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Abstract: Signal Temporal Logic is a linear-time temporal logic designed for classifying the time-
dependent signals originating from continuous-state or hybrid-state dynamical systems accord-
ing to formal specifications. It has been conceived as a tool for systematizing the monitoring of
cyber-physical systems, supporting the automatic translation of complex safety specifications into
monitoring algorithms, faithfully representing their semantics. Almost all algorithms hitherto sug-
gested do, however, assume perfect identity between the sensor readings, informing the monitor
about the system state and the actual ground truth. Only recently have Visconti et al. addressed
the issue of inexact measurements, taking up the simple model of interval-bounded per-sample
error that is unrelated, in the sense of chosen afresh, across samples. We expand their analysis by
decomposing the error into an unknown yet fixed offset and an independent per-sample error and
show that in this setting, monitoring of temporal properties no longer coincides with collecting
Boolean combinations of state predicates evaluated in each time instant over best-possible per-sample
state estimates, but can be genuinely more informative in that it infers determinate truth values for
monitoring conditions that interval-based evaluation remains inconclusive about. For the model-free
as well as for the linear model-based case, we provide optimal evaluation algorithms based on affine
arithmetic and SAT modulo theory, solving over linear arithmetic. The resulting algorithms provide
conclusive monitoring verdicts in many cases where state estimations inherently remain inconclusive.
In their model-based variants, they can simultaneously address the issues of uncertain sensing and
partial observation.

Keywords: signal temporal logic; online monitoring; uncertain information; partial observation

1. Introduction

Precise and automatic monitoring of the satisfaction of safety constraints imposed on
cyber-physical systems is of utmost importance in a variety of settings: traditionally, it
facilitates offline or, if supported by the monitoring algorithm, online system debugging
as well as, if pursued online in real-time, the demand-driven activation of safety and
fallback mechanisms in safety-oriented architectures as soon as a safety-critical system
leaves its operational domain or exposes unexpected behavior. An application domain of
growing importance is the safety assurance of autonomous systems, such as unmanned
aircraft. Such systems are increasingly equipped with decision-making components that
carry out complex missions in areas such as transport, mapping and surveillance, and
agriculture. In such applications the monitor plays a critical role in assessing system health
conditions (such as sensor cross-validation) and regulatory constraints like geo-fencing,
which prevents the aircraft from entering protected airspace [1]. More recently, continuous
diagnosis in continuous agile development processes like DevOps has caught interest
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and provides a further field of application [2]. Of special interest here is the provisioning
of flexible languages for the specification of monitors, as the pertinent safety constraints
vary tremendously across systems and application domains. Answering this quest, Signal
Temporal Logic (STL) [3] and similar linear-time temporal logics have been designed for
classifying the time-dependent signals originating from continuous-state or hybrid-state
dynamical systems according to formal specifications, alongside efficient stream processing
languages targeted towards online monitoring [1]. These highly expressive specification
languages do, however, induce the follow-up quest for efficient automatic implementation
of monitoring algorithms by means of translation from the formal safety or monitoring
specifications.

There consequently is a rich body of work on synthesis of monitors from logical
specifications of temporal or spatio-temporal type (cf. [4] for an overview), with nowadays
even robust industrial tools being available [5], as well as hard real-time capable stream-
based execution mechanisms for on-line monitoring of even more expressive monitoring
languages [1]. Most of the suggested algorithms do, however, not address the problem
of epistemic uncertainty due to environmental sensing, with the monitoring algorithms
rather taking sensor values and timestamps as is and ignoring their inherent imprecision.
Such imprecisions are unavoidable in applications such as autonomous aircraft due to
wind and other external influences. A notable exception is provided by robust quantitative
interpretations of temporal logic, which can cope with inaccuracy in timestamps [6] as
well as in sensor values [7]. The corresponding robust monitoring approaches [8] support
a metric, yet not stochastic, error model, and consequently ignore the fact that repeated
measurements provide additional evidence, thus ignoring the wisdom and toolset from
metrology concerning state estimation [9,10], consequently providing extremely pessimistic
verdicts [11]. Overcoming the latter problem would require equipping the pertinent
logics, like Signal Temporal Logic [7], with a truly stochastic (i.e., reporting a likelihood of
satisfaction over a stochastic model) rather than a trace-based metric semantics (reporting
slackness of the signal values observed across a single trace towards change of truth value
of the formula). This remains the subject of our further research.

In this article, we do nevertheless show that already in a metric setting of interval-
bounded measurement error, as employed in [12], refined algorithms addressing the
relation between successive measurements are possible. Visconti et al. [12] have previously
addressed the issue of inexact measurements metrically, taking up the simple model of
interval-bounded independent per-sample error which is unrelated across samples in the
sense of chosen afresh upon every sample. We expand their analysis by decomposing the
error into an unknown yet fixed offset and an independent per-sample error and show
that in this setting, monitoring of temporal properties no longer coincides with collecting
Boolean combinations of predicates evaluated pointwise over best-possible per-sample
state estimates, but can be genuinely more informative in that it infers determinate truth
values for monitoring conditions that interval-based evaluation remains inconclusive about.
For the model-free as well as for the (certain or uncertain) linear model-based case, we
provide optimal evaluation algorithms based on affine arithmetic [13] and SAT modulo
theory solving over linear arithmetic [14,15]. Beyond uncertain sensing, we also address the
issues of partial observation (w.r.t. both state variables and time instants) in uncertain linear
systems. In all these cases, the reductions to proof obligations in affine arithmetic provide
conclusive monitoring verdicts in many cases where interval-valued state estimations
and subsequent interval-based evaluation of temporal monitoring properties inherently
remains inconclusive, which we demonstrate by means of examples. We furthermore
prove that our affine-arithmetic reductions are optimal in that they are as precise as a
monitor operating under metric uncertainty can possibly be: they do not only provide
sound verdicts throughout, but are also optimally informed in that they always yield a
conclusive verdict whenever this is justified by the formula semantics. Any reduction to
even richer extensions of interval arithmetic, like [16], would consequently fail to provide
additional gains in precision.
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To achieve these results, we first in Section 2 review the definition of Signal Temporal
Logic [7], which we use as the formalism of choice for illustration. We then provide the
metric error model for measurements (Section 3) and based on it define the monitoring
problem under metric uncertainty (Section 4) including rigorous criteria for soundness,
completeness, and precision of monitoring algorithms. The subsequent two sections
develop optimal monitoring algorithms based on reductions to affine arithmetic, where
Section 5 covers the model-free case and Section 6 treats optimal monitoring when a
(potentially uncertain) affine model of system dynamics is given. Both sections provide
illustrative examples of the constructions. Section 7, finally, investigates the worst-case
complexity of the monitoring problem under uncertainty.

