
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Second-Order Hyperproperties

Raven Beutner , Bernd Finkbeiner , Hadar Frenkel , and Niklas Metzger

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{raven.beutner,finkbeiner,hadar.frenkel,
niklas.metzger} @cispa.de

Abstract. We introduce Hyper2LTL, a temporal logic for the specifica-
tion of hyperproperties that allows for second-order quantification over
sets of traces. Unlike first-order temporal logics for hyperproperties, such
as HyperLTL, Hyper2LTL can express complex epistemic properties like
common knowledge, Mazurkiewicz trace theory, and asynchronous hy-
perproperties. The model checking problem of Hyper2LTL is, in general,
undecidable. For the expressive fragment where second-order quantifica-
tion is restricted to smallest and largest sets, we present an approximate
model-checking algorithm that computes increasingly precise under- and
overapproximations of the quantified sets, based on fixpoint iteration and
automata learning. We report on encouraging experimental results with
our model-checking algorithm, which we implemented in the tool HySO.

1 Introduction

About a decade ago, Clarkson and Schneider coined the term hyperproperties [20]
for the rich class of system requirements that relate multiple computations. In
their definition, hyperproperties generalize trace properties, which are sets of
traces, to sets of sets of traces. This covers a wide range of requirements, from
information-flow security policies to epistemic properties describing the knowl-
edge of agents in a distributed system. Missing from Clarkson and Schneider’s
original theory was, however, a concrete specification language that could express
customized hyperproperties for specific applications and serve as the common
semantic foundation for different verification methods.

A first milestone towards such a language was the introduction of the tem-
poral logic HyperLTL [19]. HyperLTL extends linear-time temporal logic (LTL)
with quantification over traces. Suppose, for example, that an agent i in a dis-
tributed system observes only a subset of the system variables. The agent knows
that some LTL formula φ is true on some trace π iff φ holds on all traces π′

that agent i cannot distinguish from π. If we denote the indistinguishability of
π and π′ by π ∼i π

′, then the property that there exists a trace π where agent i
knows φ can be expressed as the HyperLTL formula

∃π.∀π′. π ∼i π
′ → φ(π′),

where we write φ(π′) to denote that the trace property φ holds on trace π′.

https://doi.org/10.5281/zenodo.7877144
https://orcid.org/0000-0001-6234-5651
https://orcid.org/0000-0002-4280-8441
https://orcid.org/0000-0002-3566-0338
https://orcid.org/0000-0003-3184-6335

2 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

While HyperLTL and its variations have found many applications [30,42,27],
the expressiveness of these logics is limited, leaving many widely used hyper-
properties out of reach. A prominent example is common knowledge, which is
used in distributed applications to ensure simultaneous action [29,38]. Common
knowledge in a group of agents means that the agents not only know individually
that some condition φ is true, but that this knowledge is “common” to the group
in the sense that each agent knows that every agent knows that φ is true; on
top of that, each agent in the group knows that every agent knows that every
agent knows that φ is true; and so on, forming an infinite chain of knowledge.

The fundamental limitation of HyperLTL that makes it impossible to express
properties like common knowledge is that the logic is restricted to first-order
quantification. HyperLTL, then, cannot reason about sets of traces directly, but
must always do so by referring to individual traces that are chosen existentially
or universally from the full set of traces. For the specification of an agent’s indi-
vidual knowledge, where we are only interested in the (non-)existence of a single
trace that is indistinguishable and that violates φ, this is sufficient; however,
expressing an infinite chain, as needed for common knowledge, is impossible.

In this paper, we introduce Hyper2LTL, a temporal logic for hyperproperties
with second-order quantification over traces. In Hyper2LTL, the existence of a
trace π where the condition φ is common knowledge can be expressed as the
following formula (using slightly simplified syntax):

∃π.∃X. π ∈ X ∧
(
∀π′ ∈ X.∀π′′.

(n∨
i=1

π′ ∼i π
′′) → π′′ ∈ X

)
∧ ∀π′ ∈ X.φ(π′).

The second-order quantifier ∃X postulates the existence of a set X of traces
that (1) contains π; that (2) is closed under the observations of each agent, i.e.,
for every trace π′ already in X, all other traces π′′ that some agent i cannot
distinguish from π′ are also in X; and that (3) only contains traces that sat-
isfy φ. The existence of X is a necessary and sufficient condition for φ being
common knowledge on π. In the paper, we show that Hyper2LTL is an elegant
specification language for many hyperproperties of interest that cannot be ex-
pressed in HyperLTL, including, in addition to epistemic properties like common
knowledge, also Mazurkiewicz trace theory and asynchronous hyperproperties.

The model checking problem for Hyper2LTL is much more difficult than for
HyperLTL. A HyperLTL formula can be checked by translating the LTL subfor-
mula into an automaton and then applying a series of automata transformations,
such as self-composition to generate multiple traces, projection for existential
quantification, and complementation for negation [30,8]. For Hyper2LTL, the
model checking problem is, in general, undecidable. We introduce a method that
nevertheless obtains sound results by over- and underapproximating the quan-
tified sets of traces. For this purpose, we study Hyper2LTLfp, a fragment of
Hyper2LTL, in which we restrict second-order quantification to the smallest or
largest set satisfying some property. For example, to check common knowledge,
it suffices to consider the smallest set X that is closed under the observations
of all agents. This smallest set X is defined by the (monotone) fixpoint opera-

Second-Order Hyperproperties 3

tion that adds, in each step, all traces that are indistinguishable to some trace
already in X.

We develop an approximate model checking algorithm for Hyper2LTLfp that
uses bidirectional inference to deduce lower and upper bounds on second-order
variables, interposed with first-order model checking in the style of HyperLTL.
Our procedure is parametric in an oracle that provides (increasingly precise)
lower and upper bounds. In the paper, we realize the oracles with fixpoint itera-
tion for underapproximations of the sets of traces assigned to the second-order
variables, and automata learning for overapproximations. We report on encour-
aging experimental results with our model-checking algorithm, which has been
implemented in a tool called HySO.

2 Preliminaries

For n ∈ N we define [n] := {1, . . . , n}. We assume that AP is a finite set of
atomic propositions and define Σ := 2AP. For t ∈ Σω and i ∈ N define t(i) ∈ Σ
as the ith element in t (starting with the 0th); and t[i,∞] for the infinite suffix
starting at position i. For traces t1, . . . , tn ∈ Σω we write zip(t1, . . . , tn) ∈ (Σn)ω

for the pointwise zipping of the traces, i.e., zip(t1, . . . , tn)(i) := (t1(i), . . . , tn(i)).

Transition systems. A transition system is a tuple T = (S, S0, κ, L) where S is
a set of states, S0 ⊆ S is a set of initial states, κ ⊆ S×S is a transition relation,
and L : S → Σ is a labeling function. A path in T is an infinite state sequence
s0s1s2 · · · ∈ Sω, s.t., s0 ∈ S0, and (si, si+1) ∈ κ for all i. The associated trace is
given by L(s0)L(s1)L(s2) · · · ∈ Σω and Traces(T) ⊆ Σω denotes all traces of T .

Automata. A non-deterministic Büchi automaton (NBA) [17] is a tuple A =
(Σ,Q, q0, δ, F) where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is a set of accepting states, and δ : Q×Σ → 2Q

is the transition function. A run on a word u ∈ Σω is an infinite sequence of
states q0q1q2 · · · ∈ Qω such that q0 ∈ Q0 and for every i ∈ N, qi+1 ∈ δ(qi, u(i)).
The run is accepting if it visits states in F infinitely many times, and we define
the language of A, denoted L(A) ⊆ Σω, as all infinite words on which A has an
accepting run.

HyperLTL. HyperLTL [19] is one of the most studied temporal logics for the
specification of hyperproperties. We assume that V is a fixed set of trace vari-
ables. For the most part, we use variations of π (e.g., π, π′, π1, . . .) to denote
trace variables. HyperLTL formulas are then generated by the grammar

φ := Qπ. φ | ψ
ψ := aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where a ∈ AP is an atomic proposition, π ∈ V is a trace variable, Q ∈ {∀,∃} is
a quantifier, and and U are the temporal operators next and until.

4 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

The semantics of HyperLTL is given with respect to a trace assignment Π,
which is a partial mapping Π : V ⇀ Σω that maps trace variables to traces.
Given π ∈ V and t ∈ Σω we define Π[π 7→ t] as the updated assignment that
maps π to t. For i ∈ N we define Π[i,∞] as the trace assignment defined by
Π[i,∞](π) := Π(π)[i,∞], i.e., we (synchronously) progress all traces by i steps.
For quantifier-free formulas ψ we follow the LTL semantics and define

Π ⊨ aπ iff a ∈ Π(π)(0)

Π ⊨ ¬ψ iff Π ̸⊨ ψ
Π ⊨ ψ1 ∧ ψ2 iff Π ⊨ ψ1 and Π ⊨ ψ2

Π ⊨ ψ iff Π[1,∞] ⊨ ψ

Π ⊨ ψ1 U ψ2 iff ∃i ∈ N. Π[i,∞] ⊨ ψ2 and ∀j < i.Π[j,∞] ⊨ ψ1 .

The indexed atomic propositions refer to a specific path in Π, i.e., aπ holds iff
a holds on the trace bound to π. Quantifiers range over system traces:

Π ⊨T ψ iff Π ⊨ ψ and Π ⊨T Qπ. φ iff Qt ∈ Traces(T). Π[π 7→ t] ⊨ φ .

We write T ⊨ φ if ∅ ⊨T φ where ∅ denotes the empty trace assignment.

HyperQPTL. HyperQPTL [43] adds – on top of the trace quantification of Hy-
perLTL – also propositional quantification (analogous to the propositional quan-
tification that QPTL [44] adds on top of LTL). For example, HyperQPTL can
express a promptness property which states that there must exist a bound (which
is common among all traces), up to which an event must have happened. We can
express this as ∃q.∀π. q∧(¬q)U aπ which states that there exists an evaluation
of proposition q such that (1) q holds at least once, and (2) for all traces π, a
holds on π before the first occurrence of q. See [8] for details.

