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Abstract. Temporal causality describes what concrete input behavior
is responsible for some observed output behavior on a trace of a reactive
system, and can be used to, e.g., generate explanations for counterexam-
ples uncovered by a model checker. In this paper, we present CATS, the
first tool that can automatically verify whether a given temporal prop-
erty (specified in QPTL) is a cause for some observed ω-regular effect.
In addition to checking whether a given property is a cause, CATS can
search for potential causes by exhaustively exploring a cause sketch, i.e.,
a temporal formula in which some parts are left unspecified. Our exper-
iments show that CATS can effectively check causes and search for causes
in small reactive systems.

1 Introduction

Causality analysis plays an increasingly important role in computer science and
has practical applications such as explaining the behavior of systems [3,5,17,15],
establishing accountability in multi-agent systems [19], and as a reasoning tool
for verification [35,36] and synthesis [2]. These approaches rely on the philosoph-
ical foundations of Lewis and Hume [39,33] that suggest counterfactual reasoning
as a method of establishing a causal relationship between events. Following this
reasoning, a property (or, in previous works, an event) is only a cause if, in case
the cause does not occur, the effect is absent as well. Halpern and Pearl [29,30]
formalized these notions into a rigorous system of structural equations over fi-
nite sets of events (variables). However, when naïvely applying it to reactive sys-
tems, i.e., systems that continuously interact with their environment, Halpern
and Pearl’s original definition fails as the behavior is characterized by infinitely
many variables. Recently, Coenen et al. [18] lifted the ideas of Halpern and Pearl
to the temporal domain and presented a framework in which (symbolic) tem-
poral properties, expressed in temporal logic such as LTL or QPTL, constitute
causes and effects.

Example 1. Consider the system of Figure 1 over inputs i1, i2 and output E,
which marks a failure. When checking whether the system satisfies ¬E, a model
checker might return π = {i1, i2}{i1, i2}{i1}({i1, E})ω as a concrete counterex-
ample. We are interested in explaining the effect ϕE = E on the given (ac-
tual) error trace. Using the theory presented in [18] we can formally show that
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ϕC = i1 ∧
(
(¬i2)U(i1 ∧ ¬i2)

)
constitutes an actual cause for ϕE . Such a

cause provides important information for debugging: It pinpoints that, in the
first position, only i1 is relevant; it does not refer to the second position on the
trace as those inputs are irrelevant; and it precisely captures the information
that, in order to reach the error state, i1 must occur strictly before i2. 4
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Fig. 1: An example system. Each edge has
the form φ | o where φ is a Boolean for-
mula over the inputs and o ∈ 2{E} is a set
of outputs. We write φ instead of φ | ∅.

Coenen et al. [18] showed that
checking if an ω-regular property
constitutes an actual cause on
a lasso-shaped trace is decidable.
However, as their theory was not im-
plemented, reasoning about causal
relationships required manual com-
putation. Given the intricate nature
of causality (which encompasses
complex features such as contingen-
cies and interventions [29,30,18]),
this manual reasoning is both time-
consuming and error-prone.

CATS. In this paper, we present CATS [11], short for Causal Analysis on Tem-
poral Sequences, a fully-automatic implementation of the theory of [18]. CATS
can check if a given temporal property (specified in QPTL [42]) qualifies as a
cause on an actual lasso trace. Internally, our tool relies on encoding the cause-
checking problem into the model-checking problem for hyperproperties [16,21],
i.e., properties that relate multiple traces in a system.

Our tool serves two purposes: First and foremost, CATS allows for the auto-
matic checking of symbolic causes (temporal formulas). This is a useful feature in
many settings, perhaps most prominently in counterexample debugging, where
we are interested in getting succinct yet informative summaries of what temporal
input behavior triggered the violation of a property.

Secondly, CATS serves as a playground to experiment with temporal cause
definitions. Causality definitions are inherently linked to human intuition, and
coming up with a useful one is difficult (as, e.g., witnessed by the multiple up-
dates of Halpern and Pearl’s definitions [29,30,28]). A fully-automatic tool for
cause checking allows us to experiment with more evolved causality definitions
and see (within a few seconds; and with no manual computation) how small
changes in the definition transfer to actual examples. This is particularly impor-
tant in a temporal setting, where many parameters need to be fixed (e.g., what
constitutes a “closer” trace as defined by Lewis [39,22,18]).

