 The Distance Between Worlds

The semantics of counterfactuals rely on reasoning about the relative similarity of worlds with
respect to the reference world in which the counterfactual is evaluated. Directly mapping Lewis’
counterfactuals to our setting would necessitate a total preorder over the set of traces to tell
us which of any two given traces is closer to our original trace. However, in practice, such a
total order is unrealistic not just in our trace-based context, as changes between two worlds
may simply be incomparable. For instance, consider that changing atomic proposition u at
position 0 has the same quantitative distance as changing it at position 1, but since the identity
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of these changes differs, the direction in the space of worlds is different. Many instances of
counterfactual reasoning, therefore, base their notion of distance on subset relationships between
changes, i.e., some world is further away than another if the changes necessary to obtain the
former are a superset of the changes necessary to obtain the latter [26, 25, 16]. Then, if no
subset relationship in either directions holds between the changes manifesting in two worlds,
their distance is incomparable. The underlying spatial structure of such a similarity relation
is a lattice over the equivalence classes of some preorder. We generalize Lewis’ counterfactual
reasoning to preorders to account for these more general similarity relations. Formally, we
require a comparative similarity relation ≤W , which is a preorder on U such that W is a
minimum: ∀W ′.W ′ ̸≤W W .1

Example 3. In the context of trace logics as outlined in the previous section, worlds correspond
to infinite traces such as t in Example 1. Our universe may be given by the language of some
QPTL formula such as the one describing the dynamics of the elevator system in Example 1,
so we have U = L(φelevator ). A similarity relation may track the changes with respect to the
reference trace t over a subset X of atomic propositions and can be formalized as follows:

≤t(X ) = {(t1, t2) | ∀n ∈ N.∀x ∈ X . t[n] ̸={x} t1[n]⇒ t[n] ̸={x} t2[n]} .

To illustrate with the elevator system from Example 1, the similarity relation ≤t(A) orders a
trace t′′ = {b, d}{b, d}({b, u}{m, d})ω, that changes the first two actions in trace t but keeps
the other actions the same, as closer to t than trace t′ = ({b, d})ω, which changes them on the
whole sequence. We have t′′ ≤t(A) t

′. Note that the above similarity relation is not total and
would hence not be covered by Lewis’ original theory.

3.2 Classic Counterfactuals

We start this section by recalling the semantics of Lewis’ counterfactual operators → and
→, based on the reformulation for similarity relations [38]. In Lewis’ theory, the operator →

is a formalization of ‘Would’ counterfactual statements such as ‘If the elevator had eventually
moved up two times in a row, then it would have reached the top floor.’ The operator →
is a formalization of ‘Might’ counterfactual statements such as ‘If the elevator had eventually
moved up two times in a row, then it might have reached the top floor two steps after the start.’
Intuitively, both of the statements should be true on trace t fro Example 1. No matter where we
change the trace such that the elevator moves upwards twice, it will in all cases end up at the top
floor. And there is one instance, i.e., when changing the first two actions appropriately, that it
will be at the top floor at the third position. Formally speaking, the distinction between the two
statements stems from different quantification over the closest worlds. ‘Would’ counterfactuals
are statements that quantify universally over all closest worlds that satisfy the antecedent,
while ‘Might’ counterfactuals quantify existentially. There are further subtle differences in the
vacuous case which we will discuss after giving the formal semantics.

Definition 4 (Semantics of ‘Would’). A world W satisfies φ →ψ iff:

∀W1.W1 ⊭ φ (1), or ∃W1.W1 ⊨ φ ∧ ∀W2.W2 ≤W W1 ⇒W2 ⊨ φ→ ψ (2) .

1Lewis refines his similarity relation based on a notion of accessibility. As our similarity relation is not
necessarily total, accessibility can be easily encoded by not relating in ≤W the models inaccessible from W . We
could then express accessibility of a world W ′ from W by requiring W ≤W W ′, but we will abstract away from
this concept for simplicity and assume that W is the unique minimum: ∀W ′.W ≤W W ′.
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It is worth pointing out that the complex expression in Condition 2 of Definition 4 mainly
stems from Lewis’ rejection of the Limit Assumption, which poses that for any antecedent φ
and worldW there exists a unique set of (equally) closest worlds satisfying φ. Then it would be
easy to simply quantify over this set universally and require the consequent to hold in all of the
worlds. However, in many scenarios, this assumption, unfortunately, does not hold. Instead,
there may in fact be an infinite chain of ever closer worlds that satisfy φ. In these instances,
what we are rather interested in is finding a ‘threshold world’ after which all closer worlds
satisfying the antecedent φ also satisfy the consequent ψ.

Example 5. → over QPTL formulas allows us to express the mix of counterfactual and tem-
poral statements that is ‘If the elevator had eventually moved up two times in a row, then it
would have reached the top floor.’ It yields the following formula:

φtop ≡ F(u ∧ Xu) → F t .

Interpreted in the universe given by L(φelevator ) and with the similarity relation ≤t(A), we have
that trace t = {b, u}{m, d}({b, u}{m, d})ω from Example 1 satisfies φtop, because no matter
where we change actions to ensure two moves upward in a row, we always end up in the top
floor (this in fact holds for any trace in the universe).

For a more complex formula illustrating that the Limit Assumption does not hold in this
setting, consider the statement ‘If the elevator would eventually only move downwards, then it
would eventually stay on the bottom floor.’ This corresponds to the formula:

φbottom ≡ F(G d) → F(G b) .

Trace t′ = ({b, d})ω satisfies F(G d), but there is an infinite chain of traces closer to t that also
satisfy F(G d):

t′′ = {b, u}{m, d}({b, d})ω, t′′′ = {b, u}{m, d}{b, u}{m, d}({b, d})ω, . . .

and so on. Hence, we cannot avoid Lewis’ complex quantification over traces to evaluate tem-
poral counterfactuals in the general case.

As one can see from Condition 1 in Definition 4, a ‘Would’ counterfactual is vacuously satis-
fied by a world if there are no related worlds that satisfy the antecedent. In contrast, a ‘Might’
counterfactual strictly requires a world that satisfies the antecedent, mainly because Lewis bases
the semantics of the two operators on the following duality law: φ →ψ ≡ ¬(φ →¬ψ) [38].
This yields the following semantics for the ‘Might’ counterfactual.

Definition 6 (Semantics of ‘Might’). A world W satisfies φ →ψ iff all of the following holds:

∃W1.W1 ⊨ φ (1), and ∀W1.W1 ⊨ φ⇒ ∃W2.W2 ≤W W1 ∧W1 ⊨ φ ∧ ψ (2) .

Again, significant complexity is introduced into the definition based on the rejection of the
Limit Assumption. Here, however, the idea is not to find a ‘threshold world’, but instead to
find for any world in the chain of ever closer worlds another one that is closer (or equally close)
such that both antecedent and consequent are true.

3.3 Counterfactuals Over Non-total Similarity Relations

The semantics proposed by Lewis’ work well if the similarity relation is a total order. However,
as we can see in the following example, the semantics do not match the intuitive meaning of
the operators when the similarity relation is not total, as in our setting.
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W

(a) ‘Would’ and ‘Universal Would’.