3 Second-Order HyperLTL

The (first-order) trace quantification in HyperLTL ranges over the set of all sys-
tem traces; we thus cannot reason about arbitrary sets of traces as required for,
e.g., common knowledge. We introduce a second-order extension of HyperLTL
by introducing second-order variables (ranging over sets of traces) and allowing
quantification over traces from any such set. We present two variants of our logic
that differ in the way quantification is resolved. In Hyper2LTL, we quantify over
arbitrary sets of traces. While this yields a powerful and intuitive logic, second-
order quantification is inherently non-constructive. During model checking, there
thus does not exist an efficient way to even approximate possible witnesses for the
sets of traces. To solve this quandary, we restrict Hyper2LTL to Hyper2LTLfp,
where we instead quantify over sets of traces that satisfy some minimality or
maximality constraint. This allows for large fragments of Hyper2LTLfp that ad-
mit algorithmic approximations to its model checking (by, e.g., using known
techniques from fixpoint computations [45,46]).

Second-Order Hyperproperties 5

3.1 Hyper2LTL

Alongside the set V of trace variables, we use a set V of second-order variables
(which we, for the most part, denote with capital letters X,Y, ...). We assume
that there is a special variable S ∈ V that refers to the set of traces of the given
system at hand, and a variable A ∈ V that refers to the set of all traces. We
define the Hyper2LTL syntax by the following grammar:

φ := Qπ ∈ X.φ | QX.φ | ψ
ψ := aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where a ∈ AP is an atomic proposition, π ∈ V is a trace variable, X ∈ V is a
second-order variable, and Q ∈ {∀,∃} is a quantifier. We also consider the usual
derived Boolean constants (true, false) and connectives (∨, →, ↔) as well as the
temporal operators eventually (ψ := true U ψ) and globally (ψ := ¬ ¬ψ).
Given a set of atomic propositions P ⊆ AP and two trace variables π, π′, we
abbreviate π =P π′ :=

∧
a∈P (aπ ↔ aπ′).

Semantics. Apart from a trace assignment Π (as in the semantics of Hyper-
LTL), we maintain a second-order assignment ∆ : V ⇀ 2Σ

ω

mapping second-
order variables to sets of traces. Given X ∈ V and A ⊆ Σω we define the
updated assignment ∆[X 7→ A] as expected. Quantifier-free formulas ψ are then
evaluated in a fixed trace assignment as for HyperLTL (cf. Section 2). For the
quantifier prefix we define:

Π,∆ ⊨ ψ iff Π ⊨ ψ

Π,∆ ⊨ Qπ ∈ X.φ iff Qt ∈ ∆(X). Π[π 7→ t], ∆ ⊨ φ

Π,∆ ⊨ QX.φ iff QA ⊆ Σω. Π,∆[X 7→ A] ⊨ φ

Second-order quantification updates ∆ with a set of traces, and first-order quan-
tification updates Π by quantifying over traces within the set defined by ∆.

Initially, we evaluate a formula in the empty trace assignment and fix the
valuation of the special second-order variable S to be the set of all system traces
and A to be the set of all traces. That is, given a system T and Hyper2LTL
formula φ, we say that T satisfies φ, written T ⊨ φ, if ∅, [S 7→ Traces(T),A 7→
Σω] ⊨ φ, where we write ∅ for the empty trace assignment. The model-checking
problem for Hyper2LTL is checking whether T ⊨ φ holds.

Hyper2LTL naturally generalizes HyperLTL by adding second-order quantifi-
cation. As sets range over arbitrary traces, Hyper2LTL also subsumes the more
powerful logic HyperQPTL. The proof of Lemma 1 is given in Appendix A.1.

Lemma 1. Hyper2LTL subsumes HyperQPTL (and thus also HyperLTL).

Syntactic Sugar. In Hyper2LTL, we can quantify over traces within a second-
order variable, but we cannot state, within the body of the formula, that some

6 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

path is a member of some second-order variable. For that, we define π ▷ X (as
an atom within the body) as syntactic sugar for ∃π′ ∈ X. (π′ =AP π), i.e., π
is in X if there exists some trace in X that agrees with π on all propositions.
Note that we can only use π ▷X outside of the scope of any temporal operators;
this ensures that we can bring the resulting formula into a form that conforms
to the Hyper2LTL syntax.

3.2 Hyper2LTLfp

The semantics of Hyper2LTL quantifies over arbitrary sets of traces, making
even approximations to its semantics challenging. We propose Hyper2LTLfp as
a restriction that only quantifies over sets that are subject to an additional
minimality or maximality constraint. For large classes of formulas, we show that
this admits effective model-checking approximations. We define Hyper2LTLfp by
the following grammar:

φ := Qπ ∈ X.φ | Q (X,⋏⋎, φ). φ | ψ
ψ := aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where a ∈ AP, π ∈ V, X ∈ V, Q ∈ {∀,∃}, and ⋏⋎ ∈ {⋏,⋎} determines if we con-
sider smallest (⋎) or largest (⋏) sets. For example, the formula ∃ (X,⋎, φ1). φ2

holds if there exists some set of traces X, that satisfies both φ1 and φ2, and
is a smallest set that satisfies φ1. Such minimality and maximality constraints
with respect to a (hyper)property arise naturally in many properties. Exam-
ples include common knowledge (cf. Section 3.3), asynchronous hyperproperties
(cf. Section 4.2), and causality in reactive systems [22,21].

Semantics. For path formulas, the semantics of Hyper2LTLfp is defined analo-
gously to that of Hyper2LTL and HyperLTL. For the quantifier prefix we define:

Π,∆ ⊨ ψ iff Π ⊨ ψ

Π,∆ ⊨ Qπ ∈ X.φ iff Qt ∈ ∆(X). Π[π 7→ t], ∆ ⊨ φ

Π,∆ ⊨ Q(X,⋏⋎, φ1). φ2 iff QA ∈ sol(Π,∆, (X,⋏⋎, φ1)). Π,∆[X 7→ A] ⊨ φ2

where sol(Π,∆, (X,⋏⋎, φ1)) denotes all solutions to the minimality/maximality
condition given by φ1, which we define by mutual recursion as follows:

sol(Π,∆, (X,⋎, φ)) := {A ⊆ Σω | Π,∆[X 7→ A] ⊨ φ ∧ ∀A′ ⊊ A.Π,∆[X 7→ A′] ̸⊨ φ}
sol(Π,∆, (X,⋏, φ)) := {A ⊆ Σω | Π,∆[X 7→ A] ⊨ φ ∧ ∀A′ ⊋ A.Π,∆[X 7→ A′] ̸⊨ φ}

A set A satisfies the minimality/maximality constraint if it satisfies φ and is a
least (in case ⋏⋎ = ⋎) or greatest (in case ⋏⋎ = ⋏) set that satisfies φ.

Note that sol(Π,∆, (X,⋏⋎, φ)) can contain multiple sets or no set at all,
i.e., there may not exists a unique least or greatest set that satisfies φ. In
Hyper2LTLfp, we therefore add an additional quantification over the set of all

Second-Order Hyperproperties 7

b

a d

c

π = andω

K2(π) = an−1bdω

K1K2(π) = an−1cdω

K2K1K2(π) = an−2bcdω

. . .

K1K2 . . .K2(π) = acn−1dω

Fig. 1: Left: An example for a multi-agent system with two agents, where agent 1
observes a and d, and agent 2 observes c and d. Right: The iterative construction
of the traces to be considered for common knowledge starting with andω.

solutions to the minimality/maximality constraint. When discussing our model
checking approximation algorithm, we present a (syntactic) restriction on φ
which guarantees that sol(Π,∆, (X,⋏⋎, φ)) contains a unique element (i.e., is a
singleton set). Moreover, our restriction allows us to employ fixpoint techniques
to find approximations to this unique solution. In case the solution for (X,⋏⋎, φ)
is unique, we often omit the leading quantifier and simply write (X,⋏⋎, φ) instead
of Q(X,⋏⋎, φ).

As we can encode the minimality/maximality constraints of Hyper2LTLfp in
Hyper2LTL (see Appendix A.2), we have the following:

Proposition 1. Any Hyper2LTLfp formula φ can be effectively translated into
an Hyper2LTL formula φ′ such that for all transition systems T we have T ⊨ φ
iff T ⊨ φ′.

3.3 Common Knowledge in Multi-Agent Systems

To explain common knowledge, we use a variation of an example from [41],
and encode it in Hyper2LTLfp. Figure 1(left) shows a transition system of a dis-
tributed system with two agents, agent 1 and agent 2. Agent 1 observes variables
a and d, whereas agent 2 observes c and d. The property of interest is starting
from the trace π = andω for some fixed n > 1, is it common knowledge for the
two agents that a holds in the second step. It is trivial to see that a holds
on π. However, for common knowledge, we consider the (possibly) infinite chain
of observationally equivalent traces. For example, agent 2 cannot distinguish the
traces andω and an−1bdω. Therefore, agent 2 only knows that a holds on π if
it also holds on π′ = an−1bdω. For common knowledge, agent 1 also has to know
that agent 2 knows a, which means that for all traces that are indistinguish-
able from π or π′ for agent 1, a has to hold. This adds π′′ = an−1cdω to the
set of traces to verify a against. This chain of reasoning continues as shown in
Figure 1(right). In the last step we add acn−1dω to the set of indistinguishable
traces, concluding that a is not common knowledge.

8 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

The following Hyper2LTLfp formula specifies the property stated above. The
abbreviation obs(π1, π2) := (π1 ={a,d} π2) ∨ (π1 ={c,d} π2) denotes that π1
and π2 are observationally equivalent for either agent 1 or agent 2.

∀π ∈ S.
(n−1∧

i=0

i aπ ∧ n dπ
)
→(

X,⋎, π ▷ X ∧
(
∀π1 ∈ X.∀π2 ∈ S. obs(π1, π2) → π2 ▷ X

))
.∀π′ ∈ X. aπ′

For a trace π of the form π = andω, the set X represents the common
knowledge set on π. This set X is the smallest set that (1) contains π (expressed
using our syntactic sugar ▷); and (2) is closed under observations by either agent,
i.e., if we find some π1 ∈ X and some system trace π2 that are observationally
equivalent, π2 should also be in X. Note that this set is unique (due to the
minimality restriction), so we do not quantify it explicitly. Lastly, we require
that all traces in X satisfy the property a. All sets that satisfy this formula
would also include the trace acn−1dω, and therefore no such X exists; thus, we
can conclude that starting from trace andω, it is not common knowledge that
a holds.
On the other hand, it is common knowledge that a holds in the first step

(cf. Section 6).