Cause Sketching. The main purpose of CATS is to check if a given temporal
property qualifies as a cause. However, often it is also useful to infer a cause au-
tomatically. While general synthesis of temporal causes is not possible yet (cause
synthesis corresponds to the search for an appropriate set of traces, a problem
that is notoriously difficult [10]), we propose a very useful approximation in the
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form of cause sketching. Inspired by program sketching [43] and query checking
[12], CATS supports cause sketches – temporal properties in which some propo-
sitional holes are left unspecified. CATS then attempts to find an appropriate
instantiation for all holes to generate an actual cause. On the theoretical side,
we show that for time-bounded effects (i.e., properties whose satisfaction or vi-
olation can be determined by only looking at the first n steps), any potential
cause only needs to refer to the first n steps. On the practical side, this implies
that for time-bounded effects (which naturally occur in counterexample analysis
where an error occurs after a fixed number of steps), there exists a cause sketch
that encompasses all potential causes.

Related Work. We base our causality analysis on the theoretical foundations
for temporal causality by Coenen et al. [18] (recapped in Section 3). For a
comprehensive survey on applications of causality in formal methods and for
providing explanations, see [3]. Leue et al. [37,13] propose a symbolic descrip-
tion of counterfactual causes in Event Order Logic (implemented into the tool
SpinCause [38]), which can reason about the ordering of LTL-definable events.
In particular, the logic cannot reason about the absolute timing as is, e.g., needed
to specify that the input at the second position is part of the cause (cf. Exam-
ple 1). Gössler and Métayer [23] define causality for component-based systems,
and Gössler and Stefani [24] study theoretical foundations of causality based
on counterfactual builders. Both works differ from our approach as we consider
actual causality on the property level.1

Many existing works focus on explaining finite counterexamples [25,26,4,44].
Beer et al. [5] present a tool for causal analysis of finite traces with respect to LTL
specifications by highlighting events that led to the violation. HyperVis [31] pro-
vides visualization of counterexamples for hyperproperties through highlighting.
Coenen et al. [17] infer a cause for a hyperproperty violation, defined as a finite
set of events (i.e., time points) on the trace. In contrast to all of the above, CATS
provides symbolic causes (defined in QPTL) that can refer to infinitely many
time points and – given their logical nature – are easier to understand. At the
same time, the underlying theory provides strong guarantees for time-bounded
effects as, e.g., encountered in error analysis (cf. Proposition 1).

Structure. In the next section, we provide preliminaries and recap the theory
presented in [18]. Section 4 gives an overview of CATS. In Section 5, we evaluate
the cause-checking ability of CATS on both hand-crafted examples and systems
drawn from the SYNTCOMP competition [34]. In Section 6, we study CATS’s cause-
sketching functionality.
1 The term “actual causality” was coined by Halpern and Pearl [29] and describes
causes in a concrete (actual) instance (e.g., a trace) of a system. In contrast, global
causality describes all of the system behavior that can cause an effect.
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2 Preliminaries

Systems and Traces. We model a reactive system as a finite state transition
system T over a set of atomic propositions AP = I ·∪ O , which is partitioned
into inputs I and outputs O . A system then generates a set of traces Traces(T ) ⊆
(2AP)ω. For more details, see [18, § 5.1].

QPTL and HyperQPTL. HyperQPTL [41,9] extends linear-time temporal logic
(LTL) [40] by adding quantification over atomic propositions, as well as explicit
quantification over traces in a system. Given a set of trace variables V, Hyper-
QPTL formulas are defined by the following grammar

ϕ ::= ∀π. ϕ | ∃π. ϕ | ∀q. ϕ | ∃q. ϕ | ψ
ψ ::= aπ | q | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where π ∈ V is a trace variable, a ∈ AP is an atomic proposition, and q 6∈ AP
is a fresh quantified proposition. We also consider the usual derived Boolean
constants (>,⊥), Boolean connectives (∨, →, ↔, 6↔), and temporal operators
eventually ( ψ := >U ψ) and globally ( ψ := ¬( ¬ψ)).

In a HyperQPTL formula, atomic propositions are indexed by trace variables.
For example, ψ := (aπ ↔ bσ) states that, on the trace that is bound to trace
variable π, a holds iff b holds on the trace bound to trace variable σ. This allows
us to compare multiple traces within a temporal formula which we use, e.g.,
to define a distance metric on traces. The trace variables in the formula are
(existentially or universally) quantified at the top level. For example ∀π.∃σ. ψ
states that for every trace π in the system, there exists a trace σ such that
ψ holds on those two traces. In addition to trace quantification, HyperQPTL
features propositional quantification (as found in QPTL [42]). This allows us to
capture all ω-regular causes and effects, even those that are not LTL-definable.
For more details on HyperQPTL and the full semantics, see [9] or [41].

