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Abstract

In the context of formal verification, model checking is the automated process of
proving or disproving that a formal model of a system satisfies a given property.
This property may be specified in a specialized specification language such as
a temporal logic.

PHL (Probabilistic Hyper Logic) is a relatively new temporal logic for speci-
fying probabilistic hyperproperties of Markov decision processes (MDPs). PHL
was first proposed a year ago by Dimitrova, Finkbeiner, and Torfah, who also
developed two model checking algorithms for a fragment of PHL. One of these
algorithms involves synthesizing a so-called scheduler for an MDP, applying
this scheduler to the MDP, and then checking whether the resulting system
satisfies a given probabilistic constraint. This process is iterated until either
an adequate scheduler is found, or all schedulers up to a certain size have been
checked.

This thesis presents an approach to eliminating this guess-and-check loop.
The key to this approach is an improved scheduler synthesis procedure that is
able to immediately find an adequate scheduler, if such a scheduler exists, and
that can even synthesize an optimal scheduler that maximizes or minimizes
a given probability expression. A first feasibility study shows that scheduler
synthesis for a simple property and small MDPs can be performed on ordinary
hardware, but suggests that further optimization will be necessary to make this
approach viable for real-world use cases.
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1 Introduction

Formal verification has the potential to prevent severe damage that may re-
sult from the failure of security-critical computing systems. Therefore, formal
verification is especially desirable in the context of security-critical systems.
However, formally verifying security policies can pose great theoretical chal-
lenges. This is due to the fact that security-critical systems often combine
internal randomization with interaction with a potentially adversarial envi-
ronment, and many security policies relate multiple possible executions of the
system to one another.

A good example is a database management system that is supposed to
implement differential privacy [Dwo11]. Obviously, this system must handle
queries from an unpredictable environment. In addition, differential privacy
demands that the system must randomize its outputs in such a way that for
similar databases, the probabilities of all possible replies to a given query are
almost the same. This means that the system must use internal randomization,
and that its correctness can only be expressed as a relation between multiple
executions on different databases.

In order to formally verify the correctness of such a system, we first need
an appropriate type of formal model. In particular, the model must allow for
nondeterminism, which is needed to capture the unpredictability of the environ-
ment, as well as probabilistic choice to model the system’s internal randomiza-
tion. Secondly, we need a specification language for this type of model that can
express so-called probabilistic hyperproperties: properties that combine prob-
abilistic constraints with the defining characteristic of hyperproperties, namely
correctness as a relation between multiple executions of a system.

One framework that fulfills these requirements is Markov decision pro-
cesses (MDPs) plus the relatively new temporal logic PHL (Probabilistic Hyper
Logic). MDPs are a type of system model that combines nondeterminism with
probabilistic choice, and that can be viewed as a generalization of both Kripke
structures and discrete-time Markov chains (DTMCs). Every transition from
one state of an MDP to another comprises two steps: first the nondeterminis-
tic choice of a so-called action; and then the probabilistic choice of a successor
state, where the transition probabilities depend on the action that was chosen
in the first step. An MDP can be reduced to a DTMC by fixing a so-called
scheduler, which resolves the nondeterminism in the MDP by assigning a prob-
ability to each action choice.

PHL was proposed a year ago by Dimitrova, Finkbeiner, and Torfah [DFT20]
as a temporal logic for expressing probabilistic hyperproperties of MDPs. It
allows for quantification over multiple possible schedulers for an MDP and can
express Boolean combinations of hyperproperties and probabilistic constraints
on the resulting DTMCs. While this makes PHL a very expressive logic, it also
makes the model checking problem for PHL generally undecidable. Dimitrova,
Finkbeiner, and Torfah were however able to develop two model checking al-
gorithms for a fragment of PHL which can express many properties of interest,
including differential privacy. One of these algorithms is a sound but incom-
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Introduction

plete approximate model checking algorithm for proving PHL formulas from
this fragment, while the other one is a bounded model checking algorithm for
finding counterexamples to disprove them.

Intuitively, the goal of the latter algorithm is, given an MDP and a PHL
formula that must begin with a universal scheduler quantifier, to find a sched-
uler for the MDP such that it falsifies the formula. This is equivalent to finding
a scheduler that satisfies the negation of the given formula, which is itself a
PHL formula that begins with an existential scheduler quantifier. We will be
using this latter formulation of the problem throughout this chapter.

Since even for the simplest MDPs, there exist infinitely many schedulers
that, when applied to the MDP, result in infinite DTMCs, the algorithm fo-
cuses on deterministic finite-memory schedulers of bounded size. Deterministic
schedulers can only assign probabilities of either 1 or 0 to action choices, which
makes these choices essentially deterministic. A finite-memory scheduler con-
sists of a finite-state machine that serves as its memory and is updated on every
step of the MDP, in combination with an action choice function that chooses
the next action based on the scheduler’s memory state and the current state
of the MPD. The size of a finite-memory scheduler is its number of memory
states. Finite-memory schedulers have the advantage that they induce only
finite DTMCs. Furthermore, for a given size bound, there exist only finitely
many deterministic finite-memory schedulers up to that size. Therefore, by
considering only deterministic finite-memory schedulers of bounded size, the
problem of determining whether there exists a scheduler with certain proper-
ties becomes decidable.

The bounded model checking algorithm works as follows. It first synthesizes
a scheduler for the MDP under consideration such that the hyperproperty from
the PHL formula is guaranteed to be satisfied. Then it uses a probabilistic
model checker to determine whether the resulting DTMC also satisfies the
probabilistic constraint from the formula. If this is not the case, the process is
iterated until either an adequate scheduler is found, or all schedulers up to a
certain size have been checked.

Clearly, the running time of this algorithm depends heavily on the number
of iterations until an adequate scheduler is found. Worse still, after every
unsuccessful try, an additional constraint is added to the hyperproperty in
order to make sure that the same scheduler will not be synthesized again.
We can therefore expect the running time to increase faster than linear in
the number of iterations. Dimitrova, Finkbeiner, and Torfah also conducted
some experiments with a proof-of-concept implementation, and their results
are in line with this hypothesis. This observation naturally raises the question
whether it might be possible to modify the scheduler synthesis procedure such
that it immediately produces an adequate scheduler, and thus to eliminate the
iteration altogether.

In this thesis, we develop such an improved scheduler synthesis procedure.
We present a general construction for encoding the existence of an adequate
scheduler as a satisfiability modulo theories (SMT) constraint system. Fur-
thermore, by adding an optimization objective to this constraint system, it is
possible to find optimal schedulers that maximize or minimize a given proba-
bility expression. We also briefly discuss experiments with a proof-of-concept
implementation of this scheduler synthesis procedure for a specific case study,
which consists of a very simple probabilistic hyperproperty for a parameterized
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and therefore scalable MDP. This first feasibility study shows that it is possible
to solve the constraint system, for small instances, with an off-the-shelf SMT
solver on ordinary hardware. However, the results suggest that further opti-
mization will be necessary in order to make this approach scale up to real-world
use cases such as the differential privacy example from the beginning of this
chapter.

The rest of this thesis is structured as follows. Chapter 2 provides the
necessary background information and definitions that we will later need to
present the SMT constraint system and to argue for its correctness: Section 2.1
presents the relevant temporal logics and related algorithms, while Section 2.2
briefly introduces the SMT framework from a user’s perspective. In Chapter 3,
we formally introduce the bounded model checking problem that we want to
solve and describe a general procedure for encoding the corresponding sched-
uler synthesis problem as an SMT constraint system. Chapter 4 presents first
experimental results with a proof-of-concept implementation of our new sched-
uler synthesis procedure for a simple case study. Finally, we discuss related
work in Chapter 5, and we summarize the results from this thesis and outline
possible future work in Chapter 6.
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2 Background

This chapter provides background information on the relevant temporal logics
as well as the existing model checking and synthesis algorithms that we will
later build upon. It also gives a brief introduction to Satisfiability Modulo
Theories (SMT) and Optimization Modulo Theories (OMT) which will form
the basis for our new bounded model checking algorithm.

2.1 Temporal Logics

The goal of this thesis is to develop an improved model checking algorithm
for a fragment of PHL. Every formula from this fragment contains a Hyper-
LTL subformula and at least one LTL subformula. Our new model checking
algorithm will combine ideas from existing algorithms for HyperLTL synthesis
and for probabilistic LTL model checking. This section gives an overview of
the relevant temporal logics, including LTL, HyperLTL, and PHL, and briefly
describes the aforementioned model checking and synthesis algorithms.

2.1.1 Linear Temporal Logic

We want to specify the correctness of a system in terms of its behavior over
time. The behavior of a system can be described through a set of so-called ex-
ecution traces that record for every time step a set of so-called atomic proposi-
tions that hold at that point in time. Kripke structures are a type of transition
system that produces such execution traces.

Definition 1 (Kripke Structure). A Kripke structure is a tuple K = (S,→
, I,AP, L) where

– S is a finite, nonempty set of states,

– → ⊆ S × S is the transition relation,

– I ⊆ S is the set of initial states,

– AP is a finite set of atomic propositions, and

– L : S → 2AP is the labeling function

such that

i) for all s ∈ S there exists an s′ ∈ S such that s→ s′.