W

(b) ‘Might’ and ‘Existential Might’.

Figure 1: The set of worlds characterized by the counterfactuals on some similarity relation
≤W . Nodes represent worlds (e.g., W1,2,...) where the center node is the reference world W .
An edge from W1 to W2 means W1 ≤W W2. For simplicity, we omit edges that can be inferred
from reflexivity or transitivity of ≤W . Nodes of worlds that satisfy ψ are colored in teal.

Example 7. Consider the statement ‘If the elevator had eventually moved up two times in a
row, then it would have reached the top floor two steps after the start.’, which corresponds to
the following formula:

φ′′
top ≡ F(u ∧ Xu) → X(X t) .

Intuitively, this statement should not be satisfied by trace t from the previous examples. After
all, there is trace

t′1 = {b, u}{m, d}{b, u}{m,u}{t, d}{m, d}t[6]t[7] . . .

that is a closest trace satisfying F(u ∧ Xu) and it does not satisfy X(X t). Yet, we can simply
instantiate the existential quantifier in Condition 2 of Definition 4 with

t′2 = {b, u}{m,u}{t, d}{m, d}t[4]t[5] . . . .

Since there are no traces between t′2 and t, the condition is satisfied, and we obtain that t ⊨ φ′′
top.

Now, consider
φ′′′
top ≡ F(u ∧ Xu) → X(X t) .

Intuitively, this statement should be satisfied, as there are indeed closest worlds that satisfy the
consequent, namely t′2. However, since the semantics of the operator quantifies over all worlds
satisfying the antecedent and requires a smaller one that satisfies the consequent for each, the
existence of t′1 means that t ⊭ φ′′′

top.

Example 7 shows that on preorders the semantics of → is too weak and that of →
too strong to account for the intended meaning of the operators. Intuitively, ‘Would’ should
express that in the set of closest possible worlds, all worlds satisfy the consequent. However, in
preorders there may exist multiple incomparable classes of worlds on different chains along the
similarity relation. The focal question is how to quantify over these classes, existentially such
that one class is enough (like in the naive extension) or universally such that in all classes all
models have to satisfy the consequent.

Figure 1 abstractly illustrates the problem with the ‘Would’ counterfactual in Subfigure 1a
and the problem with the ‘Might’ counterfactual in Subfigure 1b. The areas colored in the dark
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colors represent the complement of the set characterized by an antecedent that satisfies the
corresponding counterfactual in this universe and similarity relation, where the worlds colored
in teal satisfy ψ. For example W ⊨ φWould →ψ if the worlds satisfying ¬φWould are the ones
included in the dark brown area in Subfigure 1a. Here we can see that there are paths out
of this area that lead to closest φWould-worlds that do not satisfy ψ, which clashes with the
intended semantics of ‘If φWould were true, then ψ would be true as well.’ What we instead
want to capture is something like the bright brown area: No matter where we leave this area
along the similarity relation, we always end up in a ψ-world. We capture this intention with the
‘Universal Would’ counterfactual defined in the following, which requires all closest φ-worlds
on any chain in the similarity relation to satisfy ψ.

Definition 8 (Semantics of ‘Universal Would’). A world W satisfies φ →ψ iff either of the
following holds:

∀W1.W1 ⊭ φ, or
∀W1.W1 ⊨ φ⇒ ∃W2.W2 ≤W W1 ∧W2 ⊨ φ ∧ ∀W3.W3 ≤W W2 ⇒W3 ⊨ φ→ ψ .

To ground our definition, we can show that it is equivalent to Lewis’ classic ‘Would’ coun-
terfactual on total orders.

Proposition 9. If ≤W is a total order, then ‘Universal Would’ and ‘Would’ are equivalent,
i.e., for all pairs of properties φ and ψ we have that φ →ψ ≡ φ →ψ.

We now introduce a similar counterpart to the ‘Might’ counterfactual. We derive the se-
mantics from a duality law similar to the original one: φ →ψ ≡ ¬(φ →¬ψ).

Definition 10 (Semantics of ‘Existential Might’). A world W satisfies φ →ψ iff:

∃W1.W1 ⊨ φ ∧ ∀W2.W2 ≤W W1 ∧W2 ⊨ φ⇒ ∃W3.W3 ≤W W2 ∧W3 ⊨ φ ∧ ψ .

Since we derived the ‘Existential Might’ counterfactual from a similar duality law as Lewis,
we can deduce from Proposition 9 that our ‘Existential Might’ and the original ‘Might’ are also
equivalent for total similarity relations.

Corollary 11. If ≤W is a total order, then ‘Existential Might’ and ‘Might’ are equivalent, i.e.,
for all pairs of properties φ and ψ we have that φ →ψ ≡ φ →ψ.

Subfigure 1b illustrates how this definition captures the intended meaning of ‘Might’ coun-
terfactuals on non-total similarity relations. To illustrate the problem with Lewis’ original se-
mantics for ‘Might’: The complement of some satisfying antecedent φMight for a classic ‘Might’
counterfactual is colored in dark violet. For satisfaction it is required that no matter where we
leave this area, for any world there exists an equally close world satisfying ψ. This means for
example, that we can include the worlds furthest to the west and north-west in φMight. This
is quite strict, our ‘Existential Might’ counterfactual illustrated in bright violet instead allows
the closest worlds on a chain to not satisfy ψ, as long as on some chain there exists a closest
world satisfying ψ.

3.4 Minimal Counterfactuals

When reasoning about causation, we are most often interested in some notion of minimality to
characterize the minimal changes necessary to avoid a given effect [26, 25, 30, 15, 16]. From a
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counterfactual point of view, minimality formulates an additional condition on the antecedent
φ such that the property defines the largest set possible. The question of whether to term this
notion minimality or maximality is a matter of perspective. On the one hand, the criterion
maximizes the language of φ, but on the other hand, this in fact minimizes the amount of
changes necessary to ensure φ, since more worlds in φ mean more opportunities to move into
φ earlier when moving along the similarity relation. Since for causation this abstract criterion
is usually called minimality, we adopt the same name here.

Definition 12 (Minimal Counterfactuals). Given a world W and a counterfactual conditional
⇝ ∈ { →, →, →, →}, the minimal counterfactual conditional φ ⇝min ψ is true iff all of
the following holds:

W ⊨ φ⇝ ψ (1), and ∄ φ′. (φ→ φ′) ∧ (φ′ ̸→ φ) ∧W ⊨ φ′ ⇝ ψ (2) .

Example 13. Minimal counterfactuals ensure that the antecedent does not overspecify the
changes necessary to get to the consequent. For instance, consider that both of the following
statements hold:

t ⊨ u ∧ Xu → X(X t), and t ⊨ Xu → X(X t) .

While the antecedent in the lower statement is more concise because t already has u at the
first position, neither is a minimal antecedent, because minimality additionally ensures that all
possible antecedents are included, we have:

t ⊨ (Xu) ∨ X(X t) →min X(X t) .

For a short argument, consider why there cannot be a trace in the minimal antecedent that does
not satisfy (Xu)∨X(X t). Such a trace would have no upwards movement at the second position,
and all traces closer to t do neither. Since all traces start at the bottom floor, we know that
none of the traces in between satisfy X(X t).