3 Temporal Causality

Our tool is based on the theory of temporal causality as defined by Coenen et
al. [18], extending Halpern and Pearl’s foundational definition of actual causality
to the setting of temporal causes and effects in reactive systems. In this section,
we recall the key aspects from [18].

Interventions. Interventions define the counterfactual scenarios where the cause
does not appear. Counterfactuals are the closest worlds in which the cause does
not appear [39].

Example 2. Consider, for example, the LTL property ϕ = a and the actual
trace π = {a}ω. To have a meaningful definition of counterfactuals, that is,
closest worlds in which the cause ϕ does not appear, it is not enough to negate
the formula ϕ, as this would result in a set of traces that are not necessarily
close enough to the original trace π. 4
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Instead, Coenen et al. [18] adopt the idea of distance metrics known from
Lewis [39]. Given a trace π, a distance metric <π is a strict partial order such
that σ <π σ′ if trace σ is closer to π than trace σ′. The intervention set V (ϕ,<π)
then consists of the closest traces σ that do not satisfy ϕ:

V (ϕ,<π) =
{
σ ∈ Traces(T ) | σ � ¬ϕ ∧ ¬∃σ′ ∈ Traces(T ). σ′ � ¬ϕ ∧ σ′ <π σ

}
.

Distance Metrics in HyperQPTL. To handle distance metrics algorithmically,
we consider them as being defined by a HyperQPTL formula. For example

σ <minπ σ′ ⇐⇒
(∧
i∈I

(iπ 6↔ iσ)→ (iπ 6↔ iσ′)
)
∧

∨
i∈I

(iσ 6↔ iσ′) (1)

specifies that σ is closer to π than σ′ iff whenever σ and π differ on some input,
so should σ′ and π, and σ′ and σ differ at least in one position.

Example 3. In Example 2, {}({a})ω is closer (w.r.t. <minπ ) to π than {}{}({a})ω.
The intervention set V (ϕ,<minπ ) thus contains all traces in which a does not
appear at exactly one position, i.e., traces of the form ({a})∗{}({a})ω. 4

Causality on Temporal Sequences. We are now ready to recall Coenen et al.’s [18]
definition of temporal causality. Following Halpern and Pearl, Coenen et al. [18]
use contingencies to deal with cases of preemption, i.e., scenarios where a possible
cause gets nullified by another earlier cause for the same effect. Formally, they
define the counterfactual automaton CTπ to account for the contingencies of a
lasso trace π. See [18, § 5.2] for details.

Definition 1 ([18]). Let T be a system over AP = I ·∪ O , π ∈ Traces(T )
a trace, <π a distance metric, and ϕC , ϕE two QPTL formulas over I and O ,
respectively. We say that ϕC is a cause of ϕE on π in T if the following three
conditions hold:

PC1: π � ϕC and π � ϕE.
PC2: For every counterfactual input sequence σ ∈ V (ϕC , <π), there is some

trace π′ ∈ CTπ s.t. π′ � ¬ϕE and
∧
i∈I (iπ ↔ iπ′).

PC3: There is no ϕ′C s.t. ϕ′C → ϕC is valid and ϕ′C satisfies PC1 and PC2.

The counterfactual condition (PC2) requires that for every closest input se-
quences in which the cause does not hold, we can use contingencies to avoid the
effect. PC1 requires that cause and effect are satisfied by the actual trace at
hand, and PC3 poses that the cause is semantically minimal.

Infinite Chains and Vacuity Condition. The above <minπ metric may admit infi-
nite chains of ever smaller interventions, resulting in an empty intervention set
V (ϕ,<π), which renders PC2 vacuously valid.

Example 4 ([18]). Let us consider the cause candidate ϕ := a and the trace
π = {a}ω. Under the distance metric <minπ (1), there exists no closest traces
that negate ϕ. For example, {}ω >minπ {a}({})ω >minπ {a}{a}({})ω >minπ · · ·
forms an infinite chain with no minimal element. Formula ϕ thus qualifies as a
cause for all effects that hold on π. 4
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To catch such situations, we add an additional vacuity condition, which, e.g.,
ensures that a (cf. Example 4) never constitutes a non-vacuous cause.

Definition 2 (Vacuity Condition). Under the conditions of Definition 1,
ϕC is a non-vacuous cause, if, in addition to PC1-PC3, the following holds:

PC4: The intervention set Vπ(ϕC , <π) is non-empty.