Remark. Requirement i) ensures that every state has at least one outgoing
transition.
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Definition 2 (Execution Trace). Let K = (S,→, I,AP, L) be a Kripke struc-
ture. A path of K is a sequence π = s0s1s2 · · · ∈ Sω of states such that s0 ∈ I,
and for all i ≥ 0 we have si → si+1. The trace of path π is the sequence

trace(π) = L(s0)L(s1)L(s2) · · · ∈ (2AP)ω.

We denote the set of all traces of K by Traces(K).

LTL is a specification language that can express properties of execution traces.
It can be thought of as propositional logic over atomic propositions plus tem-
poral operators. The unary temporal operator 5 (“next”) expresses that the
following subformula must hold in the next time step, while the binary tempo-
ral operator U (“until”) expresses that its right-hand side must hold at some
point, and in every time step until then, its left-hand side must hold.

Definition 3 (LTL Syntax). Let AP be a finite set of atomic propositions.
LTL formulas over AP are defined by the grammar

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | 5ϕ | ϕ U ϕ

where a ∈ AP.

There exist a number of derived temporal operators, including & (“eventu-
ally”) and 0 (“globally”), which are defined by

&ϕ = > U ϕ and 0ϕ = ¬&¬ϕ.

Definition 4 (LTL Semantics). Let AP be a finite set of atomic propositions.
The satisfaction relation |= between infinite words over 2AP and LTL formulas
over AP is defined inductively as follows:

λ |= a iff a ∈ λ0
λ |= ϕ1 ∧ ϕ2 iff λ |= ϕ1 and λ |= ϕ2

λ |= ¬ϕ iff λ 6|= ϕ

λ |=5ϕ iff λ[1,∞] |= ϕ

λ |= ϕ1 U ϕ2 iff there exists an i ≥ 0 such that λ[i,∞] |= ϕ2

and for all 0 ≤ j < i we have λ[j,∞] |= ϕ1

where λ = λ0λ1λ2 · · · ∈ (2AP)ω.

2.1.2 LTL Model Checking

The so-called automata-theoretic approach makes use of the fact that for ev-
ery LTL formula ϕ, there exists an ω-automaton that accepts exactly those
traces that satisfy ϕ. One of the simplest LTL model checking algorithms
for Kripke structures involves constructing nondeterministic Büchi automata
(NBAs) from LTL forumlas.

Definition 5. Let s = s0s1s2 · · · be an infinite sequence, and let S =
⋃∞
i=0{si}

be the set of all terms in s. We denote the set of terms that occur infinitely
often in s by

Inf(s) = {t ∈ S : there exist infinitely many i ∈ N such that si = t}.

6
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Definition 6 (Nondeterministic Büchi Automaton). A nondeterministic Büchi
automaton (NBA) is a tuple A = (A,Λ, δ, a0, F ) where

– A is a finite, nonempty set of states,

– Λ is a finite, nonempty alphabet,

– δ : A× Λ→ 2A is the transition function,

– a0 ∈ A is the initial state, and

– F ⊆ A is the set of accepting states.

Let λ = λ0λ1λ2 · · · ∈ Λω be an infinite word over Λ. A run of A on λ is an
infinite sequence a = a0a1a2 · · · ∈ Aω of states such that a0 is the initial state,
and for all i ≥ 0 we have ai+1 ∈ δ(ai, λi). Run a is accepting if Inf(a)∩F 6= ∅,
i.e. it contains infinitely many accepting states. A accepts λ if there exists an
accepting run of A on λ. The language of A is the set L(A) = {λ ∈ Λω :
A accepts λ}.

Given a Kripke structure K and an LTL formula ϕ, we can determine whether
K satisfies ϕ by constructing an NBAA = (A, 2AP, δ, a0, F ) for ¬ϕ and checking
whether in the product Kripke structureK⊗A, a loop is reachable that contains
a state with a component from F .

2.1.3 Probabilistic LTL Model Checking

DTMCs are a type of system model that basically works like Kripke structures,
except that the next state is always determined by probabilistic choice.

Definition 7 (Discrete-Time Markov Chain). A discrete-time Markov chain
(DTMC) is a tuple M = (S,P, ι,AP, L) where

– S is a finite, nonempty set of states,

– P : S × S → [0, 1] is the transition probability function,

– ι : S → [0, 1] is the initial distribution,

– AP is a finite set of atomic propositions, and

– L : S → 2AP is the labeling function

such that

i) for all s ∈ S we have
∑
s′∈S P(s, s′) = 1, and

ii)
∑
s∈S ι(s) = 1.

Remark. Requirement i) ensures that the transition probabilities from every
state s define a probability measure on S. Requirement ii) ensures that the
initial distribution defines a probability measure on S.

Given a DTMC M and an LTL formula ϕ, we can compute with what proba-
bility M will produce a trace that satisfies ϕ. However, this requires a deter-
ministic type of ω-automaton, such as deterministic Rabin automata (DRAs).
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Definition 8 (Deterministic Rabin Automaton). A deterministic Rabin au-
tomaton (DRA) is a tuple R = (R,Λ, δ, r0,Acc) where

– R is a finite, nonempty set of states,

– Λ is a finite, nonempty alphabet,

– δ : R× Λ→ R is the transition function,

– r0 ∈ R is the initial state, and

– Acc = (Bj , Gj)
m
j=1 ⊆ 2R × 2R is the acceptance condition.

Let λ = λ0λ1λ2 · · · ∈ Λω be an infinite word over Λ. The run of R on λ is the
unique infinite sequence r = r0r1r2 · · · ∈ Rω of states such that r0 is the initial
state, and for all i ≥ 0 we have ri+1 = δ(ri, λi). Run r is accepting if there
exists a j ∈ {1, . . . ,m} such that Inf(r) ∩ Bj = ∅ and Inf(r) ∩Gj 6= ∅, i.e. the
run contains only finitely many states from Bj and infinitely many states from
Gj . R accepts λ if the run of R on λ is accepting. The language of R is the
set L(R) = {λ ∈ Λω : R accepts λ}.

NBAs can be translated into equivalent DRAs, and thus there exists a DRA
for every LTL formula. Probabilistic LTL model checking for DTMCs can be
performed as follows. First, the LTL formula is translated into a DRA, and
the product DTMC of the input DTMC and the DRA is constructed.

Definition 9 (Product of DTMC and DRA). Let M = (S,P, ι,AP, L) be a
DTMC and R = (R, 2AP, δ, r0,Acc) be a DRA. The product of M and R is the

DTMC M ⊗R = (S ×R, P̂, ι̂,AP, L̂) with

– ∀s, s′ ∈ S, r, r′ ∈ R : P̂
(
(s, r), (s′, r′)

)
=

{
P(s, s′) if r′ = δ

(
r, L(s)

)
0 otherwise

,

– ∀s ∈ S, r ∈ R : ι̂
(
(s, r)

)
=

{
ι(s) if r = r0

0 otherwise
, and

– ∀s ∈ S, r ∈ R : L̂
(
(s, r)

)
= L(s).

The model checking algorithm then determines the union of the accepting bot-
tom strongly connected components (BSCCs) of the product DTMC. Finally,
a system of linear equations is solved to obtain the probability of reaching an
accepting BSCC from the initial states. A detailed description of this algorithm
can be found in Section 10.3 of [BK08].

2.1.4 HyperLTL

While trace properties, as expressible by LTL, only require every single exe-
cution of a system to satisfy some property, hyperproperties can also relate
multiple executions to one another. The logic HyperLTL extends LTL with
quantification over traces and can thus express hyperproperties.

8
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Definition 10 (HyperLTL Syntax). Let AP be a finite set of atomic proposi-
tions and V be a countably infinite set of trace variables. HyperLTL formulas
over AP are defined by the grammar

ψ ::= ∀π. ψ | ∃π. ψ | ϕ
ϕ ::= aπ | ϕ ∧ ϕ | ¬ϕ | 5ϕ | ϕ U ϕ

where π ∈ V and a ∈ AP.

Definition 11 (HyperLTL Semantics). Let AP be a finite set of atomic propo-
sitions. The satisfaction relation |= between sets of infinite words over 2AP and
HyperLTL formulas over AP is defined inductively as follows:

Π |=T ∀π. ψ iff for all λ ∈ T we have Π[π 7→ λ] |=T ψ

Π |=T ∃π. ψ iff there exists a λ ∈ T such that Π[π 7→ λ] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]

Π |=T ϕ1 ∧ ϕ2 iff Π |=T ϕ1 and Π |=T ϕ2

Π |=T ¬ϕ iff Π 6|=T ϕ

Π |=T 5ϕ iff Π[1,∞] |=T ϕ

Π |=T ϕ1 U ϕ2 iff there exists an i ≥ 0 such that Π[i,∞] |=T ϕ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ϕ1

where T ⊆ (2AP)ω.

2.1.5 HyperLTL Synthesis

HyperLTL synthesis is the automated process of constructing a system that
satisfies a given HyperLTL formula. The HyperLTL synthesis procedure from
[Fin+20] involves constructing a universal co-Büchi automaton for the LTL
suffix of the given HyperLTL formula.

Definition 12 (Universal Co-Büchi Automaton). A universal co-Büchi au-
tomaton is a tuple B = (B,Λ, δ, b0, F ) where

– B is a finite, nonempty set of states,

– Λ is a finite, nonempty alphabet,

– δ : B × Λ→ 2B is the transition function,

– b0 ∈ B is the initial state, and

– F ⊆ B is the set of rejecting states.