While it may seem odd that the consequent can be a necessary part of the antecedent like in
the above example, we note that it is common for the effect to be in the set of its counterfactual
causes [26, 25, 9]. We believe there is a quite direct connection between minimal counterfactuals,
and conjunctive and disjunctive causes from the causal modeling literature. We expand on this
later in Section 4.2.

As one can see in Definition 12, minimality is a second-order statement that quantifies over
properties. Hence, the minimal counterfactual conditionals →

min
, →

min
, →

min
, and →

min

are essentially guarded second-order quantifiers. However, one of our main insights is that
this second-order quantification inherent to these operators can be eliminated such that for any
minimal counterfactual conditional there exists an equisatisfiable formula without quantification
over properties. We prove this in the following lemma and will use this in the following section
for concrete decidability results.

Lemma 14. For a minimal counterfactual statement φ⇝min ψ, with⇝ ∈ { →, →, →, →},
there exists a parameterized formula φFO(W ), with W ∈ U , that quantifies only over worlds
and not properties such that for all worlds W ′ ∈ U : W ′ ⊨ φ⇝

min
ψ iff φFO(W ′) is valid.

To illustrate minimal counterfactuals consider the abstract scenario in Figure 2. In Subfig-
ure 2a colored areas correspond to the complements of a satisfying antecedent of a ‘Universal
Would’ counterfactual with reference world W . However, this antecedent is not minimal, be-
cause the complement of the dashed area is equally part of a ‘Universal Would’ counterfactual
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W

(a) ‘Universal Would’ and its minimal version.

W

(b) ‘Existential Might’ and its minimal version.

Figure 2: The set of worlds characterized by non-minimal counterfactuals (colored areas) com-
pared to the set of worlds characterized by minimal counterfactuals (dashed line) in the same
setting as in Figure 1.

satisfied by W . The illustration sums up the following intuition: The worlds encountered by
leaving the dashed area that satisfy ψ are now overall closer to W than before. The same idea
holds for the more minimal antecedent of the ‘Existential Might’ counterfactual illustrated with
the dashed area in Subfigure 2b. However, since for the ‘Existential Might’ counterfactual it is
enough to find just one closest antecedent-world satisfying ψ, we can actually remove all worlds
except W , because there is a ψ-world directly adjacent to it.

4 Temporal Counterfactuals

We now leverage the semantic insights garnered on counterfactuals in the previous section
to design a logic for expressing notions of counterfactual causality in the temporal domain.
For this, it is not enough to solely evaluate the truth values of counterfactual conditionals or
even their minimal versions, since causality commonly places additional conditions for a causal
relationship to hold. For instance, cause and effect may have to be satisfied in the reference
world [26, 25, 16]. The syntax and semantics of our logic are introduced in the following section,
where we also establish decidability of satisfiability and trace checking. In Section 4.2, we close
by illustrating how our logic can express definitions of causality proposed in previous literature.

4.1 QPTL With Counterfactuals

We consider a logic that builds Boolean combinations of QPTL formulas and the proposed coun-
terfactual conditionals relating QPTL statements. Nesting of counterfactuals is not allowed,
although may be interesting to explore in future work to study temporally structured inter-
ventions. We call our logic QPTLcf , for QPTL with counterfactuals, and its formulas are built
according to the following grammar:

ξ ::= ψ →ψ | ψ →ψ | ψ →ψ | ψ →ψ | ψ →
min

ψ |
ψ →

min
ψ | ψ →

min
ψ | ψ →

min
ψ | ξ ∧ ξ | ¬ξ | ψ ,
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where ψ is a QPTL formula. The semantics of the counterfactual conditionals are as discussed
in the previous section where worlds are now infinite traces and the satisfaction relation is as
for QPTL, and the semantics of the QPTL-formulas are as described in Section 2.

Now that we have fixed the syntax and semantics of our logic QPTLcf , we show that important
decision problems can be automatically decided. Note that previous results on Lewis’ original
two counterfactuals and related works on causal analysis either consider theories with a finite
set of models [37], endorse the problematic limit assumption [16], or both [25, 2]. In this sense,
our results extend previous work in several orthogonal directions.

We start by considering the satisfiability problem of QPTLcf . Satisfiability denotes the
problem of deciding whether there exists a trace that satisfies a given formula. Deciding the
satisfiability of counterfactuals of course depends on whether the similarity relation can be
expressed in a decidable logic. We, therefore, show satisfiability of minimal counterfactuals
with respect to the following family of QPTL-expressible similarity relations:

≤QPTL= {R ⊆
(
(2AP )ω

)3 | ∃ QPTL-formula φR over AP{π1,π2,π3}.∀t1, t2, t3 ∈ (2AP )ω.

R(t1, t2, t3) iff t1 ∪· t2 ∪· t3 ⊨ φR} ,

where APP = {aπ | a ∈ AP ∧ π ∈ P} indexes the atomic propositions with trace variables
and t1∪· t2∪· t3 denotes the disjoint fusion of the three traces: We have for all positions n ∈ N that
the following holds: (t1 ∪· t2 ∪· t3)[n] = {aπ1 | a ∈ t1[n]} ∪ {aπ2 | a ∈ t2[n]} ∪ {aπ3 | a ∈ t3[n]}.
Note that the similarity relations ≤QPTL

t (X) introduced in Example 3 are subsumed by this
family, and also the distance metric considered by Coenen et al. [16]. We consider three-place
relations here because the first place models the W -subscript of the relation ≤W .

Satisfiability of formulas in QPTLcf can then be decided with an idea roughly similar to
the reduction of LTL satisfiability to LTL model checking proposed by Rozier and Vardi [44].
However, since there is no corresponding trace-based logic that can express the semantics of
counterfactual conditionals, we instead encode the problem as a HyperQPTL model-checking
problem over a model containing all possible traces over our set of atomic propositions AP .
In the end, since HyperQPTL model checking is decidable [43], so is the satisfiability of QPTLcf -
formulas. This approach is interesting from a theoretical point of view, because HyperQPTL

satisfiability checking itself is undecidable. We leverage the fact that models of QPTLcf formulas
are traces and not sets of traces. While the logic does have relational semantics, these are
effectively guarded through the counterfactual conditionals, allowing us to encode into model
checking and avoid the undecidable HyperQPTL satisfiability problem.

Theorem 15. For any QPTLcf formula φ, it is decidable to check whether φ is satisfiable when
the similarity relation is from the family ≤QPTL and the universe is defined by a QPTL formula.

Since our logic contains negation, this also covers the problem of checking validity of a
formula in the usual way, as a formula is valid if and only if its negation is not satisfiable.
Similarly, because our logic subsumes QPTL, we can also model-check QPTLcf -properties on
any system that can be expressed in QPTL, which covers many practically relevant finite-state
systems. This can be done by checking satisfiability of the conjunction of the system formula
and the negation of the property formula (and possibly choosing the system as the universe).