Some distance metrics are strong enough to always satisfy PC4. For example,
Coenen et al. [18] propose an extension of <minπ which only orders traces that
have the same rejection structure, that is, traces that falsify the cause formula
at the same positions of the trace (see [18]). An alternative extension of <minπ

we have discovered when experimenting with CATS is the following:

σ <fullπ σ′ ⇐⇒ (σ <minπ σ′) ∧
∧
i∈I

(
(iπ 6↔ iσ)

)
→
(

(iσ ↔ iσ′)
)

The metric <fullπ only orders traces that have the same infinite interventions
(with respect to individual atomic propositions).

Example 5. Recall Example 4. The traces σ = {}ω and σ′ = {a}({})ω are not
ordered by <fullπ , as σ already intervenes on infinitely many positions against a
in π = {a}ω and σ′ does not equal σ when both are projected to a. The infinite
chain w.r.t. <minπ from Example 4 thus does not exist; all elements in the chain
are minimal w.r.t. <fullπ . 4

The modular design of CATS encourages experiments with different distance
metrics. By default, CATS uses<minπ (1) ([18]) together with the vacuity condition
PC4, as our experiments show that this performs best in practice.

4 CATS: Tool Overview

In this section, we discuss the input of CATS (Section 4.1) and provide a basic
overview of the internal working (Section 4.2). All experiments in this paper
were conducted on a Macbook Pro with an M1 Pro CPU and 32 GB of memory.

4.1 Input Specification

CATS supports arbitrary ω-regular properties specified in QPTL [42], an exten-
sion of LTL with explicit quantification over propositions. A cause-checking in-
stance specifies the following: (1) The system – given as an arbitrary automaton
in the HANOI-automaton format [1]; (2) a partition of the atomic propositions
into inputs and outputs; (3) the cause and effect as QPTL formulas; and (4)
a lasso-shaped trace. When given a cause-checking instance, CATS determines if
the given cause candidate qualifies as an actual cause.

CATS can also be used in cause-sketching mode. In this mode, the cause is
a QPTL formula that includes holes, and CATS tries to find a formula within
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this sketch (i.e., a formula where all holes in the sketch are instantiated with
propositional – non-temporal – formulas) that qualifies as a cause. In sketching
mode, CATS either provides an actual cause or determines that no formula within
the given sketch qualifies as a cause. See [12] for details on sketching in the
context of query checking.

4.2 Algorithmic Core

Internally, CATS relies on a HyperQPTL-based encoding of the cause-checking
problem. As observed in [18], the causality requirements PC1-PC3 can be ex-
pressed as a HyperQPTL model-checking problem. CATS decomposes this model
checking problem as much as possible into 5 separate checks instead of one
large one as used in [18]. Having multiple (but smaller) checks is crucial for the
performance of CATS on larger cause formulas. By leveraging the HyperQPTL-
encoding, CATS can discharge most of the heavy computation as HyperQPTL
model-checking problems. For this, CATS relies on the automata-based model
checker AutoHyper [8,9]; alternative hyperproperty verification approaches [6,7,32]
can be substituted easily.

Handling Contingencies. If desired by the user, CATS adds the ability to reason
about contingencies – a central feature of Halpern and Pearl’s actual causality.
For details on this so-called contingency automaton, see [18, Def. 8].2

Trace Checking for Cause Sketching. When invoked in sketching mode, most
cause candidates within a sketch do not hold on the given trace and thus violate
PC1. CATS can filter out these instances very effectively by employing an inex-
pensive trace-check of the candidate on the given lasso, which prunes the search
space significantly. While there are exponentially many candidates within each
cause sketch, in practice, only a few satisfy PC1 and thus progress to the algo-
rithmically harder stages that require (proper) hyperproperty model checking.

5 Evaluation 1 - Cause Checking

To evaluate the cause-checking with CATS, we use both hand-crafted examples
(Section 5.1) and instances from the annual SYNTCOMP competition (Section 5.2).

5.1 Hand-Crafted Examples

We collected a range of hand-crafted instances (consisting of system, lasso, cause,
and effect). These systems are typically very small (so performance is not an
issue) and serve as a test of the underlying causality definition. We depict the
results in Table 1.
2 Coenen et al. [18] use the assumption that every state of the transition system is
labeled by a unique set of outputs. In practice, this assumption is unrealistic, so, in
many cases, the contingency automaton leads to unintuitive results and prevents the
discovery of causes. In CATS, we thus decided to allow the user to decide whether or
not to use contingencies.