3.4 Hyper2LTL Model Checking

As Hyper2LTL and Hyper2LTLfp allow quantification over arbitrary sets of
traces, we can encode the satisfiability of HyperQPTL (i.e., the question of
whether some set of traces satisfies a formula) within their model-checking prob-
lem; rendering the model-checking problem highly undecidable [32], even for very
simple formulas [4].

Proposition 2. For any HyperQPTL formula φ there exists a Hyper2LTL for-
mula φ′ such that φ is satisfiable iff φ′ holds on some arbitrary transition system.
The model-checking problem of Hyper2LTL is thus highly undecidable (Σ1

1 -hard).

Proof. Let φ′ be the Hyper2LTL formula obtained from φ by replacing each
HyperQPTL trace quantifier Qπ with the Hyper2LTL quantifier Qπ ∈ X, and
each propositional quantifier Qq with Qπq ∈ A for some fresh trace variable πq.
In the body, we replace each propositional variable q with aπq

for some fixed
proposition a ∈ AP. Then, φ is satisfiable iff the Hyper2LTL formula ∃X.φ′

holds in some arbitrary system. ⊓⊔

Hyper2LTLfp cannot express HyperQPTL satisfiability directly. If there ex-
ists a model of a HyperQPTL formula, there may not exist a least one. However,
model checking of Hyper2LTLfp is also highly undecidable.

Proposition 3. The model-checking problem of Hyper2LTLfp is Σ1
1 -hard.

Second-Order Hyperproperties 9

Proof (Sketch). We can encode the existence of a recurrent computation of a
Turing machine, which is known to be Σ1

1 -hard [1]. ⊓⊔

Conversely, the existential fragment of Hyper2LTL can be encoded back into
HyperQPTL satisfiability:

Proposition 4. Let φ be a Hyper2LTL formula that uses only existential second-
order quantification and T be any system. We can effectively construct a formula
φ′ in HyperQPTL such that T ⊨ φ iff φ′ is satisfiable.

Lastly, we present some easy fragments of Hyper2LTL for which the model-
checking problem is decidable. Here we write ∃∗X (resp. ∀∗X) for some se-
quence of existentially (resp. universally) quantified second-order variables and
∃∗π (resp. ∀∗π) for some sequence of existentially (resp. universally) quantified
first-order variables. For example, ∃∗X∀∗π captures all formulas of the form
∃X1, . . . Xn.∀π1, . . . , πm.ψ where ψ is quantifier-free.

Proposition 5. The model-checking problem of Hyper2LTL is decidable for the
fragments: ∃∗X∀∗π, ∀∗X∀∗π, ∃∗X∃∗π, ∀∗X∃∗π, ∃X.∃∗π ∈ X∀∗π′ ∈ X.

See Appendix A.3 for the full proofs of the propositions above.

4 Expressiveness of Hyper2LTL

In this section, we point to existing logics that can naturally be encoded within
our second-order hyperlogics Hyper2LTL and Hyper2LTLfp.

4.1 Hyper2LTL and LTLK,C

LTLK extends LTL with the knowledge operator K. For some subset of agents
A, the formula KAψ holds in timestep i, if ψ holds on all traces equivalent to
some agent in A up to timestep i. See Appendix B.1 for detailed semantics.
LTLK and HyperCTL∗ have incomparable expressiveness [15] but the knowledge
operator K can be encoded by either adding a linear past operator [15] or by
adding propositional quantification (as in HyperQPTL) [43].

Using Hyper2LTLfp we can encode LTLK,C, featuring the knowledge operator
K and the common knowledge operator C (which requires that ψ holds on the
closure set of equivalent traces, up to the current timepoint) [39]. Note that
LTLK,C is not encodable by only adding propositional quantification or the linear
past operator.

Proposition 6. For every LTLK,C formula φ there exists an Hyper2LTLfp for-
mula φ′ such that for any system T we have T ⊨LTLK,C

φ iff T ⊨ φ′.

Proof (Sketch). We follow the intuition discussed in Section 3.3. For each oc-
currence of a knowledge operator in {K,C}, we introduce a second-order set that
collects all equivalent traces, and a fresh trace variable that keeps track on the
points in time with respect to which we need to compare. We then inductively
construct a Hyper2LTLfp formula that captures all the knowledge and common-
knowledge sets. For more details see Appendix B.1. ⊓⊔

10 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

4.2 Hyper2LTL and Asynchronous Hyperproperties

Most existing hyperlogics (including Hyper2LTL) traverse the traces of a sys-
tem synchronously. However, in many cases such a synchronous traversal is too
restricting and we need to compare traces asynchronously. As an example, con-
sider observational determinism (OD), which we can express in HyperLTL as
φOD := ∀π1.∀π2. (oπ1

↔ oπ2
). The formula states that the output of a system

is identical across all traces and so (trivially) no information about high-security
inputs is leaked. In most systems encountered in practice, this synchronous for-
mula is violated, as the exact timing between updates to o might differ by a
few steps (see Appendix B.2 for some examples). However, assuming that an
attacker only has access to the memory footprint and not a timing channel, we
would only like to check that all traces are stutter equivalent (with respect to o).

A range of extensions to existing hyperlogics has been proposed to reason
about such asynchronous hyperproperties [3,16,37,5,9]. We consider AHLTL [3].
An AHLTL formula has the form Q1π1, . . . ,Qnπm.E. ψ where ψ is a qunatifier-
free HyperLTL formula. The initial trace quantifier prefix is handled as in Hyper-
LTL. However, different from HyperLTL, a trace assignment [π1 7→ t1, . . . , πn 7→
tn] satisfies E. ψ if there exist stuttered traces t′1, . . . , t

′
n of t1, . . . , tn such that

[π1 7→ t′1, . . . , πn 7→ t′n] ⊨ ψ. We write T ⊨AHLTL φ if a system T satis-
fies the AHLTL formula φ. Using this quantification over stutterings we can,
for example, express an asynchronous version of observational determinism as
∀π1.∀π2.E. (oπ1 ↔ oπ2) stating that every two traces can be aligned such
that they (globally) agree on o. Despite the fact that Hyper2LTLfp is itself
synchronous, we can use second-order quantification to encode asynchronous
hyperproperties, as we state in the following proposition.

Proposition 7. For any AHLTL formula φ there exists a Hyper2LTLfp formula
φ′ such that for any system T we have T ⊨AHLTL φ iff T ⊨ φ′.

Proof. Assume that φ = Q1π1, . . . ,Qnπn.E. ψ is the given AHLTL formula. For
each i ∈ [n] we define a formula φi as follows

∀π1 ∈ Xi.∀π2 ∈ A.
((
π1 =AP π2

)
U
(∧

a∈AP

aπ1
↔ aπ2

))
→ π2 ▷ Xi

The formula asserts that the set of traces bound to Xi is closed under stuttering,
i.e., if we start from any trace in Xi and stutter it once (at some arbitrary
position) we again end up in Xi. Using the formulas φi, we then construct a
Hyper2LTLfp formula that is equivalent to φ as follows

φ′ :=Q1π1 ∈ S, . . . ,Qnπn ∈ S.(X1,⋎, π1 ▷ X1 ∧ φ1) · · · (Xn,⋎, πn ▷ Xn ∧ φn)

∃π′
1 ∈ X1, . . . ,∃π′

n ∈ Xn.ψ[π
′
1/π1, . . . , π

′
n/πn]

We first mimic the quantification in φ and, for each trace πi, construct a least
set Xi that contains πi and is closed under stuttering (thus describing exactly
the set of all stuttering of πi). Finally, we assert that there are traces π′

1, . . . , π
′
n

with π′
i ∈ Xi (so π

′
i is a stuttering of πi) such that π′

1, . . . , π
′
n satisfy ψ. It is easy

to see that T ⊨AHLTL φ iff T ⊨ φ′ holds for all systems. ⊓⊔

Second-Order Hyperproperties 11

Hyper2LTLfp captures all properties expressible in AHLTL. In particular,
our approximate model-checking algorithm for Hyper2LTLfp (cf. Section 5) is
applicable to AHLTL; even for instances where no approximate solutions were
previously known. In Section 6, we show that our prototype model checker for
Hyper2LTLfp can verify asynchronous properties in practice.

5 Model-Checking Hyper2LTLfp

In general, finite-state model checking of Hyper2LTLfp is highly undecidable
(cf. Proposition 2). In this section, we outline a partial algorithm that com-
putes approximations on the concrete values of second-order variables for a frag-
ment of Hyper2LTLfp. At a very high-level, our algorithm (Algorithm 1) iter-
atively computes under- and overapproximations for second-order variables. It
then turns to resolve first-order quantification, using techniques from HyperLTL
model checking [30,8], and resolves existential and universal trace quantification
on the under- and overapproximation of the second-order variables, respectively.
If the verification fails, it goes back to refine second-order approximations.

In this section, we focus on the setting where we are interested in the least
sets (using ⋎), and use techniques to approximate the least fixpoint. A similar
(dual) treatment is possible for Hyper2LTLfp formulas that use the largest set.
Every Hyper2LTLfp which uses only minimal sets has the following form:

φ = γ1.(Y1,⋎, φ
con
1).γ2(Yk,⋎, φ

con
k). γk+1. ψ (1)

We quantify second-order variables Y1, . . . , Yk, where, for each j ∈ [k], Yj is the
least set that satisfies φcon

j . Finally, for each j ∈ [k + 1],

γj = Qlj+1πlj+1 ∈ Xlj+1 . . .Qlj+1
πlj+1

∈ Xlj+1

is the block of first-order quantifiers that sits between the quantification of Yj−1

and Yj . Here Xlj+1, . . . , Xlj+1
∈ {S,A, Y1, . . . , Yj−1} are second-order variables

that are quantified before γj . In particular, π1, . . . , πlj are the first-order variables
quantified before Yj .

