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Abstract. We present a model checking approach for the verification of
data flow correctness in networks during concurrent updates of the net-
work configuration. This verification problem is of great importance for
software-defined networking (SDN), where errors can lead to packet loss,
black holes, and security violations. Our approach is based on a specifica-
tion of temporal properties of individual data flows, such as the require-
ment that the flow is free of cycles. We check whether these properties
are simultaneously satisfied for all active data flows while the network
configuration is updated. To represent the behavior of the concurrent
network controllers and the resulting evolutions of the configurations,
we introduce an extension of Petri nets with a transit relation, which
characterizes the data flow caused by each transition of the Petri net.
For safe Petri nets with transits, we reduce the verification of temporal
flow properties to a circuit model checking problem that can be solved
with effective verification techniques like IC3, interpolation, and bounded
model checking. We report on encouraging experiments with a prototype
implementation based on the hardware model checker ABC.

1 Introduction

Software-defined networking (SDN) [33,7] is a networking technology that sep-
arates the packet forwarding process, called the data plane, from the routing
process, called the control plane. Updates to the routing configuration can be
initiated by a central controller and are then implemented in a distributed man-
ner in the network. The separation of data plane and control plane makes the
management of a software-defined network dramatically more efficient than a
traditional network. The model checking of network configurations and concur-
rent updates between them is a serious challenge. The distributed update process
can cause issues like forwarding loops, black holes, and incoherent routing which,
from the perspective of the end-user, result in performance degradation, broken
connections, and security violations. Correctness of concurrent network updates
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has previously been addressed with restrictions like consistent updates [39]: ev-
ery packet is guaranteed during its entire journey to either encounter the initial
routing configuration or the final routing configuration, but never a mixture in
the sense that some switches still apply the old routing configuration and others
already apply the new routing configuration. Under these restrictions, updates to
network configurations can be synthesized [12,32]. Ensuring consistent updates
is slow and expensive: switches must store multiple routing tables and messages
must be tagged with version numbers.

In this paper, we propose the verification of network configurations and con-
current updates between them. We specify desired properties of the data flows
in the network, such as the absence of loops, and then automatically check, for
a given initial routing configuration and a concurrent update, whether the spec-
ified properties are simultaneously satisfied for all active data flows while the
routing configuration is updated. This allows us to check a specific concurrent
update and to thus only impose a sequential order where this is strictly needed
to avoid an erroneous configuration during the update process.

Our approach is based on temporal logic and model checking. The control
plane of the network can naturally be specified as a Petri net. Petri nets are
convenient to differentiate between sequential and parallel update steps. The
data plane, however, is more difficult to specify. The standard flow relation of a
Petri net does not describe which ingoing token of a transition transits to which
outgoing token. In theory, such a connection could be made with colored Petri
nets [22], by using a uniquely colored token for each data flow in the network.
Since there is no bound on the number of packets, this would require infinitely
many tokens and colors to track the infinitely many data flows. To avoid this
problem, we develop an extension of Petri nets called Petri nets with transits,
which augment standard Petri nets with a transit relation. This relation specifies
the precise data flow between ingoing and outgoing tokens of a transition. In Petri
nets with transits, a single token can carry an unbounded number of data flows.

We introduce a linear-time temporal logic called Flow-LTL to specify the
correct data flows in Petri nets with transits. The logic expresses requirements
on several separate timelines: global conditions, such as fairness, are expressed
in terms of the global timeline of the system run. Requirements on individual
data flows, such as that the data flow does not enter a loop, on the other hand,
are expressed in terms of the timeline of that specific data flow. The next op-
erator, for example, refers to the next step taken by the particular data flow,
independently of the behavior of other, simultaneously active, data flows.

Concurrent updates of software-defined networks can be modeled as safe Petri
nets with transits. We show that the model checking problem of the infinite state
space of Petri nets with transits against a Flow-LTL formula can be reduced to
the LTL model checking problem for Petri nets with a finite number of tokens;
and that this model checking problem can in turn be reduced to checking a
hardware circuit against an LTL formula. This ultimately results in a standard
verification problem, for which highly efficient tools such as ABC [2] exist.

Proofs and more detailed constructions can be found in the full paper [15].
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(a) Example of a
network topology
with five switches
and six connections.

v u x y d

(b) Solid arrows show the for-
warding rules before the update,
dashed arrows the intended for-
warding rules after the update.

ingress = {v} ingress = {v}
v.fwd(u) v.fwd(x)

u.fwd(x) u.fwd(x)

x.fwd(d) x.fwd(y)

y.fwd(x) y.fwd(d)

egress = {d} egress = {d}

(c) Network programs for the
routing configurations before
and after the update.

Fig. 1: Example (due to [19]) of an update to a software-defined network.

2 Motivating Example

We motivate our approach with a typical network update problem taken from
the literature [19]. Consider the simple network topology shown in Fig. 1a. From
the global point of view, our goal is to update the network from the routing con-
figuration shown with solid lines in Fig. 1b to the routing configuration shown
with dashed lines. Such routing configurations are typically given as static Net-
Core [20,35] programs like the ones shown in Fig. 1c. The ingress and egress

sections define where packets enter and leave the network, respectively. Expres-
sions of the form v.fwd(u) define that switch v forwards packets to switch u.