Lastly, we consider the problem of checking whether some QPTLcf -formula holds on a given
trace. Since we need a finite representation of the infinite trace to feasibly compute this truth
value, we consider lasso-shaped traces, i.e., traces of the form t = t0 . . . ti(ti+1 . . . tj)

ω that
ultimately repeat some loop in the infinite ω-part. The proof of the theorem then follows a
similar idea as the satisfiability proof, except that we do not search for any satisfying trace and
instead fix the corresponding trace variable to the lasso-shaped trace.
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Theorem 16. For a lasso-shaped trace t and a QPTLcf formula φ, it is decidable to check
whether t ⊨ φ when the similarity relation is from the family ≤QPTL and the universe is defined
by a QPTL formula.

Theorem 15 and Theorem 16 show that it is possible to build tools that automatically check
whether causal relationships hold in a given finite-state system, or whether causal relationships
expressed in our logic are present on a given trace. While an exact complexity analysis is
out of scope of this paper, QPTL has non-elementary complexity that scales in the number of
propositional quantifier alternations. The complexity of our decision procedure for QPTLcf as
of now additionally scales in the number of counterfactual conditionals, since these introduce
trace quantifier alternations and the complexity of HyperQPTL model checking scales with this
number. We believe there may be a more efficient encoding, as there is no dependence between
the trace variables resulting from different counterfactual conditionals and, hence, quantifiers
can be rearranged to avoid alternations. However, the purpose of this work is to explore
how expressive our temporal logic with counterfactuals can be while retaining decidability.
In practice, it may in fact be more feasible to consider fragments of QPTL that have a more
practical complexity, such as LTL. There exist efficient model checkers [6] for its counterpart
HyperLTL [13] and, since recently, also for HyperQPTL [7], such that implementing a model
checker for QPTLcf or a fragment modulo LTL using our outlined encoding is feasible.

4.2 Examples

We close by illustrating how QPTLcf can be used to express several notions of counterfactual
causality proposed in previous literature. We start with Lewis’ account of counterfactual cau-
sation to illustrate how a basic, but limited, notion of causation can be expressed solely with
counterfactuals. We then outline at the example of Halpern’s (non-temporal) actual causality
the important role of proper modeling in causal analysis, and lastly we show how previous work
of Coenen et al. on extending Halpern’s actual causality to temporal properties is subsumed by
our work on temporal-counterfactual reasoning with QPTLcf .

Lewis’ Counterfactual Causation [36]. Based on counterfactual conditionals, Lewis in-
troduced a definition of causality in order to capture Hume’s informal account that “we may
define a cause to be an object followed by another, where, if the first object had not been, the
second never had existed” [31]. Lewis only draws causal relationships between two events, which
are rather informally defined objects, but which in previous literature on traces are commonly
interpreted to mean the value of an atomic proposition at a certain position [5, 35, 15]. Lewis
definition stipulates that an event c is the cause for an event e if the following condition holds:
(c → e)∧(¬c →¬e). The intuition behind the formula is that either the cause c and e appear
together (and hence the left conjunct is also satisfied), and then moving to any closest ¬c-world
is sufficient to avoid the effect e (corresponding to the left conjunct), or, neither cause and effect
appear, and then moving to a c-world is sufficient to bring about the effect (the mirrored case).
Consequently, this causal relation holds even when cause and effect are not present in a world,
and hence may be model checked on a system to infer whether it holds globally.

With QPTLcf , we can improve on Lewis’ original formulation in several ways. First, we can
use the ‘Universal Would’ counterfactual and hence need not assume a total similarity relation.
Further, Lewis’ original logic lacks facilities for temporal reasoning and, hence, cannot express
that a cause is “an object followed by another”. In QPTLcf , it is possible to express that the
cause has to preceed the effect, and the remaining temporal requirements, in the following way:
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(
(F c ∧ F e)→ (¬e U c)

)
∧ (F c → F e) ∧ (¬ F c →¬ F e) .

We can deduce causal relationships by checking this formula for validity in a universe of
interest. It ensures that if the cause and effect appear on some trace, then, particularly, the
cause happens before the effect. While this solves the lacking temporal expressivity in Lewis’
logic, it still shares the idiosyncratic features of this definition of causality which have been
raised in the literature since. For instance, if a cause has two effects, the earlier effect is also
considered a cause for the later effect.

These peculiarities cannot be solved through counterfactual reasoning alone and over the
years several solutions in the causal modeling literature have emerged, for instance interventions
and contingencies. In the following paragraph, we show that our framework can emulate these
concepts by modeling their mechanics in the universe and the similarity relation.

Halpern’s Actual Causality [25]. We outline a direct correspondence of our approach
to Halpern’s modified version [25] of actual causation [26], for binary variables. The exact
definition of this notion of causality is given in Appendix A.2 due to space reasons. The general
idea is that the dynamics of the universe are defined by a structural equation fx for every
variable x, which may depend on other variables and a set of external variables which are
defined by a context. We assume these to be Boolean functions in the case of binary variables.
Halpern restricts the analysis to acyclic dependencies. Based on some model M = (S,F)
and context c we may assume an evaluation function UM

c (x) which tells us for any variable
x ∈ V whether it evaluates to 1 or 0. To establish a correspondence to QPTLcf , we construct
a universe for a specific context under analysis based on basic equivalences for every variable:
x ↔ ((fx ∧ ¬ix) ∨ cx) if UM

c (x) = 1, else x ↔ ((fx ∨ ix) ∧ ¬cx). If some fx depends on
external variables, we substitute them by the appropriate Boolean constant depending on the
context. Then, U(M, c) denotes the conjunction of all of these equivalences together with
X G(

∧
v∈V ¬v∧¬iv∧¬cv), i.e., all traces have only empty sets after the first position. This suffices

because actual causation has no particular temporal aspect, so we may effectively model all
outcomes of the structural equations on a finite trace prefix of length one. Let tMc ∈ L(U(M, c))
be the unique trace where for all n > 0 : tMc [n] = ∅ and for all x ∈ V : {ix, cx} ∩ tMc [0] = ∅,
i.e., no interventions or contingencies are present. It may seem problematic that we have to
construct the universe based on given observations, but note that even in structural equations,
certain equations have to be manipulated for modeling interventions and contingencies.

Theorem 17. X0 = x00 ∧ . . .∧ xk0 , . . . , Xn = x0n ∧ . . .∧ xjn are actual causes of φ in (M, u⃗), iff
tMc ⊨ φX ∧ φ ∧ ¬φX →min ¬φ in the universe U(M, c) with respect to the similarity relation
≤t({ix | x ∈ V }) that tracks only the active interventions between traces, where

¬φX = (¬x00 ∧ . . . ∧ ¬xk0) ∨ . . . ∨ (¬x0n ∧ . . . ∧ ¬xjn) is in Blake canonical form [8].