2. Signal Temporal Logic

Signal temporal logic (STL) [3] is a linear-time temporal logic designed as a formal spec-
ification language for classifying the time-dependent signals originating from continuous-
state or hybrid-state dynamical systems. Its development has been motivated by a need for
a flexible yet rigorous language systematising the monitoring of cyber-physical systems.
Especially relevant to such monitoring applications is the bounded-time fragment of STL
defined as follows.

Definition 1. Formulae φ of bounded-time STL are defined by the Backus-Naur form

φ := > | g ≥ c | ¬φ | φ ∨ φ | φU[t,t]φ

g := cx | cx + g

c :∈ Q
x :∈ Var

t :∈ N

where Var is a predefined set of signal names. We demand that t ≤ t′ in U[t,t′ ]φ.
The constant ⊥, further Boolean connectives like ∧ or⇒, and further modalities F[t,t]φ or

G[t,t]φ can be defined as usual: for example, F[t,t′ ]φ is an abbreviation for >U[t,t′ ]φ and G≤tφ is an
abbreviation for φU[t+1,t+1]> given the discrete nature of the time model.

Note that the above definition confines state expressions g to be linear combinations
of signals, in contrast to the standard definition [3] of STL, which permits more general
state expressions. The reason for adopting this restriction is that it permits exact results in
monitoring, whereas more general state expressions can well be treated in our framework
by exploiting standard affine-arithmetic approximations [13], yet completeness would be
lost due to overapproximations induced by a strife for soundness.

For the same reasons, we adopt a discrete-time semantics, as issues of continuous
interpolation between time instants of measurements have been addressed before in [17].
Adopting those mechanisms, continuous-time dynamic systems and continuous-time
interpretation of STL can be treated as well, yet would again resort to affine approximations
at the price of sacrificing exactness of the monitoring algorithm.

The semantics of STL builds on the notion of a trajectory:

Definition 2. A state valuation σ is a mapping of signal names x ∈ Var to real values, i.e., a
function σ : Var→ R. The set of all state valuations is denoted by Σ. A (discrete time) trajectory
τ : N→ Σ is a mapping from time instants, where time is identified with the natural numbers N,
to state valuations.

Satisfaction of an STL formula φ by a (discrete-time) trajectory τ at time instant t ∈ N,
denoted as τ, t |= φ, is defined recursively as
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τ, t |= > holds,
τ, t |= g ≥ c iff G(τ(t)) ≥ c, where G is the linear function defined by expression g,
τ, t |= ¬φ iff τ, t 6|= φ,
τ, t |= φ ∨ ψ iff τ, t |= φ or τ, t |= ψ,
τ, t |= φU[t1,t2]

ψ iff ∃k ∈ {t + t1, . . . , t + t2} : (τ, k |= ψ) ∧ ∀l ∈ {t, . . . , k− 1} : (τ, l |= φ).

Note that the truth value of an STL formula φ over a trajectory τ at time t thus can
be decided at time t + duration(φ) if the values τ(k)(x) are known for all time instants
k ∈ {t, . . . , t + duration(φ)} and all variable names x occurring in φ, where duration(φ) is
defined as follows:

duration(>) = 0,

duration(g ≥ c) = 0,

duration(¬φ) = duration(φ),

duration(φ ∨ ψ) = max(duration(φ), duration(ψ)),

duration(φU[t1,t2]
ψ) = max(t2 − 1 + duration(φ), t2 + duration(ψ)).

Unfortunately, the ground-truth values of τ(k)(x) are frequently not directly accessible
and have to be retrieved via environmental sensing, which is bound to be inexact due
to measurement error and partial due to economic and physical constraints on sensor
deployment and capabilities. Inaccessibility of the ground truth renders direct decision
of STL properties based on the above semantics elusive; we rather need to infer, as far as
this is possible, the truth value of an STL monitoring condition φ from the vague evidence
provided by mostly partial and inexact sensing.

3. Imperfect Information Due to Noisy Sensing

The simplest metric model of measurement error is obtained by assuming the error
to be interval-bounded and independent across sensors as well as across time instants of
measurements, thus pretending that the error incurred when measuring the same physical
quantity by the same sensor at different times is uncorrelated. Sensor-based monitoring
under such a model of measurement uncertainty can be realized by an appropriate interval
lifting of the STL semantics [12], as standard interval arithmetic (IA) [18] underlying this
lifting reflects an analogous independence assumption.