It is not straightforward to see how the update from Fig. 1b can be imple-
mented in a distributed manner. If switch x is updated to forward to switch y

before y is updated to forward to switch d, then any data flow that reaches x

is sent into a loop between x and y. A correct update process must thus ensure
sequentiality between switch updates upd(y.fwd(d)) and upd(x.fwd(y)), in
this order. The only other switch with changing routing is switch v. This update
can occur in any order. A correct concurrent update would thus work as follows:

(upd(y.fwd(d)) >> upd(x.fwd(y))) || upd(v.fwd(x)),

where >> and || denote sequential and parallel composition, respectively.
Figure 2 shows a Petri net model for the network topology and the concurrent

update from the initial to the final routing configuration from Fig. 1. The right-
hand side models the control plane, where, beginning in update start , the update
of v and, concurrently, the sequential update to y and then to x is initiated.
Each marking of the net represents a control state of the network. Changes to
the control state are thus modeled by the standard flow relation. Leaving out
the control plane allows us to verify configurations of network topologies.

On the left-hand side, we model the data plane by extending the Petri net
with a transit relation. This new type of Petri nets will be defined formally in the
next section. We only depict the update to the data flow in and from switch v.
Places swu, swv, and swx represent the switches u, v, and x, respectively. The
data plane is modeled by the transit relation which indicates the extension of
the data flows during each transition at the switches.
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swv

fwdv→u

swu

v.fwd(u)

fwdv→x

swx

v.fwd(x)

ingressv

update start

updatev
concurrent

update

updatey

updatex

. . . . . .

. . .. . .

Fig. 2: Example Petri net with transits encoding the data plane on the left and
the control plane on the right. The standard flow relation, describing the flow of
tokens, is depicted by solid black arrows, the transit relation by colored arrows.
Colors that occur on both ingoing and outgoing arrows of a transition define
that the transition extends the data flow. If an outgoing arrow has a color that
does not appear on an ingoing arrow, a new data flow is initiated.

The standard flow relation is depicted by solid black arrows and the transit
relation by colored arrows. If an outgoing arrow has a color that does not appear
on an ingoing arrow, then a new data flow is initiated. In our example, data flows
are initiated by transition ingressv and the (dotted) blue arrow. Colors that occur
on both in- and outgoing arrows extend the data flow. In transition fwdv→u, the
(dotted) blue arrows indicate the extension of the data flow from swv to swu.
The (dashed) green arrows between fwdv→u and swu indicate that, in addition to
the incoming data flow from swv, there may be data flows that have previously
reached swu and have not yet departed from swu. These flows stay in swu.

Notice that ingressv, fwdv→u, and fwdv→x do not actually move tokens be-
cause of the double-headed arrows. None of these transitions change the control
state, they only model the data flow. As the switches u, v, and x remain contin-
uously active, their tokens in swu, swv, and swx are never moved. By contrast,
updatev moves the token from v.fwd(u) to v.fwd(x), thus disabling the data
flow from swv to swu and enabling the data flow from swv to swx. We specify the
correctness of our update process with formulas of the temporal logic Flow-LTL.
The formula A d expresses connectivity requiring that all data flows (A) even-
tually ( ) arrive at the egress switch d. Flow-LTL and the specification of data
flow properties are discussed in more detail in Sec. 4 and Sec. 5. The general
construction of the motivating example is formalized in the full paper [15].

3 Petri Nets with Transits

We give the formal definition of Petri nets with transits. We assume some basic
knowledge about standard Petri nets [37]. A safe Petri net with transits (PNwT)
is a structure N = (P,T,F, In, Υ ), where the set of places P, the set of tran-
sitions T, the (control) flow relation F ⊆ (P ×T) ∪ (T ×P), and the initial
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marking In ⊆ P are as in safe Petri nets. In safe Petri nets, each reachable mark-
ing contains at most one token per place. We add the transit relation Υ of tokens
for transitions to obtain Petri nets with transits. For each transition t ∈ T, we
postulate that Υ (t) is a relation of type Υ (t) ⊆ (preN(t) ∪ {�}) × postN(t),
written in infix notation, where the symbol � denotes a start. p Υ (t) q defines
that the token in place p transits via transition t to place q and � Υ (t) q defines
that the token in place q marks the start of a new data flow via transition t.
The graphic representation of Υ (t) in Petri nets with transits uses a color coding
as can be seen in Fig. 2. Black arrows represent the usual control flow. Other
matching colors per transition are used to represent the transits of tokens. Tran-
sits allow us to specify which data flows are moved forward, split, and merged,
which data flows are removed, and which data flows are newly created.