Let λ = λ0λ1λ2 · · · ∈ Λω be an infinite word over Λ. A run of B on λ is an
infinite sequence b = b0b1b2 · · · ∈ Bω of states such that b0 is the initial state,
and for all i ≥ 0 we have bi+1 ∈ δ(bi, λi). Run b is accepting if Inf(b) ∩ F = ∅,
i.e. it contains only finitely many rejecting states. B accepts λ if all runs of B on
λ are accepting. The language of B is the set L(B) = {λ ∈ Λω : B accepts λ}.

9
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Given an NBA A = (A,Λ, δ, a0, F ), the universal co-Büchi automaton B =
(A,Λ, δ, a0, F ) accepts the language Λω \ L(A). Thus, there exists a universal
co-Büchi automaton for every LTL formula.

The HyperLTL synthesis procedure from [Fin+20] is SMT-based, and we
will use exactly the same idea as part of our SMT-based PHL model checking
procedure.

2.1.6 Probabilistic Hyper Logic

PHL is a temporal logic for specifying probabilistic hyperproperties of MDPs.
MDPs combine nondeterminism with probabilistic choice and can be viewed
as a generalization of both Kripke structures and DTMCs.

Definition 13 (Markov Decision Process). A Markov decision process (MDP)
is a tuple M = (S,Act ,P, ι,AP, L) where

– S is a finite, nonempty set of states,

– Act is a finite, nonempty set of actions,

– P : S ×Act × S → [0, 1] is the transition probability function,

– ι : S → [0, 1] is the initial distribution,

– AP is a finite set of atomic propositions, and

– L : S → 2AP is the labeling function

such that

i) for all s ∈ S and a ∈ Act we have
∑
s′∈S P(s, a, s′) ∈ {0, 1},

ii) for all s ∈ S there exists an a ∈ Act such that
∑
s′∈S P(s, a, s′) = 1, and

iii)
∑
s∈S ι(s) = 1.

Remark. Requirement i) ensures that the transition probabilities from every
state s via every action a are either all zero, or they define a probability measure
on S. Requirement ii) ensures that every state has at least one outgoing transi-
tion. Requirement iii) ensures that the initial distribution defines a probability
measure on S.

By fixing a scheduler which resolves the nondeterminism, an MDP can be
reduced to a DTMC.

Definition 14 (Scheduler). Let M = (S,Act ,P, ι,AP, L) be an MDP. A sched-
uler for M is a function

S : (S ·Act)∗S → (Act → [0, 1])

such that for all t = s0a0 · · · sn−1an−1sn ∈ (S ·Act)∗S it holds that

i)
∑
a∈Act S(t)(a) = 1, and

ii) for all a ∈ Act with S(t)(a) > 0 we have
∑
s∈S P(sn, a, s) > 0.

10
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Remark. Requirement i) ensures that S(t) defines a probability distribution
on Act . Requirement ii) ensures that S only chooses actions that are enabled
in the current state sn.

Note that the above definition is far more general than is required for this thesis,
since we are only going to deal with deterministic finite-memory schedulers. A
definition of how deterministic finite-memory schedulers are applied to MDPs
is given in Section 3.2.

Definition 15 (PHL Syntax). Let AP be a finite set of atomic propositions,
and let Vsched resp. Vpath be countably infinite sets of scheduler variables
resp. path variables. PHL formulas over AP are defined by the grammar

Φ ::= ∀σ. Φ | Φ ∧ Φ | ¬Φ | χ | P ./ c

χ ::= aπ | χ ∧ χ | ¬χ | 5χ | χ U χ | ∀π : σ. χ

P ::= P(ϕ) | P + P | c · P
ϕ ::= aσ | ϕ ∧ ϕ | ¬ϕ | 5ϕ | ϕ U ϕ

where σ ∈ Vsched and ./ ∈ {<,≤,≥, >} and c ∈ Q and π ∈ Vpath and a ∈ AP.

2.2 Satisfiability Modulo Theories

The basic idea behind our new model checking algorithm is to encode a sched-
uler synthesis problem as an SMT or OMT constraint system. SMT is a gener-
alization of the Boolean satisfiability problem (SAT), and the maximum satis-
fiability problem (MaxSAT) and OMT are optimization problems that extend
SAT and SMT, respectively. This section gives a brief overview of SAT, SMT,
MaxSAT, and OMT.

2.2.1 SAT and SMT

Intuitively, the SAT is the following decision problem: given a propositional
formula F , decide whether or not there exists a truth assignment for the vari-
ables in F such that F evaluates to true. SMT is a generalization of SAT
to first-order formulas, where the goal is to decide whether a given formula is
satisfiable with respect to some background theory. Background theories may
prescribe the interpretation of certain predicate and function symbols, such as
numeric constants or arithmetic operators. There are a number of background
theories commonly implemented by SMT tools, such as the theory of Equality
with Uninterpreted Functions (EUF), the theories of real arithmetic, of linear
integer arithmetic, of mixed integer and real arithmetic, or the theory of ar-
rays. Using an appropriate background theory, or a combination of multiple
background theories, many constraints can be specified in a natural and concise
way. An introduction to SAT can be found in [MM18], and both [Bar+09] and
[BT18] provide comprehensive introductions to SMT.

2.2.2 MaxSAT and OMT

MaxSAT is an optimization problem that extends SAT [ABL13; Ven11]. The
goal of MaxSAT is, given a set of clauses, to find a variable assignment that
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satisfies as many of these clauses as possible. Weighted MaxSAT is a variant
of MaxSAT where each clause is assigned a weight, and the goal is no longer
to maximize the number of satisfied clauses, but the sum of their weights.
Partial Weighted MaxSAT generalizes Weighted MaxSAT by splitting the set
of clauses into so-called hard and soft clauses: hard clauses are not weighted
and must be satisfied, while soft clauses may be falsified. In this setting, the
goal becomes to satisfy all hard clauses while minimizing the weight of falsified
soft clauses.

Analogous optimization problems exist for SMT, namely MaxSMT and the
weighted and partial weighted variants thereof. Additionally, in the context of
the background theories of real or integer arithmetic, it may be desirable to
find an interpretation that not only satisfies an SMT constraint system, but
also maximizes or minimizes a linear objective function over numeric variables
[BP14; Tom14; Ven11]. This optimization problem is known as OptSMT. The
umbrella term OMT refers to all types of optimization problems that extend
SMT, including MaxSMT, OptSMT, and combinations of the two.

2.2.3 Tools

Z3 Theorem Prover (Z3) [MB08] is an SMT solver developed at Microsoft
Research. Z3 is an industrial-strength tool that supports, among other back-
ground theories, EUF and the theories of integer arithmetic, real arithmetic,
arrays, and bit-vectors [Web+19]. A few years ago, an extension called νZ
[BP14] was added to Z3, offering optimization capabilities on top of Z3’s SMT
functionality through a weighted MaxSMT module and an OptSMT module.
The νZ extension allows the user to specify multiple optimization objectives,
and to either combine them lexicographically or as Pareto fronts, or to optimize
them independently.

MathSAT5 [Cim+13] is another SMT solver that also supports a wide range
of background theories, including EUF and linear arithmetic on integers and
rationals. The OMT tool OptiMathSAT [ST20] is based on MathSAT5. Like
νZ, OptiMathSAT is capable of solving MaxSMT and OptSMT problems with
different types of combinations of optimization objectives.

12



3 Bounded Model Checking for PHL

In this chapter, we define the bounded model checking problem for a frag-
ment of PHL. This bounded model checking problem is essentially equivalent
to the problem of synthesizing a scheduler for an MDP that either satisfies a
probabilistic constraint, or that maximizes or minimizes a probability expres-
sion. Both variants of this scheduler synthesis problem can be encoded as an
SMT constraint system. The better part of this chapter describes a general
procedure for constructing this constaint system.

3.1 Two Fragments of PHL

We will start by defining two fragments of PHL. The first fragment of interest
contains exactly the PHL formulas of the form

∀σ1 . . . ∀σn.
(
χ→ c1 · P(ϕ1) + · · ·+ ck · P(ϕk) ./ c

)
(3.1)

where
χ = ∀π1 : σ1 . . . ∀πn : σn. ψ

for some quantifier-free formula ψ. The second fragment of PHL that we are
interested in contains exactly the formulas of the form

∃σ1 . . . ∃σn.
(
χ ∧ c1 · P(ϕ1) + · · ·+ ck · P(ϕk) ./ c

)
(3.2)

where χ is of the same form as above. By negating a PHL formula Φ of the
form (3.1), we obtain the formula

¬Φ = ∃σ1 . . . ∃σn.
(
χ ∧ c1 · P(ϕ1) + · · ·+ ck · P(ϕk) 6./ c

)
.

of the form (3.2), and vice versa. We will therefore refer to PHL formulas of
the form (3.1) as positive PHL formulas, and to formulas of the form (3.2) as
negative PHL formulas. The set of all positive PHL formulas will be referred
to as the positive PHL fragment, the set of all negative PHL formulas as the
negative PHL fragment.