5.1 Fixpoints in Hyper2LTLfp

We consider a fragment of Hyper2LTLfp which we call the least fixpoint frag-
ment. Within this fragment, we restrict the formulas φcon

1 , . . . , φcon
k such that

Y1, . . . , Yk can be approximated as (least) fixpoints. Concretely, we say that φ
is in the least fixpoint fragment of Hyper2LTLfp if for all j ∈ [k], φcon

j is a
conjunction of formulas of the form

∀π̇1 ∈ X1. . . .∀π̇n ∈ Xn. ψstep → π̇M ▷ Yj (2)

where each Xi ∈ {S,A, Y1, . . . , Yj}, ψstep is quantifier-free formula over trace
variables π̇1, . . . , π̇n, π1, . . . , πlj , and M ∈ [n]. Intuitively, Equation (2) states

12 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

a requirement on traces that should be included in Yj . If we find traces ṫ1 ∈
X1, . . . , ṫn ∈ Xn that, together with the traces t1, . . . , tlj quantified before Yj ,
satisfy ψstep , then ṫM should be included in Yj .

Together with the minimality constraint on Yj (stemming from the semantics
of Hyper2LTLfp), this effectively defines a (monotone) least fixpoint computa-
tion, as ψstep defines exactly the traces to be added to the set. This will allow us
to use results from fixpoint theory to compute approximations for the sets Yj .

Our least fixpoint fragment captures most properties of interest, in partic-
ular, common knowledge (Section 3.3) and asynchronous hyperproperties (Sec-
tion 4.2). We observe that formulas of the above form ensure that the solution Yj
is unique, i.e., for any trace assignment Π to π1, . . . , πlj and second-order assign-
ment∆ toS,A, Y1, . . . , Yj−1, there is only one element in sol(Π,∆, (Yj ,⋎, φcon

j)).

5.2 Functions as Automata

In our (approximate) model-checking algorithm, we represent a concrete assign-
ment to the second-order variables Y1, . . . , Yk using automata BY1 , . . . ,BYk

. The
concrete assignment of Yj can depend on traces assigned to π1, . . . , πlj , i.e.,
the first-order variables quantified before Yj . To capture these dependencies,
we view each Yj not as a set of traces but as a function mapping traces of all
preceding first-order variables to a set of traces. We represent such a function
f : (Σω)lj → 2(Σ

ω) mapping the lj traces to a set of traces as an automaton
A over Σlj+1. For traces t1, . . . , tlj , the set f(t1, . . . , tlj) is represented in the
automaton by the set {t ∈ Σω | zip(t1, . . . , tlj , t) ∈ L(A)}. For example, the
function f(t1) := {t1} can be defined by the automaton that accepts the zipping
of a pair of traces exactly if both traces agree on all propositions. This repre-
sentation of functions as automata allows us to maintain an assignment to Yj
that is parametric in π1, . . . , πlj and still allows first-order model checking on
Y1, . . . , Yk.

5.3 Model Checking for First-Order Quantification

First, we focus on first-order quantification, and assume that we are given a con-
crete assignment for each second-order variable as fixed automata BY1

, . . . ,BYk

(where BYj
is an automaton over Σlj+1). Our construction for resolving first-

order quantification is based on HyperLTL model checking [30], but needs to
work on sets of traces that, themselves, are based on traces quantified before
(cf. Section 5.2). Recall that the first-order quantifier prefix is γ1 · · · γk+1 =
Q1π1 ∈ X1 · · ·Qlk+1

πlk+1
∈ Xlk+1

. For each 1 ≤ i ≤ lk+1 we inductively con-
struct an automaton Ai over Σi−1 that summarizes all trace assignments to
π1, . . . , πi−1 that satisfy the subformula starting with the quantification of πi.
That is, for all traces t1, . . . , ti−1 we have

[π1 7→ t1, . . . , πi−1 7→ ti−1] ⊨ Qiπi ∈ Xi · · ·Qlk+1
πlk+1

∈ Xlk+1
. ψ

Second-Order Hyperproperties 13

(under the fixed second-order assignment for Y1, . . . , Yk given by BY1
, . . . ,BYk

) if
and only if zip(t1, . . . , ti−1) ∈ L(Ai). In the context of HyperLTL model check-
ing we say Ai is equivalent to Qiπi ∈ Xi · · ·Qlk+1

πlk+1
∈ Xlk+1

. ψ [30,8]. In
particular, A1 is an automaton over singleton alphabet Σ0.

We construct A1, . . . ,Alk+1+1 inductively, starting with Alk+1+1. Initially, we
construct Alk+1+1 (over Σlk+1) using a standard LTL-to-NBA construction on
the (quantifier-free) body ψ (see [30] for details). Now assume that we are given
an (inductively constructed) automaton Ai+1 over Σi and want to construct Ai.
We first consider the case where Qi = ∃, i.e., the ith trace quantification is
existential. Now Xi (the set where πi is resolved on) either equals S, A or Yj
for some j ∈ [k]. In either case, we represent the current assignment to Xi as
an automaton C over ΣT+1 for some T < i that defines the model of Xi based
on traces π1, . . . , πT : In case Xi = S, we set C to be the automaton over Σ0+1

that accepts exactly the traces in the given system T ; in case Xi = A, we set
C to be the automaton over Σ0+1 that accepts all traces; If Xi = Yj for some
j ∈ [k] we set C to be BYj

(which is an automaton over Σlj+1).1 Given C, we can
now modify the construction from [30], to resolve first-order quantification: The
desired automaton Ai should accept the zipping of traces t1, . . . , ti−1 if there
exists a trace t such that (1) zip(t1, . . . , ti−1, t) ∈ L(Ai+1), and (2) the trace t is
contained in the set of traces assigned to Xi as given by C, i.e., zip(t1, . . . , tT , t) ∈
L(C). The construction of this automaton is straightforward by taking a product
of Ai+1 and C. We denote this automaton with eProduct(Ai+1,C). In case Qi = ∀
we exploit the duality that ∀π.ψ = ¬∃π.¬ψ, combining the above construction
with automata complementation. We denote this universal product of Ai+1 and
C with uProduct(Ai+1,C).

The final automaton A1 is an automaton over singleton alphabet Σ0 that is
equivalent to γ1 · · · γk+1.ψ, i.e., the entire first-order quantifier prefix. Automaton
A1 thus satisfies L(A1) ̸= ∅ (which we can decide) iff the empty trace assignment
satisfies the first-order formula γ1 · · · γk+1. ψ, iff φ (of Equation (1)) holds within
the fixed model for Y1, . . . , Yk. For a given fixed second-order assignment (given
as automata BY1 , . . . ,BYk

), we can thus decide if the system satisfies the first-
order part.

During the first-order model-checking phase, each quantifier alternations in
the formula require complex automata complementation. For the first-order
phase, we could also use cheaper approximate methods by, e.g., instantiating
the existential trace using a strategy [24,7,6].

5.4 Bidirectional Model Checking

So far, we have discussed the verification of the first-order quantifiers assuming
we have a fixed model for all second-order variables Y1, . . . , Yk. In our actual
model-checking algorithm, we instead maintain under- and overapproximations
on each of the Y1, . . . , Yk.

1 Note that in this case lj < i: if trace πi is resolved on Yj (i.e, Xi = Yj), then Yj

must be quantified before πi so there are at most i− 1 traces quantified before Yj .

14 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

Algorithm 1

1 verify(φ, T) =

2 let φ =
[
γj (Yj ,⋎, φ

con
j)

]k
j=1

γk+1. ψ where γi =
[
Qmπm ∈ Xm

]li+1

m=li+1

3 let N = 0
4 let AT = systemToNBA(T)
5 repeat
6 // Start outside-in traversal on second-order variables

7 let ♭ =
[
S 7→ (AT ,AT),A 7→ (A⊤,A⊤)

]
8 for j from 1 to k do

9 Bl
j := underApprox((Yj ,⋎, φ

con
j),♭,N)

10 Bu
j := overApprox((Yj ,⋎, φ

con
j),♭,N)

11 ♭(Yj) := (Bl
j ,B

u
j)

12 // Start inside-out traversal on first-order variables
13 let Alk+1+1 = LTLtoNBA(ψ)

14 for i from lk+1 to 1 do

15 let (Cl, Cu) = ♭(Xi)
16 if Qi = ∃ then

17 Ai := eProduct(Ai+1, Cl)
18 else
19 Ai := uProduct(Ai+1, Cu)
20 if L(A1) ̸= ∅ then
21 return SAT
22 else
23 N = N + 1

In each iteration, we first traverse the second-order quantifiers in an outside-
in direction and compute lower- and upper-bounds on each Yj . Given the bounds,
we then traverse the first-order prefix in an inside-out direction using the cur-
rent approximations to Y1, . . . , Yk. If the current approximations are not precise
enough to witness the satisfaction (or violation) of a property, we repeat and
try to compute better bounds on Y1, . . . , Yk. Due to the different directions of
traversal, we refer to our model-checking approach as bidirectional. Algorithm 1
provides an overview. Initially, we convert the system T to an NBA AT accept-
ing exactly the traces of the system. In each round, we compute under- and
overapproximations for each Yj in a mapping ♭. We initialize ♭ by mapping S to
(AT ,AT) (i.e., the value assigned to the system variable is precisely AT for both
under- and overapproximation), and A to (A⊤,A⊤) where A⊤ is an automa-
ton over Σ1 accepting all traces. We then traverse the second-order quantifiers
outside-in (from Y1 to Yk) and for each Yj compute a pair (Bl

j ,Bu
j) of automata

over Σlj+1 that under- and overapproximate the actual (unique) model of Yj .
We compute these approximations using functions underApprox and overApprox,
which can be instantiated with any procedure that computes sound lower and up-
per bounds (see Section 5.5). During verification, we further maintain a precision

Second-Order Hyperproperties 15

bound N (initially set to 0) that tracks the current precision of the second-order
approximations.

When ♭ contains an under- and overapproximation for each second-order vari-
able, we traverse the first-order variables in an inside-out direction (from πlk+1

to π1) and, following the construction outlined in Section 5.3, construct au-
tomata Alk+1, . . . ,A1. Different from the simplified setting in Section 5.3 (where
we assume a fixed automaton BYj

providing a model for each Yj), the mapping
♭ contains only approximations of the concrete solution. We choose which ap-
proximation to use according to the corresponding set quantification: In case we
construct Ai and Qi = ∃, we use the underapproximation (thus making sure that
any witness trace we pick is indeed contained in the actual model of the second-
order variable); and if Qi = ∀, we use the overapproximation (making sure that
we consider at least those traces that are in the actual solution). If L(A1) is
non-empty, i.e., accepts the empty trace assignment, the formula holds (assum-
ing the approximations returned by underApprox and overApprox are sound). If
not, we increase the precision bound N and repeat.