The intuition behind the proof is that the closest traces to tMc that satisfy ¬φX require
negating one of the disjuncts, and hence require flipping the values of all of the variables
appearing there. This simulates interventions on these variables. Existential search for contin-
gencies is taken care of by the ‘Might’ counterfactual modality, since all possible contingencies
for some intervention form an equivalence class under ≤t ({ix | x ∈ V }). The minimality of the
counterfactual ensures that ¬φX cannot be enlarged. This means neither can a conjunct be
added to φX , and hence indeed all causes are described, nor can a disjunct be removed, and
hence all causes are minimal. We give an illustrative example of this encoding in the following.
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Example 18. Consider the classic example of determining whether lightning (l) or a dropped
match (m) caused a forest fire (f). Assume that only the match was dropped and that this suffices
to cause the fire because the equation for the fire is f := l ∨m and the other two variables are
determined by outside factors. We construct our universe based on the concrete observations
f = 1, l = 0, and m = 1 and model interventions and contingencies accordingly:

Ufire(M, c) = (l↔ (il ∧ ¬cl)) ∧ (m↔ (¬im ∨ cm))

∧
(
f ↔ (((l ∨m) ∧ ¬if ) ∨ cf )

)
.

Note that the actual causes according to Halpern’s definition in this scenario are f = 1, i.e.,
the effect itself, and m = 1. We have that the formula f ∧ m qualifies as a cause for the
effect f on the trace tfire = {f,m}∅ω describing the above scenario. This is because we have
tfire ⊨ f ∧m ∧ (¬f ∨ ¬m) →min ¬f in Ufire(M, c).

All conjunctions appearing in the Blake canonical form in Theorem 17 are prime implicants.
Dubslaff et al. [19] have used these before to compute feature causes, which are counterfactual in
nature, in configurable software systems. We use prime implicants here to establish an intriguing
formal connection between property-based causes and event-based causes in structural equation
models. This result is valuable because event-based causes have a restrictive and explicit syntax.
The formula of Theorem 17 allows characterizing the same counterfactual reasoning with more
expressive languages for causes and provides a formal basis for property-based extensions of
actual causality. We will discuss such an extension by Coenen et al. in the following paragraph.

Coenen et al.’s Temporal Causality [16]. Coenen et al. extend interventions and con-
tingencies to reactive systems described by Moore automata, and in this way lift Halpern’s
actual causality to temporal properties on traces. The key idea is that, if the reference trace
t is given in a lasso-shape, then the behavior of contingencies can be modeled in a finite-state
machine called counterfactual automaton CTt , where T is the original Moore automaton. This
corresponds to the construction for finite settings in the above paragraph. Interventions need
not be modeled explicitly because Coenen et al.’s causality only characterizes causes on the
input sequence of the traces and as there are no dependencies between inputs, just changing
them outright suffices to model interventions. Therefore, the concrete distance metric used in
that work is a modification of ≤t(I), where I is the set of inputs. The modification is done in
order to satisfy the Limit Assumption, but results in a coarse over-approximation of the set of
closest traces. For instance, for t = {a}ω, the closest traces satisfying F G¬a with Coenen et
al.’s similarity relation are the whole set L(F G¬a), while our work does not require the Limit
Assumption to hold and can use the unmodified ≤t(I), which has an infinite chain of ever closer
traces: {}ω, {a}{}ω, {a}{a}{}ω, and so on.

It turns out that when we characterize Coenen et al.’s definition of causality in QPTLcf , we
see a minor divergence from Halpern’s actual causality. We can encode Coenen et al.’s causality
in this way: φ is a temporal cause for ψ on t, iff

t ⊨ φ ∧ ψ ∧
(
(¬φ →

min
¬ψ) ∨ (¬φ →

min
¬ψ)

)
.

in the universe defined by the traces of CTt . We include the ‘Universal Would’ counterfactual
because we need to make use of its vacuous satisfaction mechanics, i.e., ⊤ may qualify as a
temporal cause according to Coenen et al.’s definition by virtue of quantification over an empty
set, but ⊥ will never work as an antecedent in →

min
, since there needs to be a trace satisfying

it. We can use the compositional nature of QPTLcf to emulate this by using →
min

, because it is,
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except for the vacuous case, a stronger condition, i.e., whenever ¬φ →min ¬ψ holds on a trace
t in a universe and a ¬φ-trace exists, also ¬φ →

min
¬ψ holds on trace t. We believe that the

compositionality of a logic like QPTLcf can be a useful tool for comparing different definitions of
causality, as demonstrated here between Halpern’s actual causality and Coenen et al.’s temporal
causality. This process can even be automated with the outlined QPTLcf decision procedures.

5 Conclusion

In this paper, we study a fusion of two prominent flavors of modal logic: counterfactual and
temporal reasoning. Our theoretical results are a step towards the automatic evaluation of tem-
poral counterfactual conditionals on infinite sequences, such as counterexample traces returned
by a model checker or trajectories of a reinforcement learning agent. Further, our extension of
Lewis’ theory of counterfactual conditionals to non-total similarity relations and our minimal
counterfactual operators are relevant to the theory of counterfactuals beyond the temporal rea-
soning considered in this work. In the future, we plan on using our logic to define system-level
and trace-level causation in reactive systems, which correspond to the notions of global and
actual causation. An interesting question here is, whether system-level semantics of counter-
factuals should be a universal application of the trace semantics, or should counterfactually
relate different system models. The latter approach may utilize previous work on system muta-
tions [33] studied in the area of coverage [12], which has a tight relationship to counterfactual
causality [11]. We are also interested in automating the discovery of causal relationships be-
tween temporal properties on infinite sequences. This problem can be framed as synthesizing
satisfying antecedents of counterfactuals.
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A Additional Preliminaries

A.1 HyperQPTL

The syntax of HyperQPTL [43, 17] is given as follows, where ψ is a QPTL formula. For sake of
simplicity, we only present a fragment of HyperQPTL without alternation of propositional and
trace quantification. This fragment suffices for the results presented in this work.

χ ::= ∃π. χ | ∀π. χ | ψ .

The semantics of HyperQPTL are not defined over single traces, but sets of traces. The alphabet
of atomic propositions APHyper = {aπ | a ∈ AP∧π ∈ V}, therefore, is indexed by trace variables.
The satisfaction relation is defined with respect to a time point i, a set of traces T and a trace
assignment Π : V → T that maps trace variables to traces. To update the trace assignment so
that it maps trace variable π to trace t, we write Π[π 7→ t]. We further lift our replacement
function t[q 7→ tq] to sets of traces such that T [q 7→ tq] = {t[q 7→ tq] | t ∈ T}.

Π, i ⊨T aπ iff a ∈ Π(π)[i]
Π, i ⊨T q iff ∀t ∈ T . q ∈ t[i]
Π, i ⊨T ¬φ iff Π, i ⊭T φ
Π, i ⊨T φ ∧ ψ iff Π, i ⊨T φ and Π, i ⊨T ψ
Π, i ⊨T Xφ iff Π, i+ 1 ⊨T φ
Π, i ⊨T φ Uψ iff ∃j ≥ i.Π, j ⊨T ψ ∧ ∀i ≤ k < j.Π, k ⊨T φ
Π, i ⊨T ∀π. φ iff ∀t ∈ T .Π[π 7→ t], i ⊨T φ
Π, i ⊨T ∃π. φ iff ∃t ∈ T .Π[π 7→ t], i ⊨T φ
Π, i ⊨T ∀q. φ iff ∀tq ∈ (2{q})ω.Π, i ⊨T [q 7→tq ] φ

Π, i ⊨T ∃q. φ iff ∃tq ∈ (2{q})ω.Π, i ⊨T [q 7→tq ] φ

A set of traces T satisfies a HyperQPTL formula φ iff ∅, 0 ⊨T φ, which we also denote by T ⊨ φ.