Data flows can be of infinite length and can be created at any point in time.
Hence, the number of data flows existing in a place during an execution depends
on the causal past of the place. Therefore, we recall informally the notions of
unfoldings and runs [13,14] and apply them to Petri nets with transits. In the
unfolding of a Petri net N, every transition stands for the unique occurrence
(instance) of a transition of N during an execution. To this end, every loop in N

is unrolled and every join of transitions in a place is expanded by duplicating
the place. Forward branching, however, is preserved. Formally, an unfolding is
a branching process βU = (NU , λU ) consisting of an occurrence net NU and
a homomorphism λU that labels the places and transitions in NU with the
corresponding elements of N. The unfolding exhibits concurrency, causality, and
nondeterminism (forward branching) of the unique occurrences of the transitions
in N during all possible executions. A run of N is a subprocess β = (NR, ρ) of

βU , where ∀p ∈ PR : |postN
R

(p)| ≤ 1 holds, i.e., all nondeterminism has been
resolved but concurrency is preserved. Thus, a run formalizes one concurrent
execution of N. We introduce the unfolding of Petri nets with transits by lifting
the transit relation to the unfolding βU = (NU , λU ) . We define the relation ΥU

as follows: For any t ∈ TU , the transit relation ΥU (t) ⊆ (preNU

(t) ∪ {�}) ×
postN

U

(t) is defined for all p, q ∈ PU by p ΥU (t) q ⇔ λU (p) Υ (λU (t)) λU (q).
We use the transit relation in the unfolding to introduce (data) flow chains. A

(data) flow chain in βU is a maximal sequence ξ = p0, t0, p1, t1, p2, . . . of places
in PU with connecting transitions in TU such that

1. ∃t ∈ TU : � ΥU (t) p0,
2. if ξ is infinite then for all i ≥ 0 the transit relation pi Υ

U (ti) pi+1 holds,
3. if ξ is finite, say p0, t0, . . . , tn−1, pn for some n ≥ 0, then for all i with

0 ≤ i < n the transit relation pi Υ
U (ti) pi+1 holds, and there is no place

q ∈ PU and no transition t ∈ TU with pn Υ
U (t) q.

4 Flow-LTL for Petri Nets with Transits

We recall LTL applied to Petri nets and define our extension Flow-LTL to specify
the behavior of flow chains in Petri nets with transits. We fix a Petri net with
transits N = (P,T,F, In, Υ ) throughout the section.
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4.1 Linear Temporal Logic for Petri nets

We define AP = P ∪T as the set of atomic propositions. The set LTL of linear
temporal logic (LTL) formulas over AP has the following syntax ψ ::= true | a |
¬ψ | ψ1 ∧ ψ2 | ψ | ψ1 Uψ2, where a ∈ AP . Here, is the next operator and U
is the until operator. We use the abbreviated temporal operators (eventually)
and (always) as usual. A trace is a mapping σ : N −→ 2AP . The trace σi :
N −→ 2AP , defined by σi(j) = σ(i+ j) for all j ∈ N, is the ith suffix of σ.

We define the traces of a Petri net based on its runs. Consider a run β =
(NR, ρ) of N and a finite or infinite firing sequence ζ = M0[t0〉M1[t1〉M2 · · ·
of NR with M0 = InR. This sequence covers β if (∀p ∈ PR ∃i ∈ N : p ∈
Mi) ∧ (∀t ∈ TR ∃i ∈ N : t = ti), i.e., all places and transitions in NR appear
in ζ. Note that several firing sequences may cover β. To each firing sequence ζ
covering β, we associate an infinite trace σ(ζ) : N −→ 2AP . If ζ is finite, say
ζ = M0[t0〉 · · · [tn−1〉Mn for some n ≥ 0, we define 1. σ(ζ)(i) = ρ(Mi) ∪ {ρ(ti)}
for 0 ≤ i < n and 2. σ(ζ)(j) = ρ(Mn) for j ≥ n. Thus, we record for 0 ≤ i < n
(case 1) all places of the original net N that label the places in the marking Mi

in NR and the transition of N that labels the transition ti in NR outgoing from
Mi. At the end (case 2), we stutter by repeating the set of places recorded in
σ(ζ)(n) from n onwards, but repeat no transition. If ζ is infinite we apply case 1
for all i ≥ 0 as no stuttering is needed to generate an infinite trace σ(ζ).

We define the semantics of LTL on Petri nets by N |=LTL ψ iff for all runs
β of N : β |=LTL ψ, which means that for all firing sequences ζ covering β :
σ(ζ) |=LTL ψ, where the latter refers to the usual binary satisfaction relation |=LTL

between traces σ and formulas ψ ∈ LTL defined by: σ |=LTL true, σ |=LTL a iff a ∈
σ(0), σ |=LTL ¬ψ iff not σ |=LTL ψ, σ |=LTL ψ1 ∧ ψ2 iff σ |=LTL ψ1 and σ |=LTL ψ2,
σ |=LTL ψ iff σ1 |=LTL ψ, σ |=LTL ψ1 Uψ2 iff there exists a j ≥ 0 with σj |=LTL

ψ2 and for all i with 0 ≤ i < j the following holds: σi |=LTL ψ1.