In Algorithm 1, we only check for the satisfaction of a formula (to keep the
notation succinct). Using the second-order approximations in ♭ we can also check
the negation of a formula (by considering the negated body and dualizing all
trace quantifiers). Our tool (Section 6) makes use of this and thus simultaneously
tries to show satisfaction and violation of a formula.

5.5 Computing Under- and Overapproximations

In this section we provide concrete instantiations for underApprox and overApprox.

Computing Underapproximations. As we consider the fixpoint fragment,
each formula φcon

j (defining Yj) is a conjunction of formulas of the form in
Equation (2), thus defining Yj via a least fixpoint computation. For simplicity,
we assume that Yj is defined by the single conjunct, given by Equation (2) (our
construction generalizes easily to a conjunction of such formulas). Assuming fixed
models forS, A and Y1, . . . , Yj−1, the fixpoint operation defining Yj is monotone,
i.e., the larger the current model for Yj is, the more traces we need to add
according to Equation (2). Monotonicity allows us to apply the Knaster–Tarski
theorem [45] and compute underapproximations to the fixpoint by iteration.

In our construction of an approximation for Yj , we are given a mapping ♭
that fixes a pair of automata for S, A, and Y1, . . . , Yj−1 (due to the outside-
in traversal in Algorithm 1). As we are computing an underapproximation,
we use the underapproximation for each of the second-order variables in ♭.
So ♭(S) and ♭(A) are automata over Σ1 and for each j′ ∈ [j − 1], ♭(Yj′)
is an automaton over Σlj′+1. Given this fixed mapping ♭, we iteratively con-
struct automata Ĉ0, Ĉ1, . . . over Σlj+1 that capture (increasingly precise) under-
approximations on the solution for Yj . We set Ĉ0 to be the automaton with

the empty language. We then recursively define ĈN+1 based on ĈN as follows:
For each second-order variable Xi for i ∈ [n] used in Equation (2) we can

16 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

assume a concrete assignment in the form of an automaton Di over ΣTi+1

for some Ti ≤ lj : In case Xi ̸= Yj (so Xi ∈ {S,A, Y1, . . . , Yj−1}), we set

Di := ♭(Xi). In case Xi = Yj , we set Di := ĈN , i.e., we use the current
approximation of Yj in iteration N . After we have set D1, . . . ,Dn, we com-

pute an automaton Ċ over Σlj+1 that accepts zip(t1, . . . , tlj , t) iff there exists
traces ṫ1, . . . , ṫn such that (1) zip(t1, . . . , tTi

, ṫi) ∈ L(Di) for all i ∈ [n], (2)
[π1 7→ t1, . . . , πlj 7→ tlj , π̇1 7→ ṫ1, . . . , π̇n 7→ ṫn] ⊨ ψstep , and (3) trace t equals

ṫM (of Equation (2)). The intuition is that Ċ captures all traces that should
be added to Yj : Given t1, . . . , tlj we check if there are traces ṫ1, . . . , ṫn for trace
variables π̇1, . . . , π̇n in Equation (2) where (1) each ṫi is in the assignment for Xi,
which is captured by the automaton Di over Σ

Ti+1, and (2) the traces ṫ1, . . . , ṫn
satisfy φstep . If this is the case, we want to add ṫM (as stated in Equation (2)).

We then define ĈN+1 as the union of ĈN and Ċ, i.e. extend the previous model
with all (potentially new) traces that need to be added.

Computing Overapproximations. As we noted above, conditions of the form
of Equation (2) always define fixpoint constraints. To compute upper bounds on
such fixpoint constructions we make use of Park’s theorem, [46] stating that if
we find some set (or automaton) B that is inductive (i.e., when computing all
traces that we would need to add assuming the current model of Yj is B, we
end up with traces that are already in B), then B overapproximates the unique
solution (aka. least fixpoint) of Yj . To derive such an inductive invariant, we
employ techniques developed in the context of regular model checking [14] (see
Section 7). Concretely, we employ the approach from [18] that uses automata
learning [2] to find suitable invariants. While the approach from [18] is limited to
finite words, we extend it to an ω-setting by interpreting an automaton accepting
finite words as one that accepts an ω-word u iff every prefix of u is accepted.2

As soon as the learner provides a candidate for an equivalence check, we check
that it is inductive and, if not, provide some finite counterexample (see [18] for
details). If the automaton is inductive, we return it as a potential overapproxi-
mation. Should this approximation not be precise enough, the first-order model
checking (Section 5.3) returns some concrete counterexample, i.e., some trace
contained in the invariant but violating the property, which we use to provide
more counterexamples to the learner.

6 Implementation and Experiments

We have implemented our model-checking algorithm in a prototype tool we call
HySO (Hyperproperties with Second Order).3 Our tool uses spot [28] for basic

2 This effectively poses the assumption that the step formula specifies a safety prop-
erty, which seems to be the case for almost all examples. As an example, common
knowledge infers a safety property: In each step, we add all traces for which there
exists some trace that agrees on all propositions observed by that agent.

3 Our tool is publicly available at https://doi.org/10.5281/zenodo.7877144.

https://doi.org/10.5281/zenodo.7877144

Second-Order Hyperproperties 17

automata operations (such as LTL-to-NBA translations and complementations).
To compute under- and overapproximations, we use the techniques described in
Section 5.5. We evaluate the algorithm on the following benchmarks.

Muddy Children. The muddy children puzzle [29] is one of the classic exam-
ples in common knowledge literature. The puzzle consists of n children standing
such that each child can see all other children’s faces. From the n children, an
unknown number k ≥ 1 have a muddy forehead, and in incremental rounds, the
children should step forward if they know if their face is muddy or not. Consider
the scenario of n = 2 and k = 1, so child a sees that child b has a muddy forehead
and child b sees that a is clean. In this case, b immediately steps forward, as it
knows that its forehead is muddy since k ≥ 1. In the next step, a knows that its
face is clean since b stepped forward in round 1. In general, one can prove that
all children step forward in round k, deriving common knowledge.

For each n we construct a transition system Tn that encodes the muddy chil-
dren scenario with n children. For every m we design a Hyper2LTLfp formula
φm that adds to the common knowledge set X all traces that appear indistin-
guishable in the first m steps for some child. We then specify that all traces in
X should agree on all inputs, asserting that all inputs are common knowledge.4

We used HySO to fully automatically check Tn against φm for varying values of n
and m, i.e., we checked if, after the first m steps, the inputs of all children are
common knowledge. As expected, the above property holds only if m ≥ n (in the
worst case, where all children are dirty (k = n), the inputs of all children only
become common knowledge after n steps). We depict the results in Table 1a.

Asynchronous Hyperproperties. As we have shown in Section 4.2, we can
encode arbitrary AHLTL properties into Hyper2LTLfp. We verified synchronous
and asynchronous version of observational determinism (cf. Section 4.2) on pro-
grams taken from [3,5,9]. We depict the verification results in Table 1b. Recall
that Hyper2LTLfp properties without any second-order variables correspond to
HyperQPTL formulas. HySO can check such properties precisely, i.e., it consti-
tutes a sound-and-complete model checker for HyperQPTL properties with an
arbitrary quantifier prefix. The synchronous version of observational determin-
ism is a HyperLTL property and thus needs no second-order approximation (we
set the method column to “-” in these cases).

Common Knowledge in Multi-agent Systems. We used HySO for an au-
tomatic analysis of the system in Figure 1. Here, we verify that on initial trace
{a}n{d}ω it is CK that a holds in the first step. We use a similar formula as

4 This property is not expressible in non-hyper logics such as LTLK,C, where we
can only check trace properties on the common knowledge set X. In contrast,
Hyper2LTLfp allows us to check hyperproperties on X. That way, we can express
that some value is common knowledge (i.e., equal across all traces in the set) and
not only that a property is common knowledge (i.e., holds on all traces in the set).

18 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

m

1 2 3 4

n

2
✗

0.64
✓

0.59

3
✗

0.79
✗

0.75
✓

0.54

4
✗

2.72
✗

2.21
✗

1.67
✓

1.19

(a)

Instance Method Res t

Tsyn , φOD - ✓ 0.26

Tasyn , φOD - ✗ 0.31

Tsyn , φ
asyn
OD Iter (0) ✓ 0.50

Tsyn , φ
asyn
OD Iter (1) ✓ 0.78

Q1, φOD - ✗ 0.34

Q1, φasyn
OD Iter (1) ✓ 0.86

(b)

Table 1: In Table 1a, we check common knowledge in the muddy children puzzle
for n children and m rounds. We give the result (✓ if common knowledge holds
and ✗ if it does not), and the running time. In Table 1b, we check synchronous
and asynchronous versions of observational determinism. We depict the number
of iterations needed and running time. Times are given in seconds.

the one of Section 3.3, with the change that we are interested in whether a is
CK (whereas we used a in Section 3.3). As expected, HySO requires 2n − 1
iterations to converge. We depict the results in Table 2a.

Mazurkiewicz Traces. Mazurkiewicz traces are an important concept in the
theory of distributed computing [26]. Let I ⊆ Σ × Σ be an independence rela-
tion that determines when two consecutive letters can be switched (think of two
actions in disjoint processes in a distributed system). Any t ∈ Σω then defines
the set of all traces that are equivalent to t by flipping consecutive independent
actions an arbitrary number of times (the equivalence class of all these traces
is called the Mazurkiewicz Trace). See [26] for details. The verification prob-
lem for Mazurkiewicz traces now asks if, given some t ∈ Σω, all traces in the
Mazurkiewicz trace of t satisfy some property ψ. Using Hyper2LTLfp we can
directly reason about the Mazurkiewicz Trace of any given trace, by requiring
that all traces that are equal up to one swap of independent letters are also in
a given set (which is easily expressed in Hyper2LTLfp).

Using HySO we verify a selection of such trace properties that often require
non-trivial reasoning by coming up with a suitable invariant. We depict the
results in Table 2b. In our preliminary experiments, we model a situation where
we start with {a}1{}ω and can swap letters {a} and {}. We then, e.g., ask if
on any trace in the resulting Mazurkiewicz trace, a holds at most once, which
requires inductive invariants and cannot be established by iteration.