Example 19. With HyperQPTL, we can relate traces to one another. For instance, the following
formula characterizes sets where all pairs of traces (and hence all traces) have the same action
sequence:

∀π.∀π′. G(uπ ↔ uπ′) ∧ G(dπ ↔ dπ′) .

It is satisfied by the singleton set {t} with trace t from Example 1, but not by {t, t′} where
t′ = ({b, d})ω, since, e.g., the actions at the first position of the traces differ.

A.2 Actual Causality

Actual causality was originally proposed by Halpern and Pearl [26]. Several improvements have
been appeared since, we consider the latest of these proposed by Halpern [25]. A causal model
M = (S,F) is defined by a signature S and set of structural equations F . A signature S is
a tuple (E, V,R), where E is a set of exogenous variables, V is a set of endogenous variables,
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and R defines the range of possible values R(Y ) for all variables Y ∈ E ∪ V . For some context
u⃗, the value of an exogenous variable is determined by factors outside of the model, while the
value of some endogenous variable X is defined by the associated structural equation fX ∈ F .

Definition 20. X⃗ = x⃗ is an actual cause of φ in (M, u⃗), if the following holds.

AC1: (M, u⃗) ⊨ X⃗ = x⃗ and (M, u⃗) ⊨ φ, i.e., cause and effect are true in the actual world, and

AC2: There is a set W⃗ of variables in V and a setting x⃗′ of the variables in X⃗ such that if
(M, u⃗) ⊨ W⃗ = w⃗, then (M, u⃗) ⊨ [X⃗ ← x⃗′, W⃗ ← w⃗]¬φ, and

AC3: X⃗ is minimal, i.e. no subset of X⃗ satisfies AC1 and AC2.

In the case of binary variables, we may denote a cause X⃗ = x⃗ with X = x0 ∧ . . .∧xn, where
for 0 ≤ i ≤ n a literal xi is positive if it evaluates to 1 in x⃗, and negative if not. We denote by
V (xi) the variable v ∈ V associated with literal xi.

B Proofs

Proposition 9. If ≤W is a total order, then ‘Universal Would’ and ‘Would’ are equivalent,
i.e., for all pairs of properties φ and ψ we have that φ →ψ ≡ φ →ψ.

Proof. We prove the equivalence by proving the entailment in each direction separately. So
first assume that there exists a world W that satisfies φ →ψ. We show that this world also
satisfies φ →ψ. Consider two cases: First let us assume φ →ψ is vacuously satisfied by W
such that there exists no world W1 with W1 ⊨ φ. Then W also vacuously satisfies φ →ψ. As
the second case, consider the non-vacuous case such that there exists at least one world W ′

that satisfies φ. Then, φ →ψ is satisfied because, for all worlds W1 that satisfy φ, there exists
an at least equally close world W2 that also satisfies φ such that all closer worlds W3 satisfy
φ→ ψ. Hence, such a W2 world exists in particular for W ′, and can serve as a witness for the
existential quantifier in the semantics of → (Condition 2 of Definition 5). Hence,W ⊨ φ →ψ.

For the entailment in the other direction, assume that there is a worldW satisfying φ →ψ.
We show that this world also satisfies φ →ψ. Again, if W satisfies φ →ψ vacuously it also
satisfies φ →ψ vacuously. We, therefore, assume that there is a world W1 such that W1 ⊨ φ
and all at least equally close worlds W2 satisfy φ → ψ. We now show that this is enough to
satisfy Condition 2 of Definition 9. Pick any world W ′ as an instantiation of the outermost
universal quantifier in that condition. If W ′ ⊭ φ it trivially satisfies the implication in the
quantifiers body, so assumeW ′ ⊨ φ. Since ≤W is a total order, we know that eitherW ′ ≤W W1

or W1 ≤W W ′. If W ′ ≤W W1, we know that all smaller worlds W ′′ ≤W W ′ satisfy φ→ ψ due
to transitivity of ≤W . Hence, W ′ is a witness for the existential quantifier in Condition 2 of
Definition 9. Lastly, assume W1 ≤W W ′. Then W1 is the witness for the existential quantifier.
In any case, we have W ⊨ φ →ψ which closes this direction.

Corollary 11. If ≤W is a total order, then ‘Existential Might’ and ‘Might’ are equivalent, i.e.,
for all pairs of properties φ and ψ we have that φ →ψ ≡ φ →ψ.

Proof. The result follows directly from the two duality laws φ →ψ ≡ ¬(φ →¬ψ) and
φ →ψ ≡ ¬(φ →¬ψ), and Proposition 10, through substitution.
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Lemma 14. For a minimal counterfactual statement φ⇝min ψ, with⇝ ∈ { →, →, →, →},
there exists a parameterized formula φFO(W ), with W ∈ U , that quantifies only over worlds
and not properties such that for all worlds W ′ ∈ U : W ′ ⊨ φ⇝

min
ψ iff φFO(W ′) is valid.

Proof. The high-level idea of the proof is that, iff φ is not the minimal antecedent and there,
therefore, exists a formula φ′ characterizing a superset of the worlds characterized by φ, then
there exists a set of worlds S that can be added to φ without changing the truth value of the
counterfactual conditional. Such worlds fall into two categories: they are further away from the
reference world W than the closest φ-worlds and can be added without considering whether
they satisfy ψ, or they are at least equally close to W than the closest φ-world but also satisfy
ψ so they could be added without harm and would constitute new closest φ-worlds. The exact
relationships these worlds have to satisfy with respect to the closest φ-worlds differ between the
operators, further, a difference is whether the reasoning has to be extended to incomparable
worlds on other chains in the similarity relation. Therefore, we split the argumentation for
the four minimal operators from now. We mark the world-variables that correspond to the
closest φ-worlds of interest with W c in each, and else use variables W ′ for W1 to establish a
close correspondence to definitions of the semantics. All other world variables are specific to
the minimality reasoning. If not stated otherwise, quantifiers quantify over worlds from the
universe U . We have that W satisfies φ →min ψ iff(

(∀W ′.W ′ ⊭ ψ) ∧ (∀Wh ∈ Ū .∀W ′ ∈ U .Wh ⊨ φ ∧W ′ ⊭ φ)
)
∨
(
∃W c.W c ⊨ φ ∧ ∀W ′′. (1)(

W ′′ ≤W W c ⇒W ′′ ⊨ φ↔ ψ ∧ (W ′′ ⊨ ψ ⇒ ∀W i.W i ̸≤W W ′′ ⇒W i ⊨ φ)
)
∧ (2)(

W ′′ ̸≤W W c ∧W ′′ ⊨ ψ ∧ (∃Wn.Wn ≤W W c ∧Wn ̸≤W W ′′ ∧Wn ⊨ ¬φ)⇒ (3)

∃W p.W p ≤W W ′′ ∧W p ⊨ φ
))

(4)

is valid. The first disjunct in Line 1 encodes the fact that iff ψ is unsatisfiable with respect to the
universe, then φ should characterize exactly the complement of the universe. The right disjunct
encodes that we can enlarge the set characterized by φ based on the following conditions in
relation to the counterfactual world W c (corresponds to W1 in Condition 2 of Definition 5):

• There is an at least equally close or closer world W ′′ such that ψ holds but this world
is not included in φ yet (strengthens the semantic by W ′′ ⊨ ψ → φ as in Line 2), or in
W ′′ ψ holds but further away or incomparable worlds are not included in φ but could be
(Rest of Line 2).