4.2 Definition of Flow-LTL for Petri Nets with Transits

For Petri nets with transits, we wish to express requirements on several separate
timelines. Based on the global timeline of the system run, global conditions
like fairness and maximality can be expressed. Requirements on individual data
flows, e.g., that the data flow does not enter a loop, are expressed in terms
of the timeline of that specific data flow. Flow-LTL comprises of run formulas
ϕ specifying the usual LTL behavior on markings and data flow formulas ϕF

specifying properties of flow chains inside runs:

ϕ ::= ψ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ψ → ϕ | ϕF and ϕF ::= A ψ

where formulas ψ ∈ LTL may appear both inside ϕ and ϕF .
To each flow chain ξ in a run β, we associate an infinite flow trace σ(ξ) :

N −→ 2AP . If ξ is finite, say ξ = p0, t0 . . . , tn−1, pn for some n ≥ 0, we define
(1) σ(ξ)(i) = {ρ(pi), ρ(ti)} for 0 ≤ i < n and (2) σ(ξ)(j) = {ρ(pn)} for j ≥ n.

Thus, we record for 0 ≤ i < n (case 1) the place and the transition of
the original net N that label the place pi in NR and the transition ti in NR
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outgoing from pi. At the end (case 2), we stutter by repeating the place recorded
in σ(ξ)(n) infinitely often. No transition is repeated in this case.

If ξ is infinite we apply case 1 for all i ≥ 0. Here, no stuttering is needed to
generate an infinite flow trace σ(ξ) and each element of the trace consists of a
place and a transition.

A Petri net with transits N satisfies ϕ, abbr. N |= ϕ, if the following holds:

N |= ϕ iff for all runs β of N : β |= ϕ

β |= ϕ iff for all firing sequences ζ covering β : β, σ(ζ) |= ϕ

β, σ(ζ) |= ψ iff σ(ζ) |=LTL ψ

β, σ(ζ) |= ϕ1 ∧ ϕ2 iff β, σ(ζ) |= ϕ1 and β, σ(ζ) |= ϕ2

β, σ(ζ) |= ϕ1 ∨ ϕ2 iff β, σ(ζ) |= ϕ1 or β, σ(ζ) |= ϕ2

β, σ(ζ) |= ψ → ϕ iff β, σ(ζ) |= ψ implies β, σ(ζ) |= ϕ

β, σ(ζ) |= A ψ iff for all flow chains ξ of β : σ(ξ) |=LTL ψ

5 Example Specifications

We illustrate Flow-LTL with examples from the literature on software-defined
networking. Specifications on data flows like loop and drop freedom are encoded
as data flow formulas. Fairness assumptions for switches are given as run formu-
las.

5.1 Data Flow Formulas

We show how properties from the literature can be encoded as data flow formulas.
For a network topology, let Sw be the set of all switches, Ingr ⊆ Sw the ingress
switches, and Egr ⊆ Sw the egress switches with Ingr∩Egr = ∅. The connections
between switches are given by Con ⊆ Sw × Sw .
Loop freedom. Loop freedom [29] requires that a data flow visits every switch
at most once. In Sec. 2, we outlined that arbitrarily ordered updates can lead
to loops in the network. The following data flow formula expresses that each
data flow is required to not visit a non-egress switch anymore after it has been
forwarded and therefore left that switch (realized via the U -operator):

A (
∧

s∈Sw\Egr

s→ (sU ¬s))

Drop freedom. Drop freedom [38] requires that no data packets are dropped.
Packets are dropped by a switch if no forwarding is configured. We specify that
all data flows not yet at the egress switches are extended by transitions from a
set Fwd encoding the connections Con between switches (details of the encoding
can be found in the full paper [15]). We obtain the following data flow formula:

A (
∧

e∈Egr

¬e→
∨

f∈Fwd

f)
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sww

sw x

sw y

swz

w.fwd(x)

w.fwd(y)

x.fwd(z)

y.fwd(z)

upd2upd1

Fig. 3: Concurrent network update that does not preserve drop freedom.

sww

sw x

sw y

swm

sw u

sw v

swz

w.fwd(x)

w.fwd(y)

m.fwd(u)

m.fwd(v)

upd2upd1

Fig. 4: Concurrent network update that does not preserve packet coherence.

Example 1. Figure 3 shows an example update that violates drop freedom. Pack-
ets are forwarded from switch w to switch z either via switch x or via switch y. If
the forwarding of x is deactivated by firing transition upd2 before the forwarding
of switch w is updated by firing upd1, then all packets still forwarded from w to
x are dropped as no outgoing transitions from x will be enabled.

Packet coherence. Packet coherence [1] requires that every data flow follows
one of two paths: either the path according to the routing before the update or
the path according to the routing after the update. The paths Path1 and Path2

are defined as the sets of switches of the forwarding route before and after the
update. This results in the following data flow formula:

A( (
∨

s∈Path1

s) ∨ (
∨

s∈Path2

s))

Example 2. In Fig. 4, the encoding of an update to a double-diamond network
topology [8] is depicted as a simple example for a packet incoherent update.
Before firing the update transitions upd1 and upd2, packets are forwarded via
switches x, m, and u, after the complete update, via switches y, m, and v. If m is
updated by firing transition upd2 while packets have been forwarded to x then
these packets are forwarded along the incoherent path x, m, and v.