This independence assumption, however, is infamously known as the dependency
(or alias) problem of interval arithmetic in cases where the independence assumption
does not actually apply and IA consequently yields an overly conservative approximation
instead [18]. Such overapproximation will obviously also arise when the interval-based
monitoring algorithm [12] is applied in cases where the per-sample error of multiple
measurements is not fully independent; the overapproximation then shows by reporting in-
conclusive monitoring verdicts (due to the interval embedding encoded as the inconclusive
truth value interval {⊥,>}) rather than a conclusive truth value

Dependencies between per-sample measurement errors are, however, the rule and
not the exception. As a typical example take the usual decomposition of measurement
error into a confounding unknown yet fixed sensor offset that remains constant across
successive measurements taken by the same sensor, and a random measurement error
that varies uncorrelated between samples at different time instants. The upper bounds of
these two values refer directly to the two terms “trueness” and “precision” used by the
pertinent ISO norm 5725 to describe the accuracy of a measurement method. They are
consequently found routinely in data sheets of sensor devices, which we consider to be
the contracts between component (i.e., sensor) manufacturer and component user (i.e., the
monitor designer) in the sense of contract-based design [19], implying that all subsequent
logical inferences we pursue are relative to satisfaction of the contract by the actual sensor.
Within the ISO parlance, precision identifies the grouping or closeness of multiple readings,
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i.e., the portion of the total error that varies in an unpredictable way between tests or
measurements. In contrast, trueness indicates the closeness of the average test results to a
reference or true value in the sense of the deviation or offset of the arithmetic mean of a
large number of repeated measurements and the true or accepted reference value.

Definition 3. Let S be a sensor observing a signal σ ∈ Var at times T ⊆ N with a maximal sensor
offset of ε ≥ 0 and a maximal random measurement error of δ ≥ 0. Let τ be a (ground-truth)
trajectory. Then mS : T → R is a possible S time series over τ iff

∃o ∈ [−ε, ε] : ∀t ∈ T : ∃e ∈ [−δ, δ] : τ(σ)(t) + o + e = mS(t). (1)

If mS is an S time series over τ, then we symmetrically say that the trajectory τ is consistent
with mS and denote this fact by mS ` τ. This notion immediately extends to simultaneous
consistency with a set of time series mS1 , mS2 , to mSn : we denote the fact that trajectory τ satisfies
mSi ` τ for each i ∈ {1, . . . , n} by mS1 , . . . , mSn ` τ.

Note that the above definition features two additive offsets affecting measurements,
the first of which (namely the sensor offset) is uniformly chosen for the whole time series
while the second one (the random noise) is chosen independently upon every sample.
These errors are absolute in that their magnitude does not depend on the magnitude of
the ground truth value, which is a standard model of measurement errors appropriate
for many simple sensor designs. In specific settings, e.g., when the dynamic range of a
sensor is extended by variable-gain pre-amplification as usual in seismology [20] or by
regulating light flow to optical sensors via an automatically controlled optical aperture,
relative error or similar error models may be more appropriate. These can be formulated
analogously. For the combination of an absolute offset and a relative per-sample error, e.g.,
the characteristic Equation (1) would have to be replaced by

∃o ∈ [−ε, ε] : ∀t ∈ T : ∃e ∈
[
(1 + δ)−1, 1 + δ

]
: τ(σ)(t) · e + o = mS(t). (2)

4. The Monitoring Problem

Assume that we want to continuously monitor truth of a safety requirement φ stated
as a bounded-time STL formula. In reality, we can only do so based on a set mS1 to
mSn of time series of measurements obtained through different sensors S1 to Sn. Each of
these sensors is inexact, none can predict the future, and even together they provide only
partial introspection into the set Var of signals generated by the system under monitoring.
The problem at hand is to, at any time t ∈ N, generate as precise as possible verdicts
about the truth of the monitoring condition φ at time t− duration(φ) given the imprecise
measurements provided by the sensor array S1 to Sn up to time t.

Doing so requires identifying the full set of ground-truth signals possible given a set
of inexact measurements. This, however, coincides with the notion of consistency stated in
Definition 3.

Definition 4. Let S1 to Sn be a set of sensors, each qualified by an individual maximum sensor
offset εSi and an individual maximum random error δSi , which observe (not necessarily different)
signals σSi ∈ Var at (potentially diverse) time instants TSi ⊆ N. Let t ∈ N be the current time
and mSi : TSi ∩N≤t → R be the time series representing measurements obtained by the different
sensors Si up to time t.

The possible ground truth associated to the time series mS1 to mSn is the set of all trajectories
τ satisfying mS1 , . . . , mSn ` τ, i.e., being consistent with all available measurements simultaneously.
We signify the set of all possible ground truth trajectories corresponding to a set of measurements
mS1 , . . . , mSn by

GT(mS1 , . . . , mSn) = {τ : N→ Σ | mS1 , . . . , mSn ` τ}.
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The monitoring problem now is to characterize the possible ground truth exactly and
to determine the possible truth values of the monitoring condition φ across the possible
ground truth:

Definition 5. Let φ be a bounded-time STL formula according to the syntax from Definition 1,
t ∈ N be the current time, and mSi : TSi ∩N≤t → R, for S1 to Sn, be time series representing
measurements obtained by the different sensors Si up to time t.