• There is a world at least as close as W c which could take its place in a more minimal
antecedent, i.e., W ′′ satisfies ψ, all its at-least-as-close worlds are a proper subset of the
ones of W c (Line 3) and are not included in φ (Line 4).

Next, we have that W satisfies φ →
min

ψ iff

(∃W ′.W ′ ⊨ φ) ∧
(
∀W ′.W ′ ⊨ φ⇒ ∃W c.W c ≤W W ′ ∧ (W c ⊨ φ ∧ ψ)∧ (5)

∀W ′′′. (W c ̸≤W W ′′′ ⇒W ′′′ ⊨ ¬φ→ ¬ψ) ∧ (W c ≤W W ′′′ ⇒W ′′′ ⊨ φ)
)

(6)

is valid. Here, we have a fairly direct strengthening of the semantics of regular ‘Might’ (Line 5):
We now additionally require for φ-world W ′ on an infinite chain not only an at least equally
closest worldW c (this time corresponds toW2 in Condition 2 of Definition 7) that satisfies φ∧ψ,
we also require that φ includes all smaller ψ-worlds and hence place ¬φ→ ψ as a requirement
on them. If this did not hold, we could include them in the property. Additionally, we could
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include any world on a different chain (and which is hence not comparable to W c) if they are
not yet included in φ but satisfy ψ. Hence, such worlds also have to satisfy ¬φ → ψ. Both is
covered by the left conjunct in Line 6. Additionally, we again require that worlds further away
than W c are included in the property (right disjunct in Line 6). If they were not we could
include them while still retaining W c as a witness for all of them.

Next, we have that W satisfies φ →min ψ iff(
(∀W ′.W ′ ⊭ ψ) ∧ (∀Wh ∈ Ū .∀W ′ ∈ U .Wh ⊨ φ ∧W ′ ⊭ φ)

)
∨ (7)(

∃Wh.Wh ⊨ φ ∧ ∀W ′.W ′ ⊨ φ⇒ ∃W c.W c ≤W W ′ ∧W c ⊨ φ ∧ ∀W ′′′. (8)

(W ′′′ ≤W W c ⇒W ′′′ ⊨ φ↔ ψ) ∧ (W c ≤W W ′′′ ⇒W ′′′ ⊨ φ) (9)

∧ (W ′′′ ̸≤W W c ∧W c ̸≤W W ′′′ ⇒W ′′′ ⊨ ¬φ→ ¬ψ)
)

(10)

is valid. This is now because of a combination from the reasoning of the previous two operators.
Like for →

min
, we again have that if ψ is unsatisfiable φ has to characterize the complement

of the universe (Line 7). If this is not the case, then there has to be at least one Wh world
satisfying φ (Line 8). We have to ensure this because φ may only characterize an effectively
empty set if there exists no ψ-world. Further, for any φ-world there exists a φ-worldW c closest
to W such that on any closer worlds φ→ ψ. Again, like for →

min
, we add the inverse direction

ψ → φ to ensure that φ cannot be enlarged in this direction (left in Line 9). Further, any
world further away than W c has to be included in φ as they can all use W c as a closest φ-world
(right in Line 9). Lastly, like for →

min
, if some world incomparable to W c which hence is

on a different chain satisfies ψ, it also has to be included in φ which we ensure by requiring
¬φ→ ¬ψ (Line 10).

Lastly, we have that W satisfies φ →
min

ψ iff

∃W ′.W ′ ⊨ φ ∧ ∀W ′′.W ′′ ≤W W ′ ∧W ′′ ⊨ φ⇒ ∃W c.W c ≤W W ′′ ∧ (W c ⊨ φ ∧ ψ)∧ (11)

∀Wh. (Wh ≤W W c ⇒Wh ⊨ ¬φ→ ¬ψ) ∧
(
Wh ̸≤W W c ⇒Wh ⊨ φ ∧Wh ⊨ ψ∧ (12)

(∃Wn.Wn ≤W W c ∧Wn ̸≤W Wh ∧Wn ⊨ ¬φ)⇒ ∃W p.W p ≤W Wh ∧W p ⊨ φ
)

(13)

is valid. In Line 11, we have the usual semantics of ‘Existential Might’. We now additionally
require that worlds at least as close as the closest φ-worldsW c that satisfy ψ, which correspond
to W3 in Definition 10, are included in φ if they satisfy ψ (left conjunct in Line 12). Further,
we require all worlds farther away or incomparable to W c to be included in φ (right in conjunct
in Line 12). Similar to the reasoning for →

min
, we have to ensure that these worlds Wh do not

induce a more minimal antecedent by qualifying as a W c by satisfying ψ (end of Line 12) and
having a proper subset of at-least-equally-close worlds (Line 13).

Theorem 15. For any QPTLcf formula φ, it is decidable to check whether φ is satisfiable when
the similarity relation is from the family ≤QPTL and the universe is defined by a QPTL formula.

Proof. We sketch how to encode the satisfiability of our QPTLcf -formulas in a HyperQPTL model-
checking problem over the most general model M that contains all traces over our alphabet
2AP . Let φU be the formula encoding the universe. The semantics of the non-minimal operators
contain quantification over all possible traces over our alphabet 2AP and hence over the traces
from the model M. In Lemma 14 we showed that the semantics of the minimal operators
can similarly be expressed by quantification over traces from M and in φU as well. We now
illustrate at the example of →

min
how such a formula can be encoded into a HyperQPTL-formula

202



Counterfactuals Modulo Temporal Logics Finkbeiner and Siber

φQPTL
FO (π) in prenex normal form, as even if AP = ∅, there exists at least one trace. Let φR bet

the QPTL-formula for the similarity metric R ∈≤QPTL. For some formula φ and trace variable
π ∈ V, φπ denotes the same formula where all atomic propositions are indexed with trace
variable π. Then φQPTL

FO (π) for some φ →
min

ψ is of the following form:

φQPTL
FO (π) =∃π1.∀π2.∃π3.∀π4. φU

π1
∧ φπ1

∧
(
φU
π2
→

(
φπ2
→ φU

π3
∧ φR(π, π3, π2) ∧ φπ3

∧ ψπ3
∧

(
φU
π4
→ (¬φR(π, π3, π4)→ (¬φπ4 → ¬ψπ4)) ∧ (φR(π, π3, π4)→ φπ4)

)))
.

We restrict quantification to the universe with conjunctions and implications containing φU .
Quantification over the complement of the universe uses ¬φU instead.