We note that loop and drop freedom are incomparable requirements. Together,
they imply that all packets reach one egress switch. Connectivity, in turn, implies
drop freedom but not loop freedom, because an update can allow some loops.



Model Checking Data Flows in Concurrent Network Updates 9

5.2 Run Formulas

Data flow formulas require behavior on the maximal flow of packets and switches
are assumed to forward packets in a fair manner. Both types of assumptions are
expressed in Flow-LTL as run formulas. We typically consider implications be-
tween run formulas and data flow formulas.
Maximality. A run β is interleaving-maximal if, whenever some transition is
enabled, some transition will be taken: β |= (

∨
t∈T pre (t)→

∨
t∈T t).

A run β is concurrency-maximal if, when a transition t is from a moment on al-
ways enabled, infinitely often a transition t′ (including t itself) sharing a precon-
dition with t is taken: β |=

∧
t∈T( pre (t)→

∨
p ∈ pre (t), t′ ∈ post (p) t

′).

Fairness. A run β is weakly fair w.r.t. a transition t if, whenever t is always
enabled after some point, t is taken infinitely often: β |= pre (t)→ t.
A run β is strongly fair w.r.t. t if, whenever t is enabled infinitely often, t is
taken infinitely often: β |= pre (t)→ t.

6 Model Checking Flow-LTL on Petri Nets with Transits

We solve the model checking problem of a Flow-LTL formula ϕ on a Petri net
with transits N in three steps:

1. N is encoded as a Petri net N> without transits obtained by composing
suitably modified copies of N such that each flow subformula in ϕ can be
checked for correctness using the corresponding copy.

2. ϕ is transformed to an LTL-formula ϕ> which skips the uninvolved compo-
sition copies when evaluating run and flow parts, respectively.

3. N> and ϕ> are encoded in a circuit and fair reachability is checked with a
hardware model checker to answer if N |= ϕ holds.

Given a Petri net with transits N = (P,T,F, In, Υ ) and a Flow-LTL formula ϕ
with subformulas ϕFi

= Aψi, where i = 1, . . . , n for some n ∈ N, we produce a
Petri net N> = (P>,T>,F>,F>

I , In>) with inhibitor arcs (denoted by F>
I )

and an LTL formula ϕ>. An inhibitor arc is a directed arc from a place p to a
transition t, which only enables t if p contains no token. Graphically, those arcs
are depicted as arrows equipped with a circle on their arrow tail.

6.1 From Petri Nets with Transits to P/T Petri nets

We informally introduce the construction of N> and Fig. 5 visualizes the process
by an example. Details for this and the following constructions, as well as all
proofs corresponding to Sec. 6 can be found in the full paper [15].

The original part of N> (denoted by N>
O ) is the original net N without

transit relation and is used to check the run part of the formula. To N>
O , a

subnet for each subformula Aψi of ϕ is composed (denoted by N>
i , with places

P>
i and transitions T>

i ), which serves for checking the corresponding data flow
part of the formula ϕ. The subnet introduces the possibility to decide for the
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tracking of up to one specific flow chain by introducing a copy [p]i of each place
p ∈ P and transitions simulating the transits. The place [ι]i serves for starting
the tracking. Each run of a subnet simulates one possible flow chain of N, i.e.,
every firing sequence covering any run of N yields a flow chain.

in

t

out

−→o

s

[in]1

[out ]1

t

t

t

t
tV1

−→
t 1

−→s 1

s

s
sV1

s

[ι]1

−→
t 2

−→s 2

[in]n

[out ]n

t
t1

t t2

t
t3

t
tVn

−→
t n

−→s n

s s1

s
sVn

s s2

[ι]n

in

t

out

s

N N>

N>
O N>

1 N>
n

Fig. 5: An overview of the constructed P/T Petri net N> (on the right) for an
example Petri net with transits N (on the left) and n flow subformulas Aψi.

An activation token iterates sequentially through these components via places−→
t for t ∈ T. In each step, the active component has to fire exactly one transition

and pass the active token to the next component. The sequence starts by N>
O

firing a transition t and proceeds through every subnet simulating the data flows
according to the transits of t. This implies that the subnets have to either move
their data flow via a t-labelled transition t′ (λ(t′) = t) or use the skipping
transition tVi if their chain is not involved in the firing of t or a newly created
chain should not be considered in this run.

Lemma 1 (Size of the Constructed Net). The constructed Petri net N>

has O(|N| · n+ |N|) places and O(|N|3 · n+ |N|) transitions.

6.2 From Flow-LTL Formulas to LTL Formulas

The two different kinds of timelines of ϕ are encoded in the LTL formula ϕ>.
On the one hand, the data flow formulas Aψi in ϕ are now checked on the
corresponding subnets N>

i and, on the other hand, the run formula part of ϕ
is checked on the original part of the net N>

O . In both cases, we need to ignore
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places and transitions from other parts of the composition. This is achieved by
replacing each next operator φ and atomic proposition t ∈ T inside ϕ with an
until operator. Transitions which are not representing the considered timeline are
called unrelated, others related. Via the until operator, all unrelated transitions
can fire until a related transition is fired. This is formalized in Tab. 1 using the
sets O = T> \ T and Oi = (T> \ T>

i ) ∪ {tVi
∈ T>

i | t ∈ T}, for the
unrelated transitions of the original part and of the subnets, respectively. The
related transitions of the original part are given by T and for the subnets by
Mi(t) = {t′ ∈ T>

i \ {tVi} | λ(t′) = t} and Mi = T>
i \ {tVi ∈ T>

i | t ∈ T}.