Second-Order Hyperproperties 19

n Method Res t

1 Iter (1) ✓ 0.51

2 Iter (3) ✓ 0.83

3 Iter (5) ✓ 1.20

10 Iter (19) ✓ 3.81

100 Iter (199) ✓ 102.8

(a)

Instance Method Res t

SwapA Learn ✓ 1.07

SwapATwice Learn ✓ 2.13

SwapA5 Iter (5) ✓ 1.15

SwapA15 Iter (15) ✓ 3.04

SwapAViolation5 Iter (5) ✗ 2.35

SwapAViolation15 Iter (15) ✗ 4.21

(b)

Table 2: In Table 1a, we check common knowledge in the example from Figure 1
when starting with andω for varying values of n. We depict the number of refine-
ment iterations, the result, and the running time. In Table 2b, we verify various
properties on Mazurkiewicz traces. We depict whether the property could be
verified or refuted by iteration or automata learning, the result, and the time.
Times are given in seconds.

7 Related Work

In recent years, many logics for the formal specification of hyperproperties have
been developed, extending temporal logics with explicit path quantification (ex-
amples include HyperLTL, HyperCTL∗ [19], HyperQPTL [43,10], HyperPDL
[36], and HyperATL∗ [5,9]); extending first and second-order logics with an
equal level predicate [24,31]; or extending (ω)-regular hyperproperties [35,13]
to context-free hyperproperties [33]. Hyper2LTL is the first temporal logic that
reasons about second-order hyperproperties which allows is to capture many
existing (epistemic, asynchronous, etc.) hyperlogics while at the same time tak-
ing advantage of model-checking solutions that have been proven successful in
first-order settings.

Asynchronous Hyperproperties. For asynchronous hyperproperties, Gutfeld et
al. [37] present an asynchronous extension of the polyadic µ-calculus. Bozelli
et al. [16] extend HyperLTL with temporal operators that are only evaluated
if the truth value of some temporal formula changes. Baumeister et al. present
AHLTL [3], that extends HyperLTL with a explicit quantification over trajecto-
ries and can be directly encoded within Hyper2LTLfp.

Regular Model Checking. Regular model checking [14] is a general verification
method for (possibly infinite state) systems, in which each state of the system
is interpreted as a finite word. The transitions of the system are given as a
finite-state (regular) transducer, and the model checking problem asks if, from

20 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

some initial set of states (given as a regular language), some bad state is eventu-
ally reachable. Many methods for automated regular model checking have been
developed [11,25,12,18]. Hyper2LTL can be seen as a logical foundation for ω-
regular model checking: Assume the set of initial states is given as a QPTL
formula φinit , the set of bad states is given as a QPTL formula φbad , and the
transition relation is given as a QPTL formula φstep over trace variables π and
π′. The set of bad states is reachable from a trace (state) in φinit iff the following
Hyper2LTLfp formula holds on the system that generates all traces:(

X,⋎,∀π ∈ S. φinit(π) → π ▷ X∧
∀π ∈ X.∀π′ ∈ S. φstep(π, π

′) → π′ ▷ X
)
.∀π ∈ X.¬φbad(π)

Conversely, Hyper2LTLfp can express more complex properties, beyond the
reachability checks possible in the framework of (ω-)regular model checking.

Model Checking Knowledge. Model checking of knowledge properties in multi-
agent systems was developed in the tools MCK [34] and MCMAS [40], which can
exactly express LTLK. Bozzelli et al. [15] have shown that HyperCTL∗ and LTLK

have incomparable expressiveness, and present HyperCTL∗
lp – an extension of

HyperCTL∗ that can reason about past – to unify HyperCTL∗ and LTLK. While
HyperCTL∗

lp can express the knowledge operator, it cannot capture common
knowledge. LTLK,C [39] captures both knowledge and common knowledge, but
the suggested model-checking algorithm only handles a decidable fragment that
is reducible to LTL model checking.

8 Conclusion

Hyperproperties play an increasingly important role in many areas of computer
science. There is a strong need for specification languages and verification meth-
ods that reason about hyperproperties in a uniform and general manner, similar
to what is standard for more traditional notions of safety and reliability. In
this paper, we have ventured forward from the first-order reasoning of logics
like HyperLTL into the realm of second-order hyperproperties, i.e., properties
that not only compare individual traces but reason comprehensively about sets
of such traces. With Hyper2LTL, we have introduced a natural specification
language and a general model-checking approach for second-order hyperproper-
ties. Hyper2LTL provides a general framework for a wide range of relevant hy-
perproperties, including common knowledge and asynchronous hyperproperties,
which could previously only be studied with specialized logics and algorithms.
Hyper2LTL also provides a starting point for future work on second-order hy-
perproperties in areas such as cyber-physical [42] and probabilistic systems [27].

Acknowledgements. We thank Jana Hofmann for the fruitful discussions. This
work was supported by the European Research Council (ERC) Grant HYPER
(No. 101055412), by DFG grant 389792660 as part of TRR 248, and by the
German Israeli Foundation (GIF) Grant No. I-1513-407.2019.

Second-Order Hyperproperties 21

References

1. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1) (1994).
https://doi.org/10.1145/174644.174651

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2) (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: International Conference on
Computer Aided Verification, CAV 2021. Lecture Notes in Computer Science, vol.
12759. Springer (2021). https://doi.org/10.1007/978-3-030-81685-8 33

4. Beutner, R., Carral, D., Finkbeiner, B., Hofmann, J., Krötzsch, M.: De-
ciding hyperproperties combined with functional specifications. In: Annual
ACM/IEEE Symposium on Logic in Computer, LICS 2022. ACM (2022).
https://doi.org/10.1145/3531130.3533369

5. Beutner, R., Finkbeiner, B.: A temporal logic for strategic hyperproperties. In:
International Conference on Concurrency Theory, CONCUR 2021. LIPIcs, vol. 203.
Schloss Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.24

6. Beutner, R., Finkbeiner, B.: Prophecy variables for hyperproperty verification.
In: IEEE Computer Security Foundations Symposium, CSF 2022. IEEE (2022).
https://doi.org/10.1109/CSF54842.2022.9919658

7. Beutner, R., Finkbeiner, B.: Software verification of hyperproperties be-
yond k-safety. In: International Conference on Computer Aided Verification,
CAV 2022. Lecture Notes in Computer Science, vol. 13371. Springer (2022).
https://doi.org/10.1007/978-3-031-13185-1 17

8. Beutner, R., Finkbeiner, B.: AutoHyper: Explicit-state model checking for Hy-
perLTL. In: International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS 2023. vol. 13993. Springer (2023).
https://doi.org/10.1007/978-3-031-30823-9 8

9. Beutner, R., Finkbeiner, B.: HyperATL∗: A logic for hyperproperties in multi-agent
systems. Log. Methods Comput. Sci. (2023)

10. Beutner, R., Finkbeiner, B.: Model checking omega-regular hyperproperties with
AutoHyperQ. In: International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, LPAR 2023. EPiC Series in Computing, EasyChair
(2023)

11. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Interna-
tional Conference on Computer Aided Verification, CAV 2003. Lecture Notes in
Computer Science, vol. 2725. Springer (2003). https://doi.org/10.1007/978-3-540-
45069-6 24

12. Boigelot, B., Legay, A., Wolper, P.: Omega-regular model checking. In: Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2004. Lecture Notes in Computer Science, vol. 2988. Springer
(2004). https://doi.org/10.1007/978-3-540-24730-2 41

13. Bonakdarpour, B., Sheinvald, S.: Finite-word hyperlanguages. In: Leporati, A.,
Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) Language and Automata The-
ory and Applications - 15th International Conference, LATA 2021, Milan, Italy,
March 1-5, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12638, pp.
173–186. Springer (2021). https://doi.org/10.1007/978-3-030-68195-1 17, https:
//doi.org/10.1007/978-3-030-68195-1_17

14. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model check-
ing. In: International Conference on Computer Aided Verification, CAV

https://doi.org/10.1145/174644.174651
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1145/3531130.3533369
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://doi.org/10.1109/CSF54842.2022.9919658
https://doi.org/10.1007/978-3-031-13185-1_17
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-540-24730-2_41
https://doi.org/10.1007/978-3-030-68195-1_17
https://doi.org/10.1007/978-3-030-68195-1_17
https://doi.org/10.1007/978-3-030-68195-1_17

22 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

2000. Lecture Notes in Computer Science, vol. 1855. Springer (2000).
https://doi.org/10.1007/10722167 31

15. Bozzelli, L., Maubert, B., Pinchinat, S.: Unifying hyper and epistemic temporal
logics. In: International Conference on Foundations of Software Science and Com-
putation Structures, FoSSaCS 2015. Lecture Notes in Computer Science, vol. 9034.
Springer (2015). https://doi.org/10.1007/978-3-662-46678-0 11

16. Bozzelli, L., Peron, A., Sánchez, C.: Asynchronous extensions of HyperLTL. In:
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021. IEEE
(2021). https://doi.org/10.1109/LICS52264.2021.9470583

17. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Studies
in Logic and the Foundations of Mathematics. vol. 44. Elsevier (1966)

18. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over pa-
rameterised concurrent systems. In: Formal Methods in Computer Aided Design,
FMCAD 2017. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102244

19. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: International Conference on Principles
of Security and Trust, POST 2014. Lecture Notes in Computer Science, vol. 8414.
Springer (2014). https://doi.org/10.1007/978-3-642-54792-8 15

20. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6) (2010).
https://doi.org/10.3233/JCS-2009-0393

21. Coenen, N., Dachselt, R., Finkbeiner, B., Frenkel, H., Hahn, C., Horak, T., Met-
zger, N., Siber, J.: Explaining hyperproperty violations. In: International Con-
ference on Computer Aided Verification, CAV 2022. Lecture Notes in Computer
Science, vol. 13371. Springer (2022). https://doi.org/10.1007/978-3-031-13185-1 20

22. Coenen, N., Finkbeiner, B., Frenkel, H., Hahn, C., Metzger, N., Siber, J.: Temporal
causality in reactive systems. In: International Symposium on Automated Technol-
ogy for Verification and Analysis, ATVA 2022. Lecture Notes in Computer Science,
vol. 13505. Springer (2022). https://doi.org/10.1007/978-3-031-19992-9 13

23. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019.
IEEE (2019). https://doi.org/10.1109/LICS.2019.8785713

24. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperlive-
ness. In: International Conference on Computer Aided Verification, CAV
2019. Lecture Notes in Computer Science, vol. 11561. Springer (2019).
https://doi.org/10.1007/978-3-030-25540-4 7

25. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: International Con-
ference on Computer Aided Verification, CAV 2001. Lecture Notes in Computer
Science, vol. 2102. Springer (2001). https://doi.org/10.1007/3-540-44585-4 27

26. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995).
https://doi.org/10.1142/2563

27. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of markov
decision processes. In: International Symposium on Automated Technology for
Verification and Analysis, ATVA 2020. Lecture Notes in Computer Science, vol.
12302. Springer (2020). https://doi.org/10.1007/978-3-030-59152-6 27

28. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From spot
2.0 to spot 2.10: What’s new? In: International Conference on Computer Aided
Verification, CAV 2022. Lecture Notes in Computer Science, vol. 13372. Springer
(2022). https://doi.org/10.1007/978-3-031-13188-2 9

29. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995). https://doi.org/10.7551/mitpress/5803.001.0001

https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/3-540-44585-4_27
https://doi.org/10.1142/2563
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.7551/mitpress/5803.001.0001

Second-Order Hyperproperties 23

30. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL*. In: International Conference on Computer Aided Verifica-
tion, CAV 2015. Lecture Notes in Computer Science, vol. 9206. Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4 3

31. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In: Sym-
posium on Theoretical Aspects of Computer Science, STACS 2017. LIPIcs, vol. 66.
Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.30

32. Fortin, M., Kuijer, L.B., Totzke, P., Zimmermann, M.: HyperLTL satisfiability
is Σ1

1 -complete, HyperCTL* satisfiability is Σ2
1 -complete. In: International Sym-

posium on Mathematical Foundations of Computer Science, MFCS 2021. LIPIcs,
vol. 202. Schloss Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.47

33. Frenkel, H., Sheinvald, S.: Realizable and context-free hyperlanguages. In:
Ganty, P., Monica, D.D. (eds.) Proceedings of the 13th International Sympo-
sium on Games, Automata, Logics and Formal Verification, GandALF 2022,
Madrid, Spain, September 21-23, 2022. EPTCS, vol. 370, pp. 114–130 (2022).
https://doi.org/10.4204/EPTCS.370.8, https://doi.org/10.4204/EPTCS.370.8

34. Gammie, P., van der Meyden, R.: MCK: model checking the logic of
knowledge. In: International Conference on Computer Aided Verification,
CAV 2004. Lecture Notes in Computer Science, vol. 3114. Springer (2004).
https://doi.org/10.1007/978-3-540-27813-9 41

35. Goudsmid, O., Grumberg, O., Sheinvald, S.: Compositional model checking
for multi-properties. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation - 22nd International Con-
ference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceed-
ings. Lecture Notes in Computer Science, vol. 12597, pp. 55–80. Springer
(2021). https://doi.org/10.1007/978-3-030-67067-2 4, https://doi.org/10.1007/
978-3-030-67067-2_4

36. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Propositional dynamic
logic for hyperproperties. In: International Conference on Concurrency
Theory, CONCUR 2020. LIPIcs, vol. 171. Schloss Dagstuhl (2020).
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50

37. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Automata and fixpoints for
asynchronous hyperproperties. Proc. ACM Program. Lang. 5(POPL) (2021).
https://doi.org/10.1145/3434319

38. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990)

39. van der Hoek, W., Wooldridge, M.J.: Model checking knowledge and time. In:
International Workshop on Model Checking of Software, SPIN 2002. Lecture Notes
in Computer Science, vol. 2318. Springer (2002). https://doi.org/10.1007/3-540-
46017-9 9

40. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1)
(2017). https://doi.org/10.1007/s10009-015-0378-x

41. van der Meyden, R.: Common knowledge and update in finite environments. Inf.
Comput. 140(2) (1998). https://doi.org/10.1006/inco.1997.2679

42. Nguyen, L.V., Kapinski, J., Jin, X., Deshmukh, J.V., Johnson, T.T.: Hyperprop-
erties of real-valued signals. In: ACM-IEEE International Conference on For-
mal Methods and Models for System Design, MEMOCODE 2017. ACM (2017).
https://doi.org/10.1145/3127041.3127058

43. Rabe, M.N.: A temporal logic approach to information-flow control. Ph.D. thesis,
Saarland University (2016)

https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://doi.org/10.4204/EPTCS.370.8
https://doi.org/10.4204/EPTCS.370.8
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/978-3-030-67067-2_4
https://doi.org/10.1007/978-3-030-67067-2_4
https://doi.org/10.1007/978-3-030-67067-2_4
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1145/3434319
https://doi.org/10.1007/3-540-46017-9_9
https://doi.org/10.1007/3-540-46017-9_9
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1006/inco.1997.2679
https://doi.org/10.1145/3127041.3127058

24 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

44. Sistla, A.P.: Theoretical issues in the design and verification of distributed systems.
Ph.D. thesis, Harvard University (1983)

45. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. (1955)
46. Winskel, G.: The formal semantics of programming languages - an introduction.

Foundation of computing series, MIT Press (1993)

A Additional Material for Section 3

A.1 Additional Material for Section 3.1

Lemma 1. Hyper2LTL subsumes HyperQPTL (and thus also HyperLTL).

Proof. HyperQPTL extends HyperLTL with quantification over atomic proposi-
tions. However, HyperQPTL can also be expressed using quantification over ar-
bitrary traces, that are not necessarily system traces, capturing exactly the same
semantics. Then, we can translate every HyperLTL trace quantification Qπ.φ to
Qπ ∈ S.φ, and every HyperQPTL trace quantification Qτ.φ to Qτ ∈ A.φ, to
obtain a Hyper2LTL formula. ⊓⊔

A.2 Additional Material for Section 3.2

Proposition 1. Any Hyper2LTLfp formula φ can be effectively translated into
an Hyper2LTL formula φ′ such that for all transition systems T we have T ⊨ φ
iff T ⊨ φ′.

Proof. We translate the Hyper2LTLfp formula φ into a Hyper2LTL formula JφK:

JψK := ψ

JQπ ∈ X.φK := Qπ ∈ X. JφK

J∃(X,⋎, φ1). φ2K := ∃X. Jφ1K ∧
(
∀Y. Y ⊊ X ⇒ ¬Jφ1[Y/X]K

)
∧ Jφ2K

J∀(X,⋎, φ1). φ2K := ∀X.
(
Jφ1K ∧

(
∀Y. Y ⊊ X ⇒ ¬Jφ1[Y/X]K

))
⇒ Jφ2K

J∃(X,⋏, φ1). φ2K := ∃X. Jφ1K ∧
(
∀Y. Y ⊋ X ⇒ ¬Jφ1[Y/X]K

)
∧ Jφ2K

J∀(X,⋏, φ1). φ2K := ∀X.
(
Jφ1K ∧

(
∀Y. Y ⊋ X ⇒ ¬Jφ1[Y/X]K

))
⇒ Jφ2K

Path formulas and first-order quantification can be translated verbatim. To
translate (fixpoint-based) second-order quantification we use additional second
order quantification to express the fact that a set should be a least or greatest.
We write Y ⊊ X as a shorthand for(

∀π ∈ Y.π ▷ X
)
∧
(
∃π ∈ Y.∀π′ ∈ Y. ¬(π =AP π

′)
)

φ1[Y/X] denotes the formula where all free occurrences of X are replaced by Y .
Note that above formula is no Hyper2LTL formula as it is not in prenex

normal form. However, no (first or second-order) quantification occurs under
temporal operators, so we can easiliy bring it into prenex normal form. It is easy
to see that any system satisfies φ in the Hyper2LTLfp semantics iff it satisfies
JφK in the Hyper2LTL semantics. ⊓⊔

Second-Order Hyperproperties 25

A.3 Additional Proofs for Section 3.4

Proposition 3. The model-checking problem of Hyper2LTLfp is Σ1
1 -hard.

Proof. Instead of working with Turing machines, we consider two counter ma-
chines as they are simpler to handle. A two-counter machine (2CM) maintains
two counters c1, c2 and has a finite set of instructions l1, . . . , ln. Each instruction
li is of one of the following forms, where x ∈ {1, 2} and 1 ≤ j, k ≤ n.

– li :
[
cx := cx + 1; goto {lj , lk}

]
– li :

[
cx := cx − 1; goto {lj , lk}

]
– li :

[
if cx = 0 then goto lj else goto lk

]
Here, goto {lj , lk} indicates that the machine nondeterministically chooses be-
tween instructions lj and lk. A configuration of a 2CM is a tuple (li, v1, v2),
where li is the next instruction to be executed, and v1, v2 ∈ N denote the values
of the counters. The initial configuration of a 2CM is (l1, 0, 0). The transition
relation between configurations is defined as expected. Decrementing a counter
that is already 0 leaves the counter unchanged. An infinite computation is re-
curring if it visits instruction l1 infinitely many times. Deciding if a machine has
a recurring computation is Σ1

1 -hard [1].
For our proof, we encode each configuration of the 2CM as an infinite trace.

We use to atomic propositions c1, c2, which we ensure to hold exactly once and
use this unique position to represent the counter value. The current instruction
can be encoded in the first position using APs l1, . . . , ln. We further use a fresh
AP † – which also holds exactly once – to mark the step of this configuration. We
are interested in a set of traces X that satisfies all of the following requirements:

1. The set X contains the initial configuration. Note that in this configuration,
† holds in the first step.

2. For every configuration, there exists a successor configuration. Note that in
the successor configuration, † is shifted by one position.

3. All pairs of traces where † holds at the same position are equal. X thus
assigns a unique configuration to each step.

4. The computation is recurrent. As already done in [4], we can ensure this by
adding a fresh counter that counts down to the next visit of instruction l1.

It is easy to see that we can encode all the above as a Hyper2LTL (or
Hyper2LTLfp) formula using only first-order quantification over traces in X.
Let φ be such a formula. It is easy to see that the Hyper2LTL formula ∃X.φ
holds on any system, iff there exists a set X with the above properties iff the
2CM has a recurring computation. The reproves Proposition 2.