Let M be an algorithm taking as arguments a current time t, a vector of time series mSi :
TSi ∩N≤t → R and computing a verdict in B+ = B∪ {inconclusive}. In the sequel, we denote
termination of M with verdict x by M(t, mS1 , . . . , mSn) = x.
We say that M is sound iff

(a) M(t, mS1 , . . . , mSn) = > implies that ∀τ ∈ GT(mS1 , . . . , mSn) : τ, t− duration(φ) |= φ
and

(b) M(t, mS1 , . . . , mSn) = ⊥ implies that ∀τ ∈ GT(mS1 , . . . , mSn) : τ, t− duration(φ) |= ¬φ

holds for all t and mSi .
M is complete iff M terminates on all t and mSi .
M is conclusive iff

(c) M(t, mS1 , . . . , mSn) = inconclusive implies that
∃τ, τ′ ∈ GT(mS1 , . . . , mSn) : τ, t− duration(φ) |= φ ∧ τ′, t− duration(φ) |= ¬φ

holds for all t and mSi .
We call M exact iff M is sound, conclusive, and complete.

A sound monitor thus provides correct verdicts only, but may refuse decisive verdicts
by non-termination or by reporting inconclusive. A complete monitor always provides
some verdict, including inconclusive. A sound and complete monitor may thus still
be uninformative by delivering sound but vacuous inconclusive verdicts. A conclusive
monitor, in contrast, reports inconclusive only when the evidence provided by the un-
certain sensors factually is too weak to determine an actual truth value. An exact monitor,
consequently, always provides an as precise verdict as possible.

When striving for such an exact monitoring algorithm, the problem is that the set
GT(mS1 , . . . , mSn) of ground-truth trajectories corresponding to a given time series of mea-
surements is uncountable in general, namely as soon as ε > 0 or δ > 0, i.e., whenever
measurements are imprecise. An enumeration of GT(mS1 , . . . , mSn), and thereby a straight-
forward lifting of the standard monitoring algorithms is impossible. Any algorithmic
approach to STL monitoring under imprecise observation consequently has to resort to a
non-trivial finite computational representation of GT(mS1 , . . . , mSn), which is the issue of
the next two sections.

5. Exact Monitoring under Imperfect Information: The Model-Free Case

As a motivating example consider the time series of inexact measurements depicted in
Figure 1, where

• t denotes time instant of the measurement (for simplicity considered to be exactly
known and to coincide with the time of its associated ground truth values—both
simplifications can be relaxed),

• x is the unknown ground-truth value of the physical quantity x under observation,
• black dots denote inexact measurements mi taken at time instances i = 1 . . . 14,
• perpendicular intervals attached to measurements indicate error margins: measure-

ments may deviate by ±1 from ground truth; ±0.5 thereof can be attributed to an
unknown constant sensor offset, leaving another ±0.5 to random measurement noise,

• the red areas, corresponding to the state predicate x < 2 ∨ x > 5, indicate critical
values for x, e.g., a geo-fencing condition not to be violated,
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• the monitoring condition φ = G≤12(x ≥ 2∧ x ≤ 5) is to be decided at time t = 13 for
time t′ = t− duration(φ) = t− 12 = 1, i.e., whether x ∈ [2, 5], avoiding the red range,
holds throughout the depicted time interval I.

I

6

5

4

3

2

0

1

5.7

2.6

x

t

Figure 1. Model-free monitoring of temporal conditions under metric interval-type uncertainty.

The uncertainty intervals depicted are tight insofar that, first, their width is ±1 and
thus coincides with the sum of the two errors sensor offset and random noise and, second,
that in the absence of any known model of the system dynamics, no reach-set propagation
across time instances is possible. Evaluation of φ based on interval arithmetic [12] therefore
remains inconclusive, given that some uncertainty intervals (namely the ones at times t = 3
and t = 12) overlap with the red areas, yet none falls completely into this forbidden range.
As the intervals depicted represent the sharpest possible state estimates w.r.t. the metric
error model discussed here, monitoring approaches based on first applying best-possible
state estimation and subsequently evaluation of the monitoring condition are equally prone
to remaining inconclusive.

Using affine arithmetic [13] and SAT modulo theory solving over linear arithmetic
(SMT-LA) [14], we will, however, be able to decide that φ is violated at time t′ = 1. The core
argument in the detailed, general construction to follow is that we can represent the possible
ground truth values xi = τ(i)(x) relating to the measurements mi as xi + o + ei = mi with
o ∈ [−0.5, 0.5] representing the unknown, yet bounded sensor offset and ei ∈ [−0.5, 0.5]
for i = 1 . . . 13 representing per-sample independent error. Now observe that m3 = 5.7∧
m12 = 2.6∧ x3 + o + e3 = m3 ∧ x12 + o + e12 = m12 ∧ o, e3, e12 ∈ [−0.5, 0.5] ∧ x3, x12 ∈ [2, 5]
is unsatisfiable. The latter can be decided with SMT-LA solving. The unsatisfiability
proves that at least one of x3, x12 definitely falls into the red range due to the dependence
introduced by the sensor offset.

For the full construction let us assume that

1. φ mentions the state variables V ⊂ Var;
2. for each v ∈ V we are having a sensor with maximal offset εv ≥ 0 and maximum

random per-sample error δv ≥ 0; (We will later relax the assumption that all variables
in φ be directly observable through a sensor. To be meaningful, such partial obser-
vation does, however, require a system model permitting to infer information over
unobservable variables, which is subject of the next section.)

3. that these sensors have provided measurements mv(i) for each variable v ∈ V and
each time instant i ∈ {t− duration(φ), . . . , t}. (We will likewise relax the assumption
that each time point be observed by the sensors in the section to follow.)