Table 1: Row 1 considers the substitutions in the run part of ϕ, row 2 the
substitutions in each subformula ϕFi

. Column 1 considers simultaneously sub-
stitutions, column 2 substitutions from the inner- to the outermost occurrence.
t ∈ T φ

(
∨

t′∈O t
′)U t ((

∨
t∈O t)U ((

∨
t′∈T t

′) ∧ φ)) ∨ ( (¬(
∨

t′∈T t
′)) ∧ φ)

(
∨

to∈Oi
to)U (

∨
tm∈Mi(t)

tm) ((
∨

t∈Oi
t)U ((

∨
t∈Mi

t) ∧ φ)) ∨ ( (¬(
∨

t∈Mi
t)) ∧ φ)

Additionally, every atomic proposition p ∈ P in the scope of a flow operator is
simultaneously substituted with its corresponding place [p]i of the subnet. Every
flow subformula Aψi is substituted with [ι]i ∨ ([ι]i U (¬ [ι]i ∧ψ′i)), where [ι]i
represents that no flow chain is tracked and ψ′i is the result of the substitutions of
atomic propositions and next operators described before. With [ι]i U (¬ [ι]i∧ψ′i)
we ensure to only check the flow subformula at the time the chain is created.
Finally, restricting runs to not end in any of the subnets yields the final formula
ϕ> = ( −→o ) → ϕA with −→o being the activation place of the original part of
the net and ϕA the result of the substitution of all flow subformulas.

Lemma 2 (Size of the Constructed Formula). The size of the constructed
LTL formula ϕ> is in O(|N|3 · n · |ϕ|+ |ϕ|).

Lemma 3 (Correctness of the Transformation). For a Petri net with tran-
sits N and a Flow-LTL formula ϕ, there exists a safe P/T Petri net N> with
inhibitor arcs and an LTL formula ϕ> such that N |= ϕ iff N> |=LTL ϕ

>.

6.3 Petri Net Model Checking with Circuits

We translate the model checking of an LTL formula ψ with places and transitions
as atomic propositions on a safe P/T Petri net with inhibitor arcs N to a model
checking problem on a circuit. We define the circuit CN simulating N and an
adapted formula ψ′, which can be checked by modern model checkers [9,18,2].

A circuit C = (I,O,L,F ) consists of boolean variables I, O, L for input,
output, latches, and a boolean formula F over I × L × O × L, which is de-
terministic in I × L. The formula F can be seen as transition relation from a
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valuation of the input variables and the current state of the latches to the valu-
ation of the output variables and the next state of the latches. A circuit C can
be interpreted as a Kripke structure such that the satisfiability of a formula ψ′

(denoted by C |= ψ′) can be defined by the satisfiability in the Kripke structure.
The desired circuit CN has a latch for each place p ∈ P to store the current

marking, a latch i for initializing this marking with In in the first step, and a
latch e for handling invalid inputs. The inputs I consider the firing of a transition
t ∈ T. The latch i is true in every but the first step. The latch e is true whenever
invalid values are applied on the inputs, i.e., the firing of not enabled, or more
than one transition. The marking latches are updated according to the firing of
the valid transition. If currently no valid input is applied, the marking is kept
from the previous step. There is an output for each place (the current marking),
for each transition (the transition leading to the next marking), and for the
current value of the invalid latch. We create ψ′ by skipping the initial step and
allowing invalid inputs only at the end of a trace: ψ′ = ( (e→ e)→ ψ). This
allows for finite firing sequences. The concrete formula F , the Kripke structure,
and the corresponding proofs can be found in the full paper [15]. The circuit CN
can be encoded as an and-inverter graph in the Aiger format [4].

Lemma 4 (Correctness of the Circuit). For a safe P/T Petri net with in-
hibitor arcs N and an LTL formula ψ, there exists a circuit CN with |P| + 2
latches and O(|N|2) gates, and ψ′ of size O(|ψ|) such that N |=LTL ψ iff CN |= ψ′.

Theorem 1. A safe Petri net with transits N can be checked against a Flow-
LTL formula ϕ in single-exponential time in the size of N and ϕ.

Checking a safe Petri net with transits against Flow-LTL has a PSPACE-hard
lower bound because checking a safe Petri net against LTL is a special case of
this problem and reachability of safe Petri nets is PSPACE-complete.