8 Beutner et al.

Table 1: Hand-crafted cause-checking instances. We display whether or not the
cause candidate is a cause (3 if it is a cause and 7 if it is not) and the time
taken by CATS in seconds. Example 1, mod changes the actual trace to π =
{i1, i2}{i1, i2}{i1}({E})ω such that ϕC is no longer a cause.

Instance Res t

Spurious Arbiter [18] 7 0.6

Arbiter simple [18] 3 1.2

Arbiter [18] 3 9.7

Example 1 3 0.9

Example 1, mod 7 1.0

Example 6, odd 3 1.4

Instance Res t

Example 6, globally 7 0.7

Example 7 3 2.1

Example 8 3 1.1

Example 8 mod 7 1.2

TP Left [18, Thm. 6] 7 0.3

TP Right [18, Thm. 6] 3 1.1

Example 6. Consider the system in Figure 3a, which models a simple arbiter for
two processes; each can issue a request (I = {r0, r1}) and might be answered
by a grant (O = {g0, g1}). Importantly, the arbiter is biased towards process 0,
i.e., prioritizes process 0 if both issue a request. Suppose we observe the trace
({r0, r1}{r0, g0})ω and are interested in a cause for ϕE = ¬g1, i.e., process 1
never gets a grant. CATS can automatically verify the cause ϕC = ∃q.q ∧ (q ↔
¬q) ∧ (q → r0) (instance Example 6, odd), stating that the cause is that

process 0 issues requests at all odd positions. In particular, CATS can also infer
that r0 is not a cause (instance Example 6, globally); the requests at even
positions are irrelevant for the effect. Such a precise cause cannot be expressed
in LTL and requires the ω-regularity possible in QPTL. We stress that such an
automatic analysis was not possible before, and each instance required manual
(error-prone) checking. 4

5.2 Syntcomp Evaluation

In the previous section, we considered hand-crafted examples that stress the un-
derlying theory. In this section, we test the performance of CATS on a larger set of
benchmarks. To obtain an interesting set of reactive systems, we use benchmarks
from the reactive synthesis competition (SYNTCOMP) [34]. SYNTCOMP includes a
collection of LTL formulas that specify requirements for a diverse collection of
reactive systems. We use existing LTL synthesis tools (in our case ltlsynt [20])
to synthesize a strategy/system for each (realizable) LTL specification (within a
timeout of 5 minutes). We obtain a collection of 204 systems of varying sizes. For
each SYNTCOMP system, we randomly generate 10 different lasso traces and use
spot’s randltl to generate random cause and effect formulas (over the inputs
and outputs, respectively). This gives us a total of 204∗10 = 2040 cause-checking
instances. In Figure 2, we depict the running time of CATS against the size of
the underlying system. We observe that the vast majority of instances can be
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Fig. 2: We use CATS to check different cause-effect pairs in systems obtained from
SYNTCOMP [34] benchmarks. Note that the time scale is logarithmic.

solved in less than 10 seconds. We can also see how the running time of each in-
stance depends on the number of checks that are needed; due to the incremental
checking by CATS (based on the decomposition of the cause-checking formula),
instances that, e.g., already violate PC2 are not checked further. The overall
running time thus depends on the number of stages that are passed.

6 Evaluation 2 - Cause Sketching

As already alluded to in the introduction, a typical use case of causal analysis is
the analysis of a counterexample. The user can use such a cause to, e.g., extract
a minimal error from the concrete error trace and effectively debug the system.

Example 7. Consider the simple system in Figure 3b in which output E marks an
error. A model checker might return the concrete path π = {i1, i2}4({E})ω. While
the concrete path reaches the error state, it provides very little information about
which inputs actually caused the error. Instead, we can use CATS to find a cause
for the effect ϕE = E. When given to CATS with an appropriate sketch,
it will compute the cause ϕC = i1 ∧ (i1 ∨ i2), which characterizes exactly the
events on π that are of relevance: i1 must hold in the first step, and either i1 or
i2 must hold in the third (to avoid the self-loop). Note that this cause is tightly
coupled with the concrete trace π. In particular, the cause does not describe all
input events that lead to the error state, but only the minimal changes needed
to avoid the error on the concrete example. The time for checking this causal
relationship is depicted in Table 1 (instance Example 7). 4