We then build a linear constraint system, i.e., a Boolean combination of linear con-
straints as follows:

1. For each v ∈ V and each i ∈ {t− duration(φ), . . . , t}, we declare a constant

m_v_i = mv(i).
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2. For each v ∈ V, we declare a variable o_v of type real and generate the bound
constraints

o_v ≥ −εv ∧ o_v ≤ εv

representing the sensor offset for measuring v.
3. For each v ∈ V and each i ∈ {t− duration(φ), . . . , t}, we declare a variable e_v_i of

type real and generate the bound constraints

e_v_i ≥ −δv ∧ e_v_i ≤ δv

representing the per-sample independent error.
4. For each v ∈ V and each i ∈ {t− duration(φ), . . . , t}, we declare a variable v_i of

type real and generate a linear constraint

v_i + o_v + e_v_i = m_v_i

representing consistency between measurements and ground truth values as stated in
Definition 3.

5. Using standard constructions of SMT-based bounded model checking, we add an
SMT-LA encoding for validity of φ at time t′ = t − duration(φ) to the constraint
system as follows:

• For each subformula ψ of φ and each time instant k ∈ {t− duration(φ), . . . , t−
duration(ψ)} we add a Boolean variable ψ_k,

• if ψ = > then we assert constraints ψ_k stating that ψ is invariantly true for each
k ∈ {t− duration(φ), . . . , t},

• if ψ = g ≥ c then we add constraints ψ_k ⇔ g[~v_k/~v] ≥ c for each k ∈
{t− duration(φ), . . . , t},

• if ψ = ¬ψ′ then we add ψ_k ⇔ ¬ψ′_k to the constraint system for each k ∈
{t− duration(φ), . . . , t− duration(ψ)},

• if ψ = ψ′ ∨ ψ′′ then we add constraints ψ_k ⇔ (ψ′_k ∨ ψ′′_k) for each k ∈
{t− duration(φ), . . . , t− duration(ψ)},

• if ψ = ψ′U[t1,t2]
ψ′′ then we add constraints

ψ_k⇔
(k+t1−1∧

i=k

ψ′_i

)
∧

k+t2∨
i=k+t1

ψ′′_i ∧
i−1∧

j=k+t1

ψ′_j


for each k ∈ {t− duration(φ), . . . , t− duration(ψ)},

φ_t′ consequently is the root variable representing validity of φ at time t′ = t −
duration(φ).

6. We finally add one of the two conjuncts

(a) ¬φ_t′ or
(b) φ_t′ alternatively,

where t′ = t− duration(φ), to the resultant constraint system and check both variants
for their satisfiability using an SMT-LA solver.

Depending on the results of the two satisfiability checks, we report

• inconclusive if both systems are found to be satisfiable,
• > if the system (a) containing ¬φ_t′ is unsatisfiable,
• ⊥ if the system (b) containing φ_t′ is unsatisfiable,

The resulting STL monitoring algorithm is best possible in that it is sound, conclusive,
and complete:

Lemma 1. The above algorithm M constitutes an exact monitor in the sense of Definition 5.
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Proof. In order to show that M is exact, we have to prove that it is complete, conclusive,
and sound.

Completeness is straightforward, as the constraint system generated in steps 1 to 6 is
finite. Its generation hence terminates, as do the subsequent satisfiability checks because
SMT-LA is decidable.

For soundness and conclusiveness note that the constraint system generated by steps 1
to 4 constitute a Skolemized version of the equation (1) defining consistency and that satisfia-
bility of ¬φ_t′ (or of φ_t′ alternatively) corresponds to invalidity of ∀τ ∈ GT(mS1 , . . . , mSn) :
τ, t′ |= φ (of ∀τ ∈ GT(mS1 , . . . , mSn) : τ, t′ |= ¬φ, resp.) with t′ = t− duration(φ). The
subproblems decided within algorithm M thus directly match the conditions used in
Definition 5 to characterize soundness and being conclusive.

Note that the above encoding can easily be adjusted to other metric error models
beyond additive absolute error simply by changing the characteristic formula applied in
step 4 and adjusting the bounds for the errors o_v and e_v_i accordingly. The relative
per-sample error from Equation (2) would, for example, be encoded by v_i ∗ e_v_i + o_v =
m_v_i. The subsequent SMT solving would then, however, require a constraint solver
addressing a more general fragment of arithmetic than SMT-LA due to the bilinear term
v_i ∗ e_v_i.

6. Exact Monitoring under Imperfect Information Given Uncertain Linear Dynamics

Additional inferences about the correlation between systems states at different time
instants, and consequently additional evidence refining monitoring verdicts, are available
when we have access to a model of system dynamics. Beyond refined arguments concerning
feasible ground-truth value ranges within the error margins, such a model also allows to
bridge gaps in sensor information, like time instants missing in a time series or references
to unobservable signals. As a motivating example consider the time series of inexact
measurements depicted in Figure 2, where

−0.5

−2

−1.5

−1

0.1

20

1

1.5

0.5
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Figure 2. Model-based monitoring of temporal conditions under interval-type uncertainty and partial
observation.

• t denotes time of measurement,
• x and y constitute the (mostly unobservable) systems state, which is subject to uncer-

tain linear dynamics x′ = x√
2
− y√

2
and y′ = x√

2
+ y√

2
± 0.1,

• blue (green, resp.) crosses denote the unknown actual values of x (y, resp.) along a
system evolution,

• green dots denote two inexact measurements taken on y at time instants 1 and 5, which
are the only measurements available for the system,

• perpendicular intervals of width ±1 denote the error margins of these measurements,
consisting of ±0.5 independent per-measurement error and ±0.5 unknown constant
sensor offset,

• the red area indicates critical values for y, namely y < 0.2,
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• the monitoring condition to be decided at t = 5 for t′ = t− duration(φ) = t− 4 = 1
is φ = G≤4y ≥ 0.2, i.e., to decide whether the red area is avoided throughout time
instants 1, . . . , 5.