7 Implementation Details and Experimental Results

We implemented our model checking approach in a prototype tool based on the
tool Adam [16]. Our tool takes as input a Flow-LTL specification and a Petri net
with transits, and carries out the transformation described in Sec. 6 to obtain
an LTL formula and an Aiger circuit. We then use MCHyper [18] to combine the
circuit and the LTL formula into another Aiger circuit. MCHyper is a verification
tool for HyperLTL [10], which subsumes LTL. The actual model checking is
carried out by the hardware model checker ABC [2]. ABC provides a toolbox
of state-of-the-art verification and falsification techniques like IC3 [5]/PDR [11],
interpolation (INT) [34], and bounded model checking [3] (BMC, BMC2, BMC3).
We prepared an artifact to replicate our experimental results [21].

Our experimental results cover two benchmark families (SF/RP) and a case
study (RU) from software-defined networking on real-world network topologies:
Switch Failure (SF) (Parameter: n switches): From a sequence of n switches
with the ingress at the beginning and the egress at the end, a failing switch is
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chosen at random and removed. Then, data flows are bypassed from the prede-
cessor to the successor of the failing switch. Every data flow reaches the egress
node no matter of the update (connectivity).
Redundant Pipeline (RP) (Parameters: n1 switches in pipeline one / n2
switches in pipeline two / v version): The base version (B) contains two dis-
joint sequences of switches from the ingress to the egress, possibly with differing
length. For this and the next two versions, it is required that each data flow
reaches the egress node (connectivity) and is only forwarded via the first or the
second pipeline (packet coherence). Update version (U): Two updates are added
that can concurrently remove the first node of any pipeline and return the data
flows to the ingress. If both updates happen, data flows do not reach the egress.
Returning the data flows violates packet coherence. Mutex version (M): A mutex
is added to the update version such that at most one pipeline can be broken.
Updates can happen sequentially such that data flows are in a cycle through
the ingress. Correct version (C): The requirements are weakened such that each
data flow only has to reach the egress when updates do not occur infinitely often.
Routing Update (RU) is a case study based on realistic software-defined net-
works. We picked 31 real-world network topologies from [26]. For each network,
we choose at random an ingress switch, an egress switch, and a loop- and drop-
free initial configuration between the two. For a different, random final con-
figuration, we build a sequential update in reverse from egress to ingress. The
update overlaps with the initial configuration at some point during the update
or is activated from the ingress in the last step. It is checked if all packets reach
the egress (T) and if all packets reach another specific switch as an egress (F).

Table 2 presents our experimental results and indicates for each benchmark
the model checking approach with the best performance. In the benchmarks
where the specification is satisfied (3), IC3 is the clear winner, in benchmarks
where the specification is violated (7), the best approach is bounded model
checking with dynamic unrolling (BMC2/3). The results are encouraging: hard-
ware model checking is effective for circuits constructed by our transformation
with up to 400 latches and 27619 gates; falsification is possible for larger circuits
with up to 1288 latches and 269943 gates. As a result, we were able to auto-
matically verify with our prototype implementation updates for networks with
topologies of up to 10 switches (#S) and to falsify updates for topologies with
up to 38 switches within the time bound of 30 minutes.

We investigated the cost of specifications drop and loop freedom compared
with connectivity and packet coherence. Table 3 exemplarily shows the results
for network topology Napnet from RU. Connectivity, packet coherence, and loop
freedom have comparable runtimes due to similar formula and circuit sizes. Drop
freedom is defined over transitions and, hence, expensive for our transformation.

8 Related Work

There is a large body of work on software-defined networks, see [28] for a good
introduction. Specific solutions that were proposed for the network update prob-
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Table 2: Experimental results from the benchmark families Switch Failure (SF)
and Redundant Pipeline (RP), and the case study Routing Update (RU). The
results are the average over five runs on an Intel i7-2700K CPU with 3.50 GHz,
32 GB RAM, and a timeout of 30 minutes.

PNwT Translated PN Circuit Result
Ben. Par. #S |P| |T| |ϕ| |P>| |T>| |ψ′| Lat. Gat. Sec. Algo. |=
SF 3 4 4 5 35 17 22 60 90 2796 2.7 IC3 3

· · · · · · · · ·
9 10 10 11 95 35 46 138 186 8700 1359.9 IC3 3

10 11 11 12 105 38 50 151 202 9964 TO - ?

RP 1/1/B 4 4 5 43 17 22 68 100 2989 4.0 IC3 3

· · · · · · · · ·
4/4/B 10 10 11 103 35 46 146 196 8893 646.4 IC3 3

4/5/B 11 11 12 113 38 50 159 212 10157 TO - ?
1/1/U 6 6 9 63 25 36 100 136 5535 1.6 BMC2 7

· · · · · · · · ·
5/4/U 13 13 16 133 46 64 191 248 14523 945.1 BMC3 7

5/5/U 14 14 17 143 49 68 204 264 16127 TO - ?
1/1/M 6 9 11 63 30 42 106 146 6908 8.1 BMC3 7

· · · · · · · · ·
4/3/M 11 14 16 113 45 62 171 226 13573 1449.6 BMC2 7

4/4/M 12 15 17 123 48 66 184 242 15146 TO - ?
1/1/C 6 9 11 70 30 42 113 151 7023 63.1 IC3 3

· · · · · · · · ·
3/3/C 10 13 15 110 42 58 165 215 12195 1218.0 IC3 3

3/4/C 11 14 16 120 45 62 178 231 13688 TO - ?
RU Arpanet196912T 4 14 10 117 31 39 154 188 7483 22.7 IC3 3