3.2 Bounded Model Checking Problem

Ideally, we would like to solve the model checking problem for the negative
PHL fragment. Intuitively, given an MDP M and a PHL formula Φ of the
form (3.2), we want to determine whether M satisfies Φ, i.e. whether there
exist assignments S1, . . . ,Sn for scheduler variables σ1, . . . , σn that make both
χ and c1 · P(ϕ1) + · · · + ck · P(ϕk) ./ c evaluate to true on M . Note that this
is equivalent to determining whether M satisfies ¬Φ: if we can find adequate
assignments S1, . . . ,Sn for σ1, . . . , σn to prove that M satisfies Φ, then we can
also view S1, . . . ,Sn as a counterexample for disproving that M satisfies ¬Φ.

Dimitrova, Finkbeiner, and Torfah [DFT20] have proved that the model
checking problem for the negative PHL fragment is generally undecidable.
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However, we can restrict the problem to so-called deterministic finite-memory
schedulers and additionally impose an upper bound on their size. This way,
there will only be a finite number of possible schedulers, and the problem
will become decidable. We will call this restricted problem the bounded model
checking problem for the negative PHL fragment.

Intuitively, a finite-memory scheduler is a scheduler that can only remember
a bounded amount of information about the execution so far. Formally, we
represent the memory of a finite-memory scheduler as a finite-state machine
and update its state on every step of the MDP. For general finite-memory
schedulers, the memory is updated based on its own current state, the state of
the MDP before it makes its step, and the action that is chosen for the step
of the MDP. However, we are only interested in deterministic finite-memory
schedulers. A scheduler is deterministic if it only assigns probabilities of either
1 or 0 to action choices, which makes these choices essentially deterministic. In
our setting, we can therefore simplify the memory update function by leaving
out the chosen action. Furthermore, it suffices for the scheduler to output one
action instead of a probability mass function over all possible actions.

Since we are only dealing with deterministic schedulers, we will also take
the liberty of modifying the way schedulers are applied to MDPs. In addition
to the labels of the MDP’s current state, we will also label each state of the
DTMC induced by the scheduler with the action that will be chosen next.
This enables us to use actions like atomic propositions in specifications, which
might prove beneficial for many applications: after all, most of the examples
from Section 3.1 in [DFT20] require some way of talking about actions in
specifications. We will also make use of this in Chapter 4.

Definition 16 (Deterministic Finite-Memory Scheduler).
Let M = (S,Act ,P, ι,AP, L) be an MDP with Act ∩ AP = ∅. A deterministic
finite-memory scheduler for M is a tuple S = (Q, δ, q0, act) where

– Q is a finite, nonempty set of states,

– δ : Q× S → Q is the memory update function,

– q0 ∈ Q is the initial state, and

– act : Q× S → Act is the action choice function

such that

i) for all q ∈ Q and s ∈ S we have
∑
s′∈S P

(
s, act(q, s), s′

)
> 0.

The size of S is denoted by |S| and defined as |S| = |Q|. Scheduler S induces
the DTMC MS = (S × Q,PS, ιS,AP ∪ Act , LS) where for all s, s′ ∈ S and
q, q′ ∈ Q we have

ii) PS

(
(s, q), (s′, q′)

)
=

{
P
(
s, act(q, s), s′

)
if q′ = δ(q, s)

0 otherwise
,

iii) ιS
(
(s, q)

)
=

{
ι(s) if q = q0

0 otherwise
, and

iv) LS

(
(s, q)

)
= L(s) ∪ {act(q, s)}.
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Remark. We must require i) in order to ensure that S only chooses actions
that are enabled in the current state of M .

Definition 17 (n-Self-Composition of an MDP). Let M = (S,Act ,P, ι,AP, L)
be an MDP and n ∈ N+ a constant. The n-self-composition of M is the MDP

Mn = (Sn,Actn, P̂, ι̂, ÂP, L̂) where

– ÂP = {a1, . . . , an : a ∈ AP} contains indexed versions of all atomic
propositions

and for all s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n) ∈ Sn and a = (a1, . . . , an) ∈ Actn

we have

– P̂(s, a, s′) =
∏n
i=1 P(si, ai, s

′
i),

– ι̂(s) =

{
ι(s1) if s1 = · · · = sn

0 otherwise
, and

– L̂(s) =

n⋃
i=1

{
ai : a ∈ L(si)

}
.

Let S1 = (Q1, δ1, q01 , act1), . . . ,Sn = (Qn, δn, q0n , actn) be finite-memory
schedulers for M . The composition of S1, . . . ,Sn is a finite-memory sched-
uler for Mn that is denoted by S1‖ . . . ‖Sn and defined as

S1‖ . . . ‖Sn =
(
Q1 × · · · ×Qn, δ, (q01 , . . . , q0n), act

)
where for all q = (q1, . . . , qn) ∈ Q1 × · · · × Qn and s = (s1, . . . , sn) ∈ Sn we
have

– δ(q, s) =
(
δ1(q1, s1), . . . , δn(qn, sn)

)
– act(q, s) =

(
act1(q1, s1), . . . , actn(qn, sn)

)
Remark. Note that ι̂ is defined in the same way as in [DFT20]. However, since
ι̂ will only be used to define constants in our encoding, alternative definitions
can be used without changing the structure of the constraint system.

We can now formally state the bounded model checking problem for the nega-
tive PHL fragment as follows. Given an MDP M = (S,Act ,P, ι,AP, L), a PHL
formula Φ of the form (3.2), and bounds u1, . . . , un > 0, the bounded model
checking problem for M , Φ, and u1, . . . , un is to decide whether there exist
deterministic finite-memory schedulers S1, . . . ,Sn for M such that

i) for all i ∈ {1, . . . , n} we have |Si| = ui, and

ii) Mn
S1‖···‖Sn

satisfies χ ∧ c1 · P(ϕ1) + · · · ck · P(ϕk) ./ c.

Hereinafter, we will refer to schedulers that fulfill ii) as adequate schedulers.
It may be worth pointing out that i) also allows for schedulers Si of smaller
size than ui since smaller schedulers can always be extended by adding new,
unreachable memory states until |Si| = ui.
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3.3 SMT Encoding

Let M = (S,Act ,P, ι,AP, L) be an MDP. Let furthermore Φ be a PHL formula
of the form (3.2), and u1, . . . , un > 0 be bounds. We will now construct an
SMT constraint system F that is satisfiable if, and only if, there exist adequate
schedulers S1, . . . ,Sn with |Si| = ui for 1 ≤ i ≤ n. Our constraint system is
of the form

F = Fdtmc ∧ Fhyper ∧ Fprob

where

– Fdtmc encodes the DTMC Mn
S with S = S1‖ · · · ‖Sn using uninterpreted

function symbols to represent the memory update functions and action
choice functions of S1, . . . ,Sn,

– Fhyper encodes that Mn
S satisfies the hyperproperty χ, and

– Fprob encodes that Mn
S satisfies c1 · P(ϕ1) + · · ·+ ck · P(ϕk) ./ c.

In this encoding, we use constant symbols to represent objects from the un-
derlying mathematical model, such as states and actions of an MDP. We will
use a bold, upright font for symbols in the SMT encoding, while variables from
the mathematical model will be typeset in the usual font (in most cases italic).
For example, if x ∈ S represents a state of M , then we will use x to refer to
the constant symbol for this state.

When we introduce constant symbols to represent the elements of some
set X from the underlying mathematical model, we need to ensure that each
of these constant symbols will be interpreted as a unique value. This can be
achieved through the constraint

Funique(X) =
∧

{x,y}⊆X
x6=y

x 6= y.

In the following sections, we will explicitly introduce several new sorts to rep-
resent sets from the underlying mathematical model. In addition, we will use
the sorts Real for rational numbers, Int for integers, and Bool for Booleans,
as well as the standard operators on these sorts, which we assume to be built
into the SMT solver.

With these preliminaries in mind, we will now see in detail how the con-
straints Fdtmc , Fhyper , and Fprob are constructed.

3.3.1 Fdtmc

In order to encode Mn
S, we need to represent some of the components of

– M = (S,Act ,P, ι,AP, L),

– Mn = (Sn,Actn, P̂, ι̂, ÂP, L̂),

– Si = (Qi, δi, q0i , act i) for 1 ≤ i ≤ n,

– S = S1‖ · · · ‖Sn = (Q, δ, q0, act), and
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– Mn
S = (Sn ×Q, P̂S, ι̂S, ÂP ∪Actn, L̂S).

Therefore, we first declare the new sorts

– S to represent S,

– Act to represent Act ,

– Sn to represent Sn,

– Actn to represent Actn,

– Qi for 1 ≤ i ≤ n to represent Qi, and

– Q to represent Q

and we introduce constant symbols for the elements of the corresponding sets.
Then we introduce the function symbols

– p : Sn ×Actn × Sn → Real to represent P̂,

– di : Qi × S→ Qi for 1 ≤ i ≤ n to represent δi,

– acti : Qi × S→ Act for 1 ≤ i ≤ n to represent act i,

– d : Q× Sn → Q to represent δ,

– act : Q× Sn → Actn to represent act , and

– ps : Sn ×Q× Sn ×Q→ Real to represent P̂S.