Evaluation of the monitoring condition over the uncertainty intervals remains incon-
clusive due to both the overlap of the given uncertainty intervals at times 1 and 5 with the
red area and the lack of any information for the other times. Note that even most precise
state estimation, while being able to deduce intervals for the possible ground truth values of
y at time instants 2 to 4, cannot narrow down the intervals for y at time instants 1 and 5. Any
monitoring approach based on a sequence of best-in-class state estimation and subsequent
evaluation by a monitor thus is bound to remain inconclusive. Holistic treatment of the STL
monitoring condition by affine arithmetic, however, can decide violation of the monitoring
condition φ: the conjunction of the affine form representations of the relation between
measurements and ground truth values with the equations for the system dynamics and
with the monitoring condition constitutes an unsatisfiable linear constraint system (shown
later in full detail).

The formal construction relies on the encoding from the previous section and conjoins
it with the equations characterizing the system dynamics. It is generated as follows:

1–5 Identical to steps 1 to 5 from Section 5, with the slight variation that constants rep-
resenting measurements (step 1), slack variables for random noise (step 3) and con-
straints v_i + o_v + e_v_i = m_v_i encoding consistency with measurements (second
half of step 4) are only generated for time instants where measurements are available.

6 For each v ∈ V and each i ∈ {t− duration(φ), . . . , t− 1}, declare a real variable u_v_i
and generate the linear constraints

v_(i + 1) = c1x_i + c2y_i + . . . + cnz_i + c + u_v_i
∧ u_v_i ≥ −γ
∧ u_v_i ≤ γ

when the dynamics of v is given by the uncertain equation v′ = c1x + c2y + . . . +
cnz + c± γ. The uncertain offset u_v_i can be dropped when the dynamic equation is
certain.

7 We finally add one of the two conjuncts

(a) ¬φ_t′ or
(b) φ_t′ alternatively

to the resultant constraint system and check both variants for their satisfiability using
an SMT-LA solver.

For the example from Figure 2, that encoding (shown in iSAT [21] syntax; a complete
overview over the iSAT syntax is available from https://projects.informatik.uni-freiburg.
de/attachments/download/189/isat3_manual-0.02-20140409.pdf, accessed on 14 March
2022) reads as follows for variant 7(b) (an equivalent encoding in the SMT-Lib format can
be found in Appendix A):

DECL
-- Ground-truth state variables
float [-100,100] x1, x2, x3, x4, x5;
float [-100,100] y1, y2, y3, y4, y5;

-- Actual measurements
define my1 = 0.1;
define my5 = 0.1;

-- Uncertainties in measurements
float [-0.5,0.5] oy, ey1, ey5;

https://projects.informatik.uni-freiburg.de/attachments/download/189/isat3_manual-0.02-20140409.pdf
https://projects.informatik.uni-freiburg.de/attachments/download/189/isat3_manual-0.02-20140409.pdf
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-- Uncertainties in system dynamics
float [-0.1,0.1] uy1, uy2, uy3, uy4;

-- Helper variables for BMC encoding
boole p1, p2, p3, p4, p5, q1;

define s = 0.707106781; -- 1/sqrt(2)

EXPR
-- Uncertain linear system dynamics
x2 = s*x1 - s*y1;
y2 = s*x1 + s*y1 + uy1;
x3 = s*x2 - s*y2;
y3 = s*x2 + s*y2 + uy2;
x4 = s*x3 - s*y3;
y4 = s*x3 + s*y3 + uy3;
x5 = s*x4 - s*y4;
y5 = s*x4 + s*y4 + uy4;

-- Relations between measurements and states
-- reflecting an absolute error of +-0.5 both as offset and random
y1 + 0.5*oy + 0.5*ey1 = my1;
y5 + 0.5*oy + 0.5*ey5 = my5;

-- BMC encoding of monitoring condition
-- p_ represents satisfaction of y >= 0.2 at time instant _
p1 <-> y1 >= 0.2;
p2 <-> y2 >= 0.2;
p3 <-> y3 >= 0.2;
p4 <-> y4 >= 0.2;
p5 <-> y5 >= 0.2;

-- q_ represents validity of G <=5 p at time instant _
q1 <-> p1 and p2 and p3 and p4 and p5;

-- Goal, namely satisfaction of q at time 1
q1;

Note that the above encoding employs the slightly optimized BMC encoding

ψ_k⇔
k+d∧
i=k

ψ′_i

for subformulae ψ = G≤dψ′ at each k ∈ {t− duration(φ), . . . , t− duration(ψ)} .
The above constraint system is unsatisfiable, confirming the verdict ⊥ for the moni-