Arpanet196912F 4 14 10 117 31 39 154 188 7483 2.0 BMC3 7

NapnetT 6 23 17 199 48 64 254 292 15875 95.1 IC3 3

NapnetF 6 23 17 199 48 64 254 292 15875 4.7 BMC3 7

· · · · · · · · ·
NetrailT 7 30 23 271 62 88 344 380 26101 145.3 IC3 3

NetrailF 7 30 23 271 62 88 344 380 26101 58.3 BMC3 7

Arpanet19706T 9 33 24 281 67 89 354 400 27619 507.8 IC3 3

Arpanet19706F 9 33 24 281 67 89 354 400 27619 49.7 BMC3 7

NsfcnetT 10 31 22 261 65 87 334 376 26181 304.8 IC3 3

NsfcnetF 10 31 22 261 65 87 334 376 26181 8.4 BMC3 7

· · · · · · · · ·
TwarenF 20 65 45 531 130 170 664 736 87493 461.5 BMC3 7

MarnetF 20 77 57 679 156 224 854 908 138103 746.1 BMC3 7

JanetlenseF 20 91 71 847 184 280 1064 1104 203595 514.2 BMC2 7

HarnetF 21 71 50 593 143 193 744 812 108415 919.0 BMC3 7

Belnet2009F 21 71 50 597 145 199 754 816 113397 1163.3 BMC2 7

· · · · · · · · ·
UranF 24 56 38 449 106 133 552 618 57950 143.2 BMC3 7

KentmanFeb2008F 26 82 56 669 167 223 844 920 142291 111.2 BMC3 7

Garr200212F 27 86 59 703 174 232 884 964 153509 324.2 BMC3 7

IinetF 31 104 73 871 210 288 1094 1176 227153 1244.5 BMC3 7

KentmanJan2011F 38 117 79 943 236 312 1184 1288 269943 112.6 BMC3 7
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Table 3: For the network topology Napnet and a concurrent update between two
randomly generated topologies, our four standard requirements are checked.

PN w. Transits Translated PN Circuit Result
Ben. Req. |P| |T| |ϕ| |P>| |T>| |ψ′| Latches Gates Sec. Algo. |=

Napnet connectivity 23 17 199 48 64 254 292 15875 95.1 IC3 3

p. coherence 23 17 208 48 64 267 298 16041 31.9 IC3 3

loop-free 23 17 237 48 64 296 305 16289 52.6 INT 3

drop-free 23 17 257 48 64 2288 325 30449 165.9 IC3 3

lem include consistent updates [39,8] (cf. the introduction), dynamic schedul-
ing [23], and incremental updates [25]. Model checking, including both explicit
and SMT-based approaches, has previously been used to verify software-defined
networks [6,31,30,43,1,36]. Closest to our work are models of networks as Kripke
structures to use model checking for synthesis of correct network updates [12,32].
While they pursue synthesis, rather than verification of network updates, the ap-
proach is still based on a model checking algorithm that is called in each step
of the construction of a sequence of updates. The model checking subroutine of
the synthesizer assumes that each packet sees at most one switch that was up-
dated after the packet entered the network. This restriction is implemented with
explicit waits, which can afterwards often be removed by heuristics. Our model
checking routine does not require this assumption. As it therefore allows for more
general updates, it would be very interesting to add the new model checking al-
gorithm into the synthesis procedure. Flow correctness also plays a role in other
application areas like access control in physical spaces. Flow properties that are
of interest in this setting, such as “from every room in the building there is a
path to exit the building”, have been formalized in a temporal logic [42].

There is a significant number of model checking tools (e.g., [40,41,24]) for
Petri nets and an annual model checking contest [27]. In this contest, however,
only LTL formulas with places as atomic propositions are checked. To the best of
our knowledge, other model checking tools for Petri nets do not provide places
and transitions as atomic propositions. Our encoding needs to reason about
places and transitions to pose fairness conditions on the firing of transitions.

9 Conclusion

We have presented a model checking approach for the verification of data flow
correctness in networks during concurrent updates of the network configuration.
Key ingredients of the approach are Petri nets with transits, which superimpose
the transit relation of data flows onto the flow relation of Petri nets, and Flow-
LTL, which combines the specification of local data flows with the specification
of global control. The model checking problem for Petri nets with transits and
Flow-LTL specifications reduces to a circuit model checking problem. Our pro-
totype tool implementation can verify and falsify realistic concurrent updates of
software-defined networks with specifications like packet coherence.
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In future work, we plan to extend this work to the synthesis of concurrent
updates. Existing synthesis techniques use model checking as a subroutine to
verify the correctness of the individual update steps [12,32]. We plan to study
Flow-LTL specifications in the setting of Petri games [17], which describe the
existence of controllers for asynchronous distributed processes. This would allow
us to synthesize concurrent network updates without a central controller.
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