Using these sorts and symbols, we can now construct the constraint Fdtmc . It
is of the form

Fdtmc = Funiq ∧ Fsched ∧ Fd ∧ Fact ∧ Fp ∧ Fps

where

– Funiq requires all constant symbols to be interpreted as unique values,

– Fsched encodes that schedulers S1, . . . ,Sn fulfill the requirements im-
posed by the definition of deterministic finite-memory schedulers,

– Fd encodes that the memory update function δ of S matches the memory
update functions δ1, . . . , δn of S1, . . . ,Sn,

– Fact encodes that the action choice function act of S matches the action
choice functions act1, . . . , actn of S1, . . . ,Sn,

– Fp encodes the transition probability function of Mn, and

– Fps encodes that the transition probability function of Mn
S follows the

action choices of S.
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The constraint Funiq is given by

Funiq =
∧

X∈{S,Act,Sn,Actn,Q}

Funique(X) ∧
n∧
i=1

Funique(Qi).

We will leave the interpretations of di and acti for 1 ≤ i ≤ n as open as
possible. However, in order to obtain valid schedulers, we must require that
the interpretations respect the ranges of the corresponding functions δi and
act i respectively, and that acti always chooses actions that are enabled in the
corresponding state of M . This can be encoded as

Fsched =

n∧
i=1

∧
q∈Qi

∧
s∈S

( ∨
q′∈Qi

di(q, s) = q′
)

∧
( ∨

a∈Act∑
s′∈S P(s,a,s′)>0

acti(q, s) = a
)

.

The constraints Fd and Fact are given by

Fd =
∧

q1∈Q1

· · ·
∧

qn∈Qn

∧
s1∈S

· · ·
∧
sn∈S

∧
q′1∈Q1

· · ·
∧

q′n∈Qn

(( n∧
i=1

di(qi, si) = q′i

)
→ d

(
(q1, . . . ,qn), (s1, . . . , sn)

)
= (q′1, . . . ,q

′
n)

)
and

Fact =
∧

q1∈Q1

· · ·
∧

qn∈Qn

∧
s1∈S

· · ·
∧
sn∈S

∧
a1∈Act

· · ·
∧

an∈Act

(( n∧
i=1

acti(qi, si) = ai

)
→ act

(
(q1, . . . ,qn), (s1, . . . , sn)

)
= (a1, . . . ,an)

)
where tuples of constant symbols for states or actions are shorthand for the
constant symbol for the corresponding tuple of states or actions. Finally, we
fix the interpretations of p and ps through the constraints

Fp =
∧
s∈Sn

∧
a∈Actn

∧
s′∈Sn

p(s,a, s′) = P̂(s, a, s′)

and

Fps =
∧
s∈Sn

∧
q∈Q

∧
s′∈Sn

∧
q′∈Q

(
d(q, s) 6= q′ → ps(s,q, s

′,q′) = 0
)

∧
(
d(q, s) = q′ → ps(s,q, s

′,q′) = p
(
s,act(q, s), s′

))
.

3.3.2 Fhyper

In order to encode that Mn
S satisfies χ, we will use the main idea behind the

HyperLTL synthesis algorithm from [Fin+20]. This algorithm first constructs
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a universal co-Büchi automaton B for the LTL suffix of the HyperLTL formula
and then encodes in SMT that all runs of the self-composition of the synthesized
system on B are accepting. The SMT encoding tries to establish an order
on the reachable rejecting states of the product DTMC of the synthesized
system and B. This is achieved by determining for every reachable state (an
overapproximation of) the maximal number of rejecting states that have been
visited when the state is reached.

Let B = (B, 2ÂP∪Actn , δB, b0, F ) denote the universal co-Büchi automaton
for the LTL suffix ψ of χ. We declare the new sort B to represent B and
introduce constant symbols for the elements of B. Furthermore, we introduce
the function symbols

– reach : Sn ×Q×B→ Bool to encode the reachability of states, and

– count : Sn×Q×B→ Int to encode the rejecting state count of reachable
states.

The constraint Fhyper is of the form

Fhyper = Funique(B) ∧ Finit ∧ Fstep

where

– Funique(B) requires the constant symbols for the states of B to be inter-
preted as unique values,

– Finit encodes that the initial states of Mn
S ⊗ B are reachable, and

– Fstep encodes that if a state of Mn
S ⊗ B is reachable, then its successors

are reachable as well, and their order is correct.

The constraint Finit is given by

Finit =
∧
s∈Sn

ι̂(s)>0

reach(s,q0,b0).

Following closely the constraint presented in [Fin+20], we encode the intended
semantics of reach and count through the constraint

Fstep =
∧
s∈Sn

∧
q∈Q

∧
b∈B

∧
s′∈Sn

∧
q′∈Q

∧
b′∈B

∧
a∈Actn

(
act(q, s) = a

→
(

reach(s,q,b) ∧ p(s,q, s′,q′) > 0 ∧ b′ ∈ δB(b, L̂(s) ∪ a)

→ reach(s′,q′,b′) ∧ count(s′,q′,b′) ≥ count(s,q,b)

∧
(
b′ ∈ F → count(s′,q′,b′) > count(s,q,b)

)))
.
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3.3.3 Fprob

With this constraint, we want to encode that Mn
S satisfies c1 ·P(ϕ1) + · · ·+ ck ·

P(ϕk) ./ c. For each LTL formula ϕ1, . . . , ϕk from the probabilistic constraint,
Fprob contains an encoding of the execution of part of the probabilistic model
checking algorithm for LTL formulas on DTMCs as presented in Section 10.3
of [BK08].

The first step of this algorithm is to compute the DRA for the LTL formula
under consideration. Since this computation does not depend on the DTMC
Mn

S, we can perform it before we construct our SMT encoding. For the re-
mainder of this section, we will therefore assume that the DRAs for ϕ1, . . . , ϕk
have already been constructed. Hereinafter, the DRA for ϕi will be denoted by

Ri = (Ri, 2
ÂP∪Actn , δRi , r0i ,Acci) with Acci = (Bij , Gij )mi

j=1 for 1 ≤ i ≤ k. We
declare the new sorts Ri to represent Ri for 1 ≤ i ≤ k and introduce constant
symbols for the elements of these sets.

Next, the algorithm constructs the product DTMC of the input DTMC, in
our case Mn

S, and the DRA. We introduce the function symbol

pi : Sn ×Q×Ri × Sn ×Q×Ri → Real

for 1 ≤ i ≤ k to represent the transition probability function of the product
DTMC Mn

S ⊗Ri.
Then the algorithm computes the union of the accepting BSCCs of the

product DTMC. We will not exactly compute the union of accepting BSCCs,
but overapproximate it through what we will call the set of winning states:
a superset of the accepting BSCCs from which the probability of reaching an
accepting BSCC equals 1. Finally, we need to solve a system of linear equations
to determine the probability of reaching a winning state. In order to make sure
that this system of linear equations has a unique solution, we will also need to
determine the set of all states from which it is impossible to reach a winning
state. We will refer to this set as the set of losing states. In order to encode
this part of the algorithm, we introduce the function symbols

– wini : Sn × Q × Ri → Bool for 1 ≤ i ≤ k to represent the indicator
function of the set of winning states,

– losei : Sn × Q × Ri → Bool for 1 ≤ i ≤ k to represent the indicator
function of the set of losing states, and

– xi : Sn × Q × Ri → Real for 1 ≤ i ≤ k to represent the winning
probability when starting in the given state.

Now we can construct the constraint Fprob . It is of the form

Fprob =

k∧
i=1

(
Fdtmci

∧ Fwini
∧ Flosei

∧ Fxi

)
∧ Fconstraint

where

– Fdtmci for 1 ≤ i ≤ k encodes the DTMC Mn
S ⊗Ri,

– Fwini for 1 ≤ i ≤ k encodes the set of winning states of Mn
S ⊗Ri,
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– Flosei
for 1 ≤ i ≤ k encodes the set of losing states in Mn

S ⊗Ri,

– Fxi
for 1 ≤ i ≤ k encodes the winning probabilities for the states of

Mn
S ⊗Ri, and

– Fconstraint encodes the constraint c1 · P(ϕ1) + · · ·+ ck · P(ϕk) ./ c.

The constraint Fdtmci
for 1 ≤ i ≤ k must ensure that the constant symbols for

the elements of Ri are interpreted as unique values and that the interpretation
of pi follows the transition probability function of Mn

S as well as the transitions
of Ri. It is given by

Fdtmci = Funique(Ri)

∧
∧
s∈Sn

∧
q∈Q

∧
r∈Ri

∧
s′∈Sn

∧
q′∈Q

∧
r′∈Ri

∧
a∈Actn

(
act(q, s) = a

→
(
r′ 6= δRi

(
r, L̂(s) ∪ {a}

)
→ pi(s,q, r, s

′,q′, r′) = 0
)

∧
(
r′ = δRi

(
r, L̂(s) ∪ {a}

)
→ pi(s,q, r, s

′,q′, r′) = ps(s,q, s
′,q′)

))
.

Before we can construct the constraints Fwini
and Flosei

, we must introduce
the BSCC approximation that we want to compute. Let us for the moment
fix an index 1 ≤ i ≤ k. Our overapproximation of the union of the accepting
BSCCs of Mn

S ⊗Ri is defined as

mi⋃
j=1

((
Sn×Q×Ri

)
\Pre∗

((
Sn×Q×Ri

)
\
(

Pre∗
(
Sn×Q×Gij

)
\
(
Sn×Q×Bij

))))

where Pre∗ denotes the reflexive and transitive closure of the direct predeces-
sor function on sets of states. We call the states that are contained in this
overapproximation the winning states. We refer to the states from which no
winning state can be reached as the losing states. The probability of winning
from a state s, or the winning probability of s for short, is the probability of
reaching a winning state from s. By definition, the probability of winning from
a winning state is 1, and the probability of winning from a losing state is 0.
Intuitively, the winning states are exactly those states s ∈ Sn × Q × Ri for
which it holds that

– a good state can be reached from s,

– s is not bad, and

– no state outside the overapproximation can be reached from s.