For the original QPTLcf -formula φ, we apply this transformation to any counterfactual con-
ditional appearing in it and again transform the result into prenex normal form. This is possible
while retaining equisatisfiability because temporal operators appear only on the lowest level,
i.e., no quantifier appears in the scope of a temporal operator. We denote the resulting formula
with φfull

FO (π) and put a π-subscript on any top-level QPTL formula (i.e., that was not in the
body of a counterfactual operator).

We can then model check the formula HyperQPTL-formula ∃π. φfull
FO (π) on the model M to

check whether there exists a trace satisfying our original QPTLcf -formula. Since HyperQPTL

model checking is decidable, so is the satisfiability checking of QPTLcf . This approach has
similarities to the idea of reducing the satisfiability problem of linear-time temporal logic (LTL)
to model checking of the same logic [44]. Note that, crucially, our approach is possible because
the models of our logic QPTLcf are traces and not sets of traces as in HyperQPTL, which allows
an encoding into the decidable model checking problem while avoiding the undecidable problem
of HyperQPTL satisfiability checking.

Theorem 16. For a lasso-shaped trace t and a QPTLcf formula φ, it is decidable to check
whether t ⊨ φ when the similarity relation is from the family ≤QPTL and the universe is defined
by a QPTL formula.

Proof. (Sketch) Since the trace t is lasso-shaped, we encode it in a formula φt that characterizes
the set {t}. We can then use the ideas of the satisfiability proof above to solve the trace checking

problem. However, we now model check the formula ∀π. φt
π → φfull

FO (π) on the model M, not
searching for any trace satisfying the formula but instead fixing the reference trace to t.

Theorem 17. X0 = x00 ∧ . . .∧ xk0 , . . . , Xn = x0n ∧ . . .∧ xjn are actual causes of φ in (M, u⃗), iff
tMc ⊨ φX ∧ φ ∧ ¬φX →min ¬φ in the universe U(M, c) with respect to the similarity relation
≤t({ix | x ∈ V }) that tracks only the active interventions between traces, where

¬φX = (¬x00 ∧ . . . ∧ ¬xk0) ∨ . . . ∨ (¬x0n ∧ . . . ∧ ¬xjn) is in Blake canonical form [8].

Proof. This is effectively a finite setting modeled on the first position of a trace, such that the
Limit Assumption holds and for any formula ¬φX without temporal operators, there exists a
unique (finite) set of closest traces from tMc that satisfy it. Let I = {ix | x ∈ V } denote the set
of intervention variables. We will use the following auxiliary results throughout the proof:

1. For any actual cause X0 = x00 ∧ . . . ∧ xk0 for effect φ, there is a contingency W such that
(M, u⃗) ⊨ [X ← ¬x0i ∧ . . .∧¬xki ,W ← w0

p ∧ . . .∧wq
p]¬φ, i.e., the intervention that flips all

the variables is a witnessing intervention for AC2. With Boolean variables, this follows
directly from minimality, as any variable in an intervention that is not negated could be
moved to the contingency W instead, yielding a more minimal cause.
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2. There is a direct mapping from interventions that flip all values to intervention variables
on traces: By induction over the number of structural equations we can show that for
all traces t ∈ U(M, c) and variables v ∈ V , we have (M, u⃗) ⊨ [X ← x0i ∧ . . . ∧ xki ,W ←
w0

p ∧ . . . ∧ wq
p]v where for all xri ∈ X : (M, u⃗) ⊨ ¬xri , iff v ∈ t[0], where t is the unique

trace that has all the contingency variables of W enabled at the first position, i.e., for all
0 ≤ r ≤ q : V (wr

p) ∈ t[0], and all intervention variables corresponding to literals in X are

also enabled: for all 0 ≤ r ≤ k : (xkp ↔ V (xkp) ∈ tMc )→ iV (xk
p)
∈ t[0].

3. Let tcf be a closest ¬φX -trace to tMc such that tcf ⊨ (¬x0z∧. . .∧¬xjz) for some conjunction
and tcf ⊨ ¬φ. We can use induction over the length of the conjunction to show that for
all i ∈ I : i ∈ tcf [0] iff there is some 0 ≤ r ≤ z : iV (xr

z)
= i ∧ cV (xr

z)
̸∈ tcf [0], i.e., exactly

the intervention variables corresponding to literals in the conjunction are enabled on tcf ,
while all corresponding contingency variables are disabled.

We now proceed to proof the two directions of the equivalence separately.
“⇒”: We know that no intervention or contingency variables are true on tMc by construction.
With Result 2 and the fact that X0, . . . , Xn are actual causes of φ in (M, u⃗), it follows from
AC1 that tMc ⊨ φX ∧ φ. To show that ¬φX →

min
¬φ is satisfied, consider that from Result 2

and Result 3, it follows the closest traces from satisfying ¬φX have to differ in all of the values
in at least one of the conjuncts of φX , w.l.o.g. assume this to be (x00 ∨ . . .∨ xn0 ). With Result 1
we have (M, u⃗) ⊨ [X0 ← ¬x0i ∧ . . . ∧ ¬xki ,W0 ← w0

p ∧ . . . ∧ wq
p]¬φ, and with Result 2 it then

follows that there is a trace t such that t ⊨ ¬φ, and from Result 3 it follows that t is a closest
¬φX -trace. Hence, We have tMc ⊨ ¬φX →φ. To show that ¬φX is also a minimal antecedent,
consider what would happen if a trace was added to L(¬φX). Such a trace t′′ has to satisfy
φX , and hence satisfies one of the literals in each of that formula’s conjuncts. That means that
the changes between tMc and t′′ are either incomparable to any other closest ¬φX -trace, or a
proper subset. In the former case, this induces another actual cause, in the latter case, this
would mean one of the causes is not minimal. In both cases, we have a contradiction. Note
that ¬φX is in Blake canonical form because all of the causes are minimal, and hence prime
implicants, i.e., no Xv implies another Xw, and this also holds for their negations in ¬φX . This
closes this direction
“⇐”: We first show AC1 holds for all of the causes. We know that (M, u⃗) ⊨ φ from tMc ⊨ φ and
Result 2. To show that tMc ⊨ (x0i ∧ . . .∧xui ) for all Xi, consider tcf as defined in Result 3. Since
we know from the proof of Result 3 that on tcf exactly the intervention variables corresponding
to the literals in the conjunction are set, and intervention variables flip the value of variables
with respect to tMc , we can deduce that all the literals occurring in the conjunction have the
inverted value in tMc , which proves AC1 for all of the causes using Result 2. AC2 follows
directly from tMc ⊨ ¬φX →

min
φ, Result 3 which states on some closest trace tcf ⊨ ¬φ all

literals x0z ∧ . . . ∧ xjz are intervened upon, and Result 2 which relates the intervention and
contingency variables w0

z ∧ . . . ∧ wq
z of tcf to the causal model (M, u⃗). Then, we can deduce

that (M, u⃗) ⊨ [X ← ¬x0z ∧ . . . ∧ ¬xjz,W ← w0
z ∧ . . . ∧ wq

z ]¬φ. Lastly, we can show AC3 by
contradiction: If one of the causes was not minimal, then Result 2 and Result 3 imply there is
closer ¬φ-trace, and therefore ¬φX is not a minimal antecedent, a contradiction.
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