toring condition φ = G≤4y ≥ 0.2 at time t′ = 1. Its unsatisfiability can automatically be
decided by any satisfiability modula theory (SMT) solver addressing SMT-LA, i.e., Boolean
combinations of linear inequalities. Likewise, its variant encoding the relative error model
from Equation (2) can be decided by any SMT solver solving Boolean combinations of
polynomial constraints. Such solvers do in general rely on solving a Boolean abstraction of
the SMT formula, where all theory atoms (linear or polynomial inequalities in our case)
are replaced by Boolean literals by a CDCL (conflict-driven clause learning) propositional
satisfiablity (SAT) solver [22,23] in order to resolve the Boolean structure. As this SAT
solving incrementally instantiates the Boolean literals in the abstraction, a conjunctive
constraints system in the theory underlying the SMT problem (e.g., linear arithmetic) is
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incrementally built by collecting the theory constraints that have been abbreviated by the
Boolean literals. These conjunctive systems of theory constraints are then solved by a
subordinate theory solver, which blocks further expansion of the partial truth assignment
to the literals in the Boolean abstraction when the associated theory-related constraint
system becomes unsatisfiable. The reasons for unsatisfiability are usually reported back
to the SAT solver in form of a corresponding conflict clause over the abstracting Boolean
literals, where the conflict clause reflects a minimal (or, in cases of undecidability of high
computational cost, small) infeasible core of the unsatisfiable theory constraint system.
This conflict clause is added to the Boolean SAT problem and forces the SAT solver into
(usually non-chronological) backtracking, thus searching for a different resolution of the
Boolean structure of the SMT problem. A thorough description of the algorithmic principles
underlying this so-called lazy theorem proving approach to SMT can be found in [24,25].
iSAT is an industrial-strength SMT solver that is commercially available [26] and covers a
very general fragment of arithmetic, covering linear, polynomial, and transcendental func-
tions over the integers, the mathematical reals, and (in bit-precise form) the computational
floats [27].

Although iSAT [21,28,29] is by no means optimized for solving linear constraint
systems—its primary field is non-linear arithmetic involving transcendental functions, the
above monitoring condition can be checked in approximately 300 ms on a single core of a
Core i7 10th generation running at 1.8 to 2.4 GHz. iSAT would, with essentially unaltered
performance, be able to also check error models whose encoding requires non-linear
arithmetic, like the mixed absolute-relative error model of Equation (2). In the above case
of absolute error, we may equally well apply the dedicated SMT-LA solver MathSAT 5 [15]
to the equivalent SMT-lib encoding shown in Appendix A, as only linear arithmetic is
involved. The runtime then amounts to just 9.4 ms on an eight-core AMD Ryzen 7 5800X
running at 4.4 GHz. As these runtimes have been observed on general-purpose SMT
solvers devoid of any particular optimization for the formula structures arising in the
monitoring problem, we deem online monitoring in real-time practical even for more
complex (deeper nesting of sub-formulae, larger duration(φ)) monitoring conditions and
system models (higher dimensionality especially), given the proven scalability of SMT to
large-scale industrial problems.

For the above model-based monitoring procedure, akin to Lemma 1, we obtain

Lemma 2. For systems featuring uncertain affine dynamics, the above monitoring algorithm is
exact, where exactness in this setting refers to exact characterization, in the sense of Definition 5, of
the truth values possible over GT(mS1 , . . . , mSn) ∩D with D being the set of possible trajectories of
the system according to its uncertain linear dynamics.

7. Computational Worst-Case Complexity

The aforementioned computation times indicate that the procedure is feasible in
practice, notwithstanding the fact that the monitoring problem under metric uncertainty
actually is NP-complete:

Lemma 3. The model-free exact monitoring problem under imperfect information (given as interval-
bounded additive absolute measurement error) is NP-complete.

Proof. The linear reduction of the model-free monitoring problem to SMT-LA exposed in
Section 5 shows that the monitoring problem is in NP, as SMT-LA is NP-complete.

NP-hardness follows from a straightforward reduction of the NP-complete problem
of propositional satisfiability solving (SAT) [30] to model-free monitoring: Consider a
propositional SAT formula φ. From φ derive an STL monitoring condition φ′ by replacing
each positive literal x from φ by x > 0 and each negative literal ¬x by x < 0. Then the SAT
formula φ is satisfiable if the monitoring verdict for the STL formula φ′ is different from
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⊥ when applied to a measurement where all observed variables x obtain a measurement
mx = 0 under a non-zero random measurement error δv > 0 for all v ∈ Var.

Remark 1. As the above reduction of SAT only requires a positive noise margin δv w.r.t. random
measurement error and is independent from any assumption concerning the offset εv, it applies to
Visconti et al.’s noise model [12] as well. Exact monitoring for the error model from [12] consequently
also is NP-complete.

NP-completeness thus seems to be the inherent price to pay for uncertain information: bounded
STL monitoring under certain observation, in contrast, is polynomial in the discrete-time case, as it
only has to check an existing valuation given by the measurements for satisfaction of the (bounded)
monitoring condition.

Remark 2. The NP-completeness result for the model-free case expressed in Lemma 3 transfers to
the case of model-based monitoring problem under metric imperfect information. NP-hardness
can be shown by considering a discrete-time dynamical system with constant state 0 throughout
within the very same SAT reduction as in the proof of Lemma 3. The reduction of the monitoring
problem to SMT-LA from Section 6 again proves the linear model-based monitoring problem to be in
NP.

For linear uncertain discrete-time models, model-based monitoring under uncertainty conse-
quently is NP-complete as well.

Note that the above NP-hardness results only apply to situations where measurements
remain completely uninformative due to the measurement error, whereas more informed
cases converge, depending on their level of informedness, towards checking assignments
rather than finding satisfying assignments. The hardness results consequently are of limited
relevance to actual applications, as these are extremely unlikely to feature an investment
into completely uniformative sensor equipment.