Example 8. As a second example, consider the system in Figure 3c and the
concrete path π = {i}2({E})ω. CATS can automatically verify the cause ϕC =
i ∨ i for the effect ϕE = E. Note that this cause is disjunctive as we need
to intervene on i in the first and second step to avoid the effect. Symbolic causes
(as supported by CATS) can describe such effects very succinctly. In contrast,
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Fig. 3: Three example systems. Each edge has the form φ | o where φ is a boolean
formula over I and o ⊆ O a set of outputs. We write φ instead of φ | ∅.

previous methods cannot handle such examples: they are either limited to a
finite-variable setting and conjunctive causes [29,30] or can only reason about
the order of events but not about the concrete time using ’s [37,38]. The time
for checking this causal relationship is given in Table 1 (instance Example 8).
Table 1 also depicts a modified version using trace π = {i}{}({E})ω (instance
Example 8,mod). This results in ϕC = i ∨ i no longer being a cause. 4

6.1 Causes for Time-bounded Effects

When employing causality-based analysis on counterexamples, we often encounter
effects of the form n E for some n ∈ N. We refer to such effects as time-bounded
effects. We can formally prove that – within the causality framework of Coenen
et al. [18] – an effect that is time-bounded by n ∈ N has a cause iff it has a
time-bounded cause, i.e., a cause that only refers to the first n steps.

Proposition 1. Let ϕE = n ψ be an effect, where ψ does not contain temporal
operators, and let π be a trace. Then, there exists a cause for ϕE on π iff there
exists a cause that uses at most n nested ’s, and no other temporal operators.

When looking for causes of the form n E for some n, it thus suffices to check
for causes that refer to the first n positions. It is easy to see that there exists a
cause sketch that captures all such candidates (a simple DNF with atoms of the
form j ψ with j ≤ n).

6.2 Automatically Sketching Causes

To evaluate CATS’s cause-sketching ability, we use spot’s randaut [20] to generate
100 random systems of varying size (between 10 and 50 states) and randomly
mark one state with a fresh E proposition. Using a model checker (in our case, a
simple breath-first-search), we verify whether the error state is reachable, and if
it is, compute a concrete (lasso) trace reaching the error in say n steps. We then
use CATS to infer a cause for ϕE = n E, which, by Proposition 1, can be done
by exploring an appropriate sketch.

Our results are displayed in Table 2. We find that although CATS explores
many candidates, most of them can be pruned early using the inexpensive trace



Checking and Sketching Causes on Temporal Sequences 11

Table 2: Evaluation of CATS’s sketching for counterexample analysis. We depict
the average length of the counterexample trace (avg. |π|), the average number
of cause candidates checked (avg. #check ), the average time (in seconds) spent
on cause checking (avg. tcheck ), the average total time needed by CATS (avg. t),
and the percentage of cases in which we could find a cause (avg. success).

avg. |π| avg. #check avg. tcheck avg. t avg. success

6.28 169.1 2.08 s 2.19 s 86%

check for PC1 (cf. Section 4.2). The actual time tcheck for checking (which takes
up the vast majority of CATS’s total computation time) is thus reasonable, as
only a few of the (on average) 169.1 candidates progress to the expensive hyper-
property model-checking phase.

Limitations. We emphasize that CATS can, obviously, not compete with dedi-
cated methods for counterexample analysis [27,5,14]. The big advantage of CATS
stems from its reliance on an advanced theory that is not limited to counterexam-
ple analysis but applicable to arbitrary causal relationships. Despite the strong
theoretical foundations (dating back to Halpern and Pearl’s seminal definition
[29,30]), CATS provides strong guarantees on the existence of causes (Proposi-
tion 1) and performs well in small systems.

7 Conclusion

Causal analysis has a long tradition in the analysis of systems. While most
efforts on comprehensive causal definitions (mainly originating in philosophy)
focused on finite settings, recent work discussed causality in reactive systems,
where cause and effect reason about the infinite behavior of a system [18]. In
this paper, we have presented CATS, the first tool that pushes causality in reac-
tive systems towards automation. With CATS, causality definitions are no longer
condemned to be purely theoretical endeavors but can be applied and tested
fully automatically in actual systems. This allows for discovery and verifica-
tion causal relationships and serves as a playground to experiment with more
advanced causality definitions.

With CATS, we have shown that verifying causes based on an advanced causal-
ity theory is possible in practice and that sketching is a viable method to infer
causes. For future work, it is interesting to attempt to synthesize a (ω-regular)
cause directly. In such developments, CATS can serve as a useful baseline and
debugger.
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