In Appendix A, we give a proof that the abovedescribed construction is indeed
an overapproximation of the union of the accepting BSCCs that will be reached
with the same probability.

Since Pre∗ can be computed as the fixpoint of the direct predecessor func-
tion, the set of winning states can be determined by performing two fixpoint
computations for each 1 ≤ j ≤ mi. Since the fixpoint must be reached after
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at most max = |Sn × Ri| − 1 iterations, we can encode these fixpoint compu-
tations in SMT by unrolling the first max iterations. In order to represent the
fixpoints, we introduce for each 1 ≤ j ≤ mi

– win′ij : Sn ×Q×Ri → Bool to represent the first fixpoint, and

– winij : Sn ×Q×Ri → Bool to represent the second fixpoint

and additionally for each 1 ≤ h ≤ max − 1

– win′ijh : Sn × Q × Ri → Bool to represent the iterations of the first
computation, and

– winijh : Sn ×Q ×Ri → Bool to represent the iterations of the second
computation.

In the presentation of the following constraints, we will use the notation win′ijmax

for win′ij and winijmax
for winij. With these auxiliary function symbols, we

can encode the fixpoints win′ij and winij through the constraints

Fwin′ij
=

∧
s∈Sn

∧
q∈Q

∧
r∈Ri

((
win′ij1(s,q, r) ↔ r ∈ Gij

)
∧

max∧
h=2

(
win′ijh(s,q, r) ↔ win′ijh − 1

(s,q, r)

∨
∨

s′∈Sn

∨
q′∈Q

∨
r′∈Ri

(
pi(s,q, r, s

′,q′, r′) > 0

∧ win′ijh − 1
(s′,q′, r′)

)))
and

Fwinij
=

∧
s∈Sn

∧
q∈Q

∧
r∈Ri

((
winij1(s,q, r) ↔ win′ij(s,q, r) ∧ r /∈ Bij

)
∧

max∧
h=2

(
winijh(s,q, r) ↔ winijh − 1

(s,q, r)

∧
∧

s′∈Sn

∧
q′∈Q

∧
r′∈Ri

(
pi(s,q, r, s

′,q′, r′) > 0

→ winijh − 1
(s′,q′, r′)

)))
.

The set of winning states can now be encoded through the constraint

Fwini
=

mi∧
j=1

(
Fwin′ij

∧ Fwinij

)
∧
∧
s∈Sn

∧
q∈Q

∧
r∈Ri

(
wini(s,q, r) ↔

mi∨
j=1

winij(s,q, r)
)

.

In the last step of the algorithm, we compute the winning probabilities of
all states of Mn

S ⊗ Ri by solving a linear equation system as presented in
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Section 10.1.1 of [BK08]. However, as indicated earlier, we can only be sure
that this equation system has a unique solution if we explicitly require all losing
states to have a winning probability of 0. Using a similar fixpoint construction
as for Fwini and auxiliary function symbols

loseih : Sn ×Q×Ri → Bool

for 1 ≤ h ≤ max − 1 and the notation loseimax
for losei we can encode the

losing states through the constraint

Flosei
=

∧
s∈Sn

∧
q∈Q

∧
r∈Ri

((
losei1(s,q, r) ↔ ¬wini(s,q, r)

)
∧

max∧
h=2

(
loseih(s,q, r) ↔ loseih − 1

(s,q, r)

∧
∧

s′∈Sn

∧
q′∈Q

∧
r′∈Ri

(
pi(s,q, r, s

′,q′, r′) > 0

→ loseih − 1
(s′,q′, r′)

)))
.

Now we can encode the linear equation system that will define the winning
probabilities, i.e. the interpretation of xi, through the constraint

Fxi
=

∧
s∈Sn

∧
q∈Q

∧
r∈Ri

((
losei(s,q, r) → xi(s,q, r) = 0

)
∧
(
wini(s,q, r) → xi(s,q, r) = 1

)
∧
(
¬losei(s,q, r) ∧ ¬wini(s,q, r) → xi(s,q, r) =∑

s′∈Sn

∑
q′∈Q

∑
r′∈Ri

pi(s,q, r, s
′,q′, r′) · xi(s

′,q′, r′)
))

.

Finally, we encode that Mn
S satisfies c1 · P(ϕ1) + · · · + ck · P(ϕk) ./ c through

the constraint

Fconstraint =

( k∑
i=1

ci ·
( ∑
s∈Sn

ι̂(s) · xi(s,q0, r0i
)
))

./ c

where q0 is the initial state of S and r0i is the initial state of Ri.

3.4 Finding Optimal Schedulers

Ideally, we would also like to synthesize optimal schedulers. At first glance, this
should be possible by replacing the constraint Fconstraint with an optimization
objective, since c1 · P(ϕ1) + · · · + ck · P(ϕk) is a linear expression. However,
the formulation of Fxi

in Section 3.3 includes multiplication of multiple SMT
variables with each other, namely of values of pi with values of xi. This makes
it impossible to use optimization of linear objective functions on the resulting

23



Bounded Model Checking for PHL

probabilities, because those are subject to nonlinear constraints themselves.
We can address this problem by introducing a new function symbol

pxi : Sn ×Q×Ri × Sn ×Q×Ri → Real

with the intended semantics

pxi(s,q, r, s
′,q′, r′) = pi(s,q, r, s

′,q′, r′) · xi(s
′,q′, r′).

However, we encode this without using multiplication of multiple SMT vari-
ables. Since pi can only take two possible values for each combination of
arguments, we can replace it with a case distinction, multiplying the value of
xi with a constant in each of the two possible cases. We encode this through
the constraint

Fpxi
=

∧
s∈Sn

∧
q∈Q

∧
r∈Ri

∧
s′∈Sn

∧
q′∈Q

∧
r′∈Ri

∧
a∈Actn

(
act(q, s) = a

→
(
q′ 6= d(q, s) ∨ r′ 6= δi

(
r, L̂(s) ∪ {a}

)
→ pxi(s,q, r, s

′,q′, r′) = 0
)

∧
(
q′ = d(q, s) ∧ r′ = δi

(
r, L̂(s) ∪ {a}

)
→ pxi(s,q, r, s

′,q′, r′) = P̂(s, a, s′) · xi(s
′,q′, r′)

))
.

Now we can enable optimization by conjoining Fpxi to the constraint system
from Section 3.3 and replacing the multiplication in Fxi with the linear expres-
sion pxi(s,q, r, s

′,q′, r′).

3.5 Potential Optimizations

Intuitively, reducing the size of an SMT constraint system should have the
potential of speeding up the process of solving it. In this section, we will
briefly discuss two approaches how a reduction in size can be achieved for the
SMT encoding from Section 3.3.

The first approach is based on the following observation. Our encoding
contains many constraints that begin with a conjunction over all possible pairs
of states of Mn. However, we are only interested in pairs of states s and s′ of
Mn for which there exists an action a such that P̂(s, a, s′) > 0. By consistently
modifying all constraints such that only pairs of states with the possibility of a
transition occur, the size of the SMT encoding can be reduced for most MDPs.
Since this does not affect the general structure of the encoding but only leaves
out unnecessary constraints, we can expect this approach to have a positive
effect on the running time of our algorithm.

The second approach is to eliminate the unrolling of the fixpoint computa-
tions in Fprob . It turns out that this is indeed possible using a counter-based
encoding similar to the one we already use in Fhyper . This also has the poten-
tial of greatly reducing the size of the SMT encoding. However, in contrast to
the first approach, the introduction of a new counter function symbol increases
the number of possible interpretations by orders of magnitude. Therefore, it is
hard to predict whether or not this approach will bring about any benefit in
practice.
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4 Proof of Concept

This chapters presents first experimental results with a proof-of-concept imple-
mentation of the scheduler synthesis procedure from Chapter 3 for a specific
case study, which consists of a scalable MDP and a simple probabilistic hyper-
property. The property is fixed except for one variable parameter, while the
MDP only has a fixed general structure, but its size is determined by two pa-
rameters. Both the property and the structure of the MDP are hard-coded into
our implementation, while the parameters for both the MDP and the property
can be freely chosen.

4.1 Case Study

We will start with a description of the case study. It is based on the example
problem which Dimitrova, Finkbeiner, and Torfah [DFT20] used to evaluate
the performance of their bounded model checking algorithm for a fragment of
PHL. The original statement of this problem can be found under Example 2
(Plan non-interference) in Section 3.1 of the paper.

4.1.1 Two Robots

We consider the following scenario. Two robots, R1 andR2, are moving towards
the same goal. The initial distance from the goal is d1 many steps for R1 and
d2 many steps for R2. In every time step, each robot can either do nothing or
attempt to make a move. If a robot attempts to make a move, it will succeed
with a probability of 50% if it has not yet reached the goal; if the robot has
already reached the goal, any attempt to make a move will always fail. If the
robot attempts to make a move and succeeds, it will move one step towards
the goal; otherwise, it will stay in its current position. If both robots attempt
to make a move, the event that R1 succeeds is independent of the event that
R2 succeeds.