8. Conclusions

In this article we have shown that the monitoring under uncertain environmental
observation of properties expressed in linear-time temporal logic is fundamentally different
from state estimation under uncertainty. While accurate state estimation followed by evalu-
ation of the monitoring property provides a sound mechanism, this two-step algorithm
may remain unnecessarily inconclusive. We have exposed two sample cases where a direct
evaluation of the temporal logic property, for which we gave the formal constructions via
a reduction to SAT modulo theory solving over linear arithmetic, yields definite results,
whereas the two-step algorithm based on state estimation remains inconclusive. The reason
is that durational properties expressed by temporal logic induce rather complex relations
between successive values of signals and that these relations overlap and interfere with the
cross-measurement relations induced by measurements of dynamically related variables
as well as by dependencies between measurements. The single-step reduction exposed in
this article encodes both the specification formula to be monitored and the error model for
measurements into a common logical representation such that the interaction between these
two cross-time-instant relations can be analyzed and exploited for more informed verdicts.

In the present article, we have analyzed these effects theoretically and on small,
prototypic examples, within a setting of non-stochastic, metrically constrained error, where
the different types of measurement error are interval-bounded. Future work will address
real-life benchmark applications from the air taxi domain and extend the theory to a
stochastic setting, where both measurement errors and uncertain system dynamics are
described by distributions rather than metric intervals. Furthermore, we will address run-
time efficiency by devising structural SMT approaches exploiting the particular problem
structure rather than using problem-agnostic general purpose SMT solvers. Where this
does not suffice to obtain real-time capabilities suitable for online monitoring, we will
reduce computational complexity by appropriate approximation algorithms providing
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real-time capabilities in settings where the exact reductions and the SAT modulo theory
algorithms used herein do not feature sufficient performance.

A further issue of interest could be the handling of outliers in the measured time
series, where tolerance of the monitoring verdict against k ∈ N outliers would constitute
a useful relaxation of the monitoring requirement. In such a relaxation, a monitor alarm
would be suppressed if, at most, k measurements can be replaced by (arbitrarily different
or bounded-offset) valuations that render the monitoring condition true when combined
with the ground-truth of the remaining noisy measurements. Such tolerance against a fixed
number of outliers can well be encoded and solved via SMT, as has been demonstrated
in [31].
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Appendix A. SMT-LIB Encoding of the Model-Based Monitoring Example

(set-logic QF-LRA)
(set-option :print-success false)

; Ground-truth state variables
(declare-const x1 Real)
(assert (and (<= (- 100) x1) (<= x1 100)))
(declare-const x2 Real)
(assert (and (<= (- 100) x2) (<= x2 100)))
(declare-const x3 Real)
(assert (and (<= (- 100) x3) (<= x3 100)))
(declare-const x4 Real)
(assert (and (<= (- 100) x4) (<= x4 100)))
(declare-const x5 Real)
(assert (and (<= (- 100) x5) (<= x5 100)))

(declare-const y1 Real)
(assert (and (<= -100 y1) (<= y1 100)))
(declare-const y2 Real)
(assert (and (<= -100 y2) (<= y2 100)))
(declare-const y3 Real)
(assert (and (<= -100 y3) (<= y3 100)))
(declare-const y4 Real)
(assert (and (<= -100 y4) (<= y4 100)))
(declare-const y5 Real)
(assert (and (<= -100 y5) (<= y5 100)))
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; Uncertainties in measurements
(declare-const oy Real)
(assert (and (<= (- 0.5) oy) (<= oy 0.5)))
(declare-const ey1 Real)
(assert (and (<= (- 0.5) ey1) (<= ey1 0.5)))
(declare-const ey5 Real)
(assert (and (<= (- 0.5) ey5) (<= ey5 0.5)))

; Uncertainties in system dynamics
(declare-const uy1 Real)
(assert (and (<= (- 0.1) uy1) (<= uy1 0.1)))
(declare-const uy2 Real)
(assert (and (<= (- 0.1) uy2) (<= uy2 0.1)))
(declare-const uy3 Real)
(assert (and (<= (- 0.1) uy3) (<= uy3 0.1)))
(declare-const uy4 Real)
(assert (and (<= (- 0.1) uy4) (<= uy4 0.1)))

; Actual measurements
(declare-const my1 Real)
(assert (= my1 0.1))
(declare-const my5 Real)
(assert (= my5 0.1))

; Helper variables for BMC encoding
(declare-const p1 Bool)
(declare-const p2 Bool)
(declare-const p3 Bool)
(declare-const p4 Bool)
(declare-const p5 Bool)
(declare-const q1 Bool)

(declare-const s Real)
(assert (= s 0.707106781)) ; 1/sqrt(2)

; Uncertain linear system dynamics
(assert (= x2 (- (* s x1) (* s y1))))
(assert (= y2 (+ (* s x1) (* s y1) uy1)))
(assert (= x3 (- (* s x2) (* s y2))))
(assert (= y3 (+ (* s x2) (* s y2) uy2)))
(assert (= x4 (- (* s x3) (* s y3))))
(assert (= y4 (+ (* s x3) (* s y3) uy3)))
(assert (= x5 (- (* s x4) (* s y4))))
(assert (= y5 (+ (* s x4) (* s y4) uy4)))

; Relations between measurements and states
; reflecting an absolute error of +-0.5 both as offset and random
(assert (= (+ y1 (* 0.5 oy) (* 0.5 ey1)) my1))
(assert (= (+ y5 (* 0.5 oy) (* 0.5 ey5)) my5))

; BMC encoding of monitoring condition
; p_ represents satisfaction of y >= 0.2 at time instant _
(assert (= p1 (>= y1 0.2)))
(assert (= p2 (>= y2 0.2)))
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(assert (= p3 (>= y3 0.2)))
(assert (= p4 (>= y4 0.2)))
(assert (= p5 (>= y5 0.2)))

; q_ represents validity of G <=5 p at time instant _
(assert (= q1 (and p1 p2 p3 p4 p5)))

; Goal, namely satisfaction of q at time 1
(assert q1)

(check-sat)
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