We can model this scenario as an MDP, where each possible combination
of the robots’ positions is represented as a distinct state. Note that this is
only possible because the number of possible positions of each robot is finite.
The nondeterministic choice of actions is used to model the robots’ decisions
whether or not they attempt to make a move, and their success or failure is
captured by the probabilistic choice of a corresponding successor state.

Figure 4.1 shows an MDP that models the scenario for parameters d1 = 1
and d2 = 2. Each state in the figure is labeled with both its name and, below
the name, the set of atomic propositions that hold in this state. If multiple
actions that have the same effect, they are only drawn once, but labeled with
multiple action names separated by slashes. The indices in the state names
indicate the robots’ distance to the goal: sij is the state where R1 is i many
steps away from the goal and R2 is j many steps away from the goal. Similarly,
the indices in the action names indicate whether or not the robots attempt to
make a move: if in action akl we have k = 1, this means that R1 attempts to
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Figure 4.1: MDP modeling the scenario for d1 = 1 and d2 = 2.

make a move, while k = 0 means that R1 does nothing; analogously, l indicates
whether R2 attempts to make a move.

4.1.2 Plan Non-Interference

A plan for a robot is a strategy of deciding when to attempt to make a move.
In general, a plan may base this decision on the positions of both robots and/or
some internal state. We call a plan deterministic if it always makes the same
decision at the same time step, irrespective of the probabilistic choices in the
movement of the robots. Note that the concept of deterministic plans is not
related to deterministic schedulers: not every deterministic scheduler for the
MDP from Fig. 4.1 corresponds to deterministic plans for the robots, and
any kind of scheduler can represent deterministic plans, as long as it always
produces observable behavior of the robots that is deterministic in the above-
mentioned sense. We say that a robot wins if it reaches the goal before the
other robot. A deterministic plan for R1 is robust against interference from
arbitrary plans for R2 if the probability that R1 wins under some plan for
R2 does not deviate by more than some fixed constant ε from the probability
that R1 wins under any other plan for R2. The property plan non-interference
requires all deterministic plans for R1 to be robust against interference from
arbitrary plans for R2.

Plan non-interference can be expressed as a positive PHL formula of the
form

∀σ1. ∀σ2. χ→ φ (4.1)

where
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– σ1 and σ2 each represent a combination of a plan for R1 and a plan for
R2,

– χ expresses that R1 follows the same deterministic plan under both σ1
and σ2, and

– φ expresses that the probability of R1 winning under σ1 differs by no
more than ε from the probability of R1 winning under σ2.

Subformula χ is given by

χ = ∀π1 : σ1. ∀π2 : σ2.0(move1π1
↔ move1π2

)

where move1 is shorthand for (a10 ∨ a11), meaning that an action is chosen
which involves R1 attempting to make a move. Note that χ does not explicitly
require the plan for R1 to be deterministic. However, if the plan depends on
the position of a robot that will at some point attempt to make a move, then
it cannot satisfy χ. Even if the same scheduler is assigned to both σ1 and σ2,
as soon as an action is chosen that attempts to move a robot, there will always
be traces that differ in the position of this robot.

The property that R1 wins can be expressed as &(goal1 ∧ ¬goal2 ). This
is due to the fact that once a robot reaches the goal, it will stay there forever.
Consequently, if R1 does not win, goal2 will hold whenever goal1 holds. Thus,
the probabilistic constraint φ can be expressed as

φ =
∣∣∣P(&(goal1σ1

∧ ¬goal2σ1
)
)
− P

(
&(goal1σ2

∧ ¬goal2σ2
)
)∣∣∣ ≤ ε.

Note that for all reals x and ε it holds that

x ≤ ε ∧ −x ≤ ε ⇒ |x| ≤ ε (4.2)

Also note that in φ, swapping σ1 and σ2 results in a change of sign of the
operand of the modulus operator. The universal quantification over σ1 and σ2
in (4.1) requires the inequality in φ to hold for both the variant with a positive
sign and the variant with a negative sign. Thus, we can use (4.2) and omit the
modulus operator in φ, yielding

φ = P
(
&(goal1σ1

∧ ¬goal2σ1
)
)
− P

(
&(goal1σ2

∧ ¬goal2σ2
)
)
≤ ε.

Putting together the subformulas, we obtain the positive PHL formula

∀σ1. ∀σ2.
(
∀π1 : σ1. ∀π2 : σ2.0(move1π1

↔ move1π2
)
)
→

P
(
&(goal1σ1

∧ ¬goal2σ1
)
)
− P

(
&(goal1σ2

∧ ¬goal2σ2
)
)
≤ ε

for plan non-interference.

4.1.3 Problem

In this case study, our goal is to disprove the property of plan non-interference
for several instances of the abovedescribed scenario. In other words, we want
to prove that the negative PHL formula

∃σ1. ∃σ2.
(
∀π1 : σ1. ∀π2 : σ2.0(move1π1

↔ move1π2
)
)
∧

P
(
&(goal1σ1

∧ ¬goal2σ1
)
)
− P

(
&(goal1σ2

∧ ¬goal2σ2
)
)
> ε

holds on several MDPs of different sizes that share the general structure shown
in Fig. 4.1.
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Instance Mode of Operation
chk/count chk/unroll opt/count opt/unroll

1×1/1/1 2.53 s 3.27 s 2.89 s 3.37 s
1×2/1/1 6.88 s 8.63 s 7.79 s 9.59 s
2×2/1/1 22.30 s 28.00 s 30.93 s 32.63 s
1×2/2/2 112.73 s 151.31 s 4232.75 s 2715.44 s
3×3/1/1 176.45 s 198.42 s 1262.47 s 1346.34 s
4×4/1/1 2253.67 s 2365.21 s timeout timeout

Table 4.1: Running time by instance and mode of operation.

4.2 Prototype

We have built a proof-of-concept implementation of our bounded model check-
ing algorithm specifically for the case study described above. It is written in
Python using Z3’s Python API. The universal co-Büchi automaton and the
DRA for the property of plan non-interference, as well as the general struc-
ture of the MDP are hard-coded into this prototype, but the parameters d1,
d2, u1, u2, and ε can be freely chosen. In addition to the encoding from Sec-
tion 3.3, we have also implemented the modifications described in Sections 3.4
and 3.5. While unnecessary state pairs are always omitted, either counter-based
or unrolling-based predecessor computation can be chosen using a command-
line switch.

4.3 Evaluation

We have evaluated the running time of our prototype on small instances of the
abovedescribed scenario. Like Dimitrova, Finkbeiner, and Torfah [DFT20], we
always used the parameter ε = 0.25. The experiments were conducted on a
machine with an AMD Ryzen 3 3200G processor and 16 GB of memory running
Ubuntu 20.04 and Z3 version 4.8.7.

Table 4.1 shows the measured running times in seconds. Instances of the
scenario are labeled with their parameters using the format d1×d2/u1/u2. Each
instance has been evaluated using four different modes of operation, namely
all combinations of: checking for the existence of adequate schedulers (chk)
versus synthesizing optimal schedulers (opt); and counter-based (count) versus
unrolling-based (unroll) predecessor computation. The timeout was at least 2
hours for each individual run.

It is obvious that the running time increases dramatically with increasing
size of both the MDP and the schedulers. Since even for an MDP with 25
states, a property with only two scheduler quantifiers, and memoryless sched-
ulers (instance 4×4/1/1), the running time already amounts to more than 30
minutes in any mode of operation, we assume that our algorithm is far too
slow for any real-world use case. The results also suggest that synthesizing op-
timal schedulers is harder than synthesizing adequate schedulers. Concerning
counter-based versus unrolling-based predecessor computation, no clear trend
is visible.
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5 Related Work

The concept of temporal logic was first introduced into formal verification
of computing systems in 1977 by Pnueli [Pnu77]. He proposed a linear-time
temporal logic that augments propositional logic with two modal operators,
which correspond to the & and 0 operators in LTL. The standard temporal
logic LTL soon arose when Manna and Pnueli [MP81] extended the logic from
[Pnu77] with the 5 and U operators. Clarke and Emerson [CE81] proposed
CTL, a branching-time temporal logic that prefixes each temporal operator
with a quantifier over paths through a computation tree. In 1983, Emerson
and Halpern [EH86] generalized CTL to CTL* by relaxing the one-to-one rela-
tionship between temporal operators and path quantifiers. In CTL*, temporal
operators are only required to be in the scope of some path quantifier. Thus,
CTL* subsumes both CTL and LTL.

The automata-theoretic approach to LTL model checking makes use of the
fact that for every LTL formula ϕ, there exists an ω-automaton that accepts
exactly those traces that satisfy ϕ [VW94]. Simple automata-based LTL model
checking algorithms for Kripke structures involve constructing (nondetermin-
istic) Büchi automata from LTL formulas [BK08; Var95]. However, it is also
possible to translate these Büchi automata into deterministic Rabin automata
[Rog01]. This way, the automata-theoretic approach can also be used for quan-
titative analysis of DTMCs against properties specified in LTL [BK08]. The
probabilistic model checker PRISM [KNP11] is based on this approach. In this
thesis, we use the basic idea behind this approach, but modify it slightly such
that it can be more efficiently encoded in SMT.

The study of hyperproperties was initiated in 2010 by Clarkson and Schnei-
der [CS10]. In 2014, Clarkson et al. [Cla+14] introduced two new temporal log-
ics specifically for specifying hyperproperties: HyperLTL, which extends LTL
with quantification over traces; and HyperCTL*, an extension of CTL* that
allows simultaneous quantification over multiple paths.

The HyperLTL synthesis problem was first studied by Finkbeiner et al.
[Fin+20]. While it is generally undecidable whether there exists a system that
satisfies a given HyperLTL formula, they were able to develop a semi-decision
procedure for the universal fragment of HyperLTL. This semi-decision proce-
dure consists of two SMT-based algorithms: a bounded synthesis algorithm;
and an algorithm for finding bounded counterexamples. Both algorithms have
been implemented in the tool BoSyHyper. The bounded synthesis algorithm
from [Fin+20] forms the basis for the HyperLTL synthesis part of the SMT
encoding presented in this thesis.

In 1989, Hansson and Jonsson [HJ94] introduced PCTL (Probabilistic Com-
putation Tree Logic), a probabilistic branching-time logic for DTMCs. PCTL
can be viewed as a modification of CTL, where path quantification has been
replaced with a probabilistic operator that takes a path formula as argument.
In PCTL, one can thus specify that a path formula must hold with a given
probability, while CTL can only express that a path formula must hold ei-
ther on all paths that start in the current state, or on at least one of them.
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In 2018, Ábrahám and Bonakdarpour [ÁB18] proposed HyperPCTL, which ex-
tends PCTL with explicit and simultaneous quantification over multiple states.
HyperPCTL can thus express probabilistic hyperproperties of DTMCs.

In 2020, Ábrahám et al. [Ábr+20] modified HyperPCTL in order to make
it suitable for specifying probabilistic hyperproperties of MDPs. Their modifi-
cations consist in adding quantification over schedulers and making every state
quantifier explicitly bind its state variable to a scheduler variable. Ábrahám
et al. proved that the HyperPCTL model checking problem for MDPs is gen-
erally undecidable, but that it becomes decidable when schedulers are required
to be deterministic and memoryless. They developed and implemented an
SMT-based algorithm for the resulting restricted model checking problem. In
contrast to our approach, this algorithm uses structural recursion over Hyper-
PCTL formulas to construct an SMT constraint system. This is possible since
the domain of the probabilistic operator in HyperPCTL is restricted to path
forumlas. The PHL probabilistic operator, on the other hand, takes full LTL
formulas as argument, and we cannot conceive a way of adapting the recursive
SMT encoding procedure from [Ábr+20] to this setting. Therefore, we base
the probabilistic part of our approach on a classical probabilistic LTL model
checking algorithm instead.

Also in 2020, Dimitrova, Finkbeiner, and Torfah [DFT20] independently
and concurrently proposed PHL for specifying probabilistic hyperproperties of
MDPs. They proved that model checking of PHL formulas, like HyperPCTL
model checking, is generally undecidable. However, in contrast to Ábrahám
et al. [Ábr+20], they did not restrict the problem to deterministic, memoryless
schedulers in order to achieve decidability. Instead, they focused on a fragment
of PHL and developed two model checking algorithms for this fragment. The
algorithm presented in this thesis constitutes an attempt to improve one of
these model checking algorithms.
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6 Conclusion

This thesis presented a new, fully SMT-based approach to bounded model
checking for a fragment of PHL. Formulas from this fragment combine a Hy-
perLTL subformula with a linear constraint on the probabilities with which
LTL subformulas are satisfied. So far, the only existing bounded model check-
ing algorithm for this fragment of PHL used an SMT-based HyperLTL synthesis
tool and a BDD-based probabilistic model checker in a guess-and-check loop.
Our approach eliminates this loop by integrating both HyperLTL synthesis and
probabilistic LTL model checking into a single SMT constraint system.

The main contribution of this thesis and key to our new bounded model
checking algorithm is a general construction for encoding probabilistic LTL
model checking in SMT. The key challenge here was to symbolically compute
(an approximation of) the accepting BSCCs of the product of a DTMC and
a Rabin automaton, where the transition probabilities of the DTMC are not
known upfront. We identified a suitable approximation of the accepting BSCCs
that can be determined by performing only two fixpoint computations, which
are straightforward to encode in SMT.

First experiments with a proof-of-concept implementation for a simple case
study showed that, for small MDPs and simple PHL formulas, our approach
can work in practice. However, further optimization will be necessary in order
to make it scale up to real-world use cases.

To this end, it would be interesting to conduct experiments with other case
studies in order to find out how exactly the size of the MDP under considera-
tion and/or the complexity of the PHL formula affect the running time of our
algorithm. Unfortunately, this is not possible with our proof-of-concept imple-
mentation, since it has one specific case study hard-coded into it. A natural
next step would therefore be to build a general implementation to facilitate
such experiments.
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A BSCC Approximation

Theorem 1. Let M = (S,P, ι,AP, L) be a DTMC and R = (R, 2AP, δ, r0,Acc)
be a DRA with Acc =

(
Bj , Gj

)m
j=1

. Then for all 1 ≤ j ≤ m the set

Aj =
(
S ×R

)
\ Pre∗

((
S ×R

)
\
(

Pre∗
(
S ×Gj

)
\
(
S ×Bj

)))
is a superset of the union of the accepting BSCCs of M ⊗R for

(
Bj , Gj

)
, and

from all t ∈ Aj an accepting BSCC will be reached almost surely.

Proof. Let 1 ≤ j ≤ m. We first introduce the notation

A′j = Pre∗
(
S ×Gj

)
\
(
S ×Bj

)
so that

Aj =
(
S ×R

)
\ Pre∗

((
S ×R

)
\A′j

)
.

Note that it holds that Aj ⊆ A′j .

Let now t ∈ Aj . We begin by showing that

i) Post∗(t) ∩
(
S ×Gj

)
6= ∅,

ii) t /∈ S ×Bj , and

iii) Post∗(t) ⊆ Aj .

We can see i) as follows. We know that t ∈ Aj ⊆ A′j ⊆ Pre∗(S×Gj). It follows
that Post∗(t) ∩ (S ×Gj) 6= ∅.

We can see ii) as follows. We know that t ∈ Aj ⊆ A′j . By the definition of
A′j it follows that t /∈ S ×Bj .

We can see iii) as follows. Assume that Post∗(t) 6⊆ Aj . Then there exists a
state t′ ∈ (S × R) \ Aj with t′ ∈ Post∗(t). We know that t′ ∈ (S × R) \ Aj =
Pre∗

(
(S × R) \ A′j

)
. It follows that t ∈ Pre∗(t′) ⊆ Pre∗

(
(S × R) \ A′j

)
=

(S ×R) \Aj in contradiction to the assumption t ∈ Aj .

Now we show that

iv) every BSCC B of M ⊗R with B ⊆ Aj is accepting for (Bj , Gj), and

v) for every accepting BSCC B of M ⊗R for (Bj , Gj) we have B ⊆ Aj .

We begin by proving iv). Let B ⊆ Aj be a BSCC of M ⊗R. By ii) we know
that B ∩ (S ×Bj) = ∅. Since B is nonempty, there exists a state t ∈ B. By i)
it follows that B ∩ (S ×Gj) = Post∗(t) ∩ (S ×Gj) 6= ∅. Thus, B is accepting
for (Bj , Gj).

Now we prove v). Let B be an accepting BSCC of M ⊗R for (Bj , Gj). We
first show that B ⊆ A′j . Let t ∈ B. We have to show that t ∈ A′j .
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Since B is an accepting for (Bj , Gj), we know that t /∈ S × Bj and that
there exists a state t′ ∈ B with t′ ∈ S ×Gj . Since B is a BSCC, it also holds
that t ∈ Pre∗(t′) ⊆ Pre∗(S ×Gj). It follows that t ∈ A′j .

Now we show that B ⊆ Aj . Let again t ∈ B. Assume that t /∈ Aj . Then
t ∈ (S×R)\Aj = Pre∗

(
(S×R)\A′j

)
. Thus, there exists a state t′′ ∈ (S×R)\A′j

such that t ∈ Pre∗(t′′). Since B is a BSCC, it holds that Post∗(t) = B. It
follows that t′′ ∈ Post∗(t) = B ⊆ A′j in contradiction to t′′ ∈ (S × R) \ A′j .
Thus we have t ∈ Aj .

By v) we know that Aj is a superset of the union of the accepting BSCCs
of M ⊗ R for (Bj , Gj). It remains to be shown that from each state t ∈ Aj
an accepting BSCC for (Bj , Gj) will be reached almost surely. Let M ⊗R =

(S × R, P̂, ι̂,AP, L̂) denote the product DTMC of M and R. By iii) we know
that A = (Aj ,P

′, ι′,AP, L′) with

– P′ = P̂|Aj×Aj
,

– ι′(t) = 1
|Aj | for all t ∈ Aj , and

– L′ = L̂|Aj

forms a sub-DTMC of M ⊗ R. We know that from every state of a DTMC,
a BSCC will be reached almost surely. Thus, from every state t ∈ Aj of A,
a BSCC of A will be reached almost surely. By iv) every BSCC of A is an
accepting BSCC of M ⊗R for (Bj , Gj).
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