For the present proof, we do, however, want to show Σ1
1 -hardness for the

less powerful Hyper2LTLfp. The key point to extend this is to ensure that iff
there exists a set X that satisfies the above requirements, then there also exists
a minimal one. The key observation is that – by the construction of X – any set
X that satisfies the above is already minimal : The AP † ensures that, for each

26 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

step, there exists exactly one configuration (Item 3), and, when removing any
number of traces from X, we will inevitably violate Item 4.

We thus get that the 2CM has a recurring computation iff there exists min-
inmal X that satisfies φ iff the Hyper2LTLfp formula ∃(X,⋎, φ). true holds on
an arbitrary system. ⊓⊔

Proposition 4. Let φ be a Hyper2LTL formula that uses only existential second-
order quantification and T be any system. We can effectively construct a formula
φ′ in HyperQPTL such that T ⊨ φ iff φ′ is satisfiable.

Proof. Assume that we have m second-order quantifiers, and for each k ∈ [m],
π1, . . . , πlk are the first-order variables occurring before Xk is quantified:

φ = Qπ1, . . . ,Qπl1∃X1Qπl1+1, . . . ,Qπl2∃X2 · · · ∃XmQπlm+1, . . . ,Qπlm+1ψ ,

The second-order variables we use thus are V = {S,A, X1, . . . , Xm}. Each X ∈
V can depend on some of the traces quantified before it. In particular, each Xk

depends on traces π1, . . . , πlk , S depends on none of the traces (as it is fixed)
and neither does A. We define a function c : V → N that denotes on how many
traces the set can depend, i.e., c(S) = c(A) = 0, and c(Xk) = lk.

We then encode this functional dependence into a model by using traces. For
each X ∈ V, we define atomic propositions

APX := {[a, j]X | a ∈ AP ∧ j ∈ [c(X)] ∪ {†}}

and then define

AP′ := AP ⊎
⋃

X∈V

APX

We will use the original APs to describe traces. The additional propositions
are used to encode functions which map the c(X) traces quantified before X to
some set of traces. Given traces π1, . . . , πC(X), we say a trace t is in the model

of X if there exists some trace ṫ (in the model of our final formula) such that

∀z ∈ N.
(∧

j∈[C(X)]

∧
a∈AP

(
a ∈ tj(z) ↔ [a, j]X ∈ ṫ(z)

))
∧

∀z ∈ N.
(∧

a∈AP

(
a ∈ t(z) ↔ [a, †]X ∈ ṫ(z)

)) (3)

holds. That is, the trace ṫ defines the functional mapping from t1, . . . , tc(X) to t.
We use this idea of encoding functions to translate φ as follows:

JψK := ψ

JQX.φK := JφK
J∃πi ∈ X.φK := ∃πi. ⟨πi ∈ X⟩ ∧ JφK
J∀πi ∈ X.φK := ∀πi. ⟨πi ∈ X⟩ → JφK

Second-Order Hyperproperties 27

We leave path formulas unchanged and fully ignore second-order quantification
(which is always existential). We define ⟨π ∈ X⟩ as an abbreviation for

∃π̇.
(∧

j∈[c(X)]

∧
a∈AP

(
aπj ↔ ([a, j]X)π̇

))
∧
(∧

a∈AP

(
aπ ↔ ([a, †]X)π̇

))
which encodes Equation (3).

The last thing we need to ensure is that S and A are encoded correctly. That
is for any trace t we have t ∈ Traces(T) iff there exists a ṫ (in the model) such
that for any z ∈ N and a ∈ AP, we have a ∈ t(z) iff [a, †]S ∈ ṫ(z). Similarly,
there should exists a trace ṫ (in the model) such that for any z ∈ N and a ∈ AP,
[a, †]A ∈ ṫ(z). Both requirement can be easily expressed as HyperQPTL formulas
φS and φA (Note that expressing these requirement in HyperLTL is not possible
as we cannot quantify over traces that are not within the current model).

It is easy to see that T ⊨ φ iff JφK ∧ φS ∧ φA is satisfiable. ⊓⊔

Proposition 5. The model-checking problem of Hyper2LTL is decidable for the
fragments: ∃∗X∀∗π, ∀∗X∀∗π, ∃∗X∃∗π, ∀∗X∃∗π, ∃X.∃∗π ∈ X∀∗π′ ∈ X.

Proof. ∀∗X∀∗π.φ, ∃∗X∃∗π.φ: As universal properties are downwards closed and
existential properties are upwards closed, removing second order quantification
does not change the semantics of the formula.

∃∗X∀∗π.φ: for every variable X we introduce a trace variable πx which is
existentially bounded, and for every occurrence of π in φ such that π ∈ X, we
replace π with πx. If φ holds for all traces in X, it holds also when replacing
X with the singleton πx. The other direction of implication is trivial as we
found a set X = {πX} for which φ holds. For similar reasons, for ∀∗X∃∗π.φ we
can remove the second order quantification and replace every existentially trace
quantification with a universal trace quantification.

As a conclusion of all of the above, we have that the model-checking of
Hyper2LTLformulas of the following type is decidable: Q1X1 · · ·QkXk.Q′

1π1 ∈
X1 · · ·Q′

kπk ∈ Xk.φ where we have Qi,Q′
i ∈ {∃,∀} and in φ only traces from the

same set Xi are compared to each other (that is, φ does not bind traces from
different sets to each other).

Lastly, for ψ = ∃X.∃∗π ∈ X.∀∗π′ ∈ X.φ, we use a reduction to the sat-
isfiability problem of HyperQPTL [23]. Let φT a QPTL formula that models

the system. Then, T ⊨ ψ iff the HyperQPTL formula ψ̂ is satisfiable, where
ψ̂ = ∃∗π.∀∗π′.∀τ.φT (τ) ∧ ψ(π, π′). Since ψ̂ is a ∃∗∀∗ HyperQPTL formula, its
satisfiability problem is decidable [23]. ⊓⊔

B Appendix for Section 4

B.1 Additional Material for Section 4.1

LTLK,C is defined by the following grammar:

ψ := a | ¬ψ | ψ | ψ1 U ψ2 | KAψ | Eψ | Cψ

28 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

where A is a set of agents. Given two traces t, t′ we write t[0, i] =Ai
t′[0, i] if t

and t′ appear indistinguishable for agent Ai in the first i steps. Given a set of
traces T and a trace t we define

t, i ⊨T a iff a ∈ t(i)

t, i ⊨T ¬ψ iff t, i ̸⊨T ψ

t, i ⊨T ψ1 ∧ ψ2 iff t, i ⊨T ψ1 and t, t ⊨T ψ2

t, i ⊨T ψ iff t, i+ 1 ⊨T ψ

t, i ⊨T ψ1 U ψ2 iff ∃j ≥ i. t, j ⊨T ψ2 and ∀i ≤ k < j. t, k ⊨T ψ1

t, i ⊨T KAiψ iff ∀t′ ∈ T. t[0, i] =Ai t
′[0, i] → t′, i ⊨ ψ

t, i ⊨T Eψ iff t, i ⊨T

∧
Ai∈A

KAi
ψ

t, i ⊨T Cψ iff t, i ⊨T E∞ψ

The everyone knows operator E states that every agents knows that ψ holds.
The semantics of the common knowledge operator C is then the infinite chain,
or transitive closure, of everyone knows that everyone knows that ... ψ.

Proposition 6. For every LTLK,C formula φ there exists an Hyper2LTLfp for-
mula φ′ such that for any system T we have T ⊨LTLK,C

φ iff T ⊨ φ′.

Proof. Let {A1, . . . , An} be the set of agents. For the jth occurrence of a knowl-
edge operator K ∈ {K,C} we introduce a new trace variable τj and a second
order variable Yj . In addition, we introduce a new atomic proposition k. We
then replace the jth occurrence of K in φ with kτj , resulting in the HyperLTL
formula ψτ . Denote by ψj the subformula of ψτ that directly follows kτj .

We define by induction on the nested knowledge operators the corresponding
Hyper2LTLfp formula φj . For the first (inner-most) operator, we define φ0 to
be the LTL formula nested under this operator. Now, assume we have defined
φj−1, and let K ∈ {K,C} be the jth inner-most knowledge operator. Then, φj

is defined as follows.

∀τj ∈ A.
(
Yj ,⋎, (π ∈ Yj ∧ ∀π1 ∈ Yj .∀π2 ∈ S.

(
¬kτj U(kτj ∧ ¬kτj)

)
→(

equiv j
K(π1, π2)U kτj → π2 ▷ Yj

))
.∀π1 ∈ Yj .φj−1 ∧

(
kτj → ψj

)
Where

equiv j
KAi

:= π1 ↔Ai
π2 equiv j

C :=
∨
i∈[n]

π1 ↔Ai
π2

Each instantiation of the universally quantified variable τj corresponds to
one timepoint in which we want to check knowledge on. Therefore, we verify
that k appears exactly once on the trace (first line of the formula). Then, we
add to the knowledge set all traces that are equivalent (by the knowledge if

Second-Order Hyperproperties 29

l ← 0
if h then

o ← 1

else

o ← o + 1

(a)

o ← 0
if h then

o ← 1

else

reg ← o + 1

o ← reg

(b)

Fig. 2: Example Programs.

this agent, or by the common knowledge of all agents) until this timepoint. The
formula outside the minimality condition verifies that for all traces in the set
Yj , the subformula φj−1 holds thus enforcing the knowledge requirement on all
traces in Yj . In addition, it uses the property

(
kτj → ψj

)
to make sure that the

temporal (non-knowledge) requirements hold at the same time for all traces in
Yj . Finally, we define φ

′ = ∀π.φn where n is the number of knowledge operators
in φ. Note that in general, the formula above can yield infinitely many sets of
traces. In practical examples, e.g. the examples appear in this paper, we can
write simplified formulas that reason about the specific problem at hand and
only require a finite (usually 1) number of such sets. Also note that as the sets
Yj are unique, we do not need the quantification over least sets. ⊓⊔

B.2 Additional Material To Section 4.2

Consider the system in Figure 2a (taken from [3]). The synchronous version of
observational determinism (φOD) holds on this system: While we branch on the
secret input h, the value of o is the same across all traces. In contrast, φOD

does not hold on the system in Figure 2b as, in the second branch, the update
occurs one step later. This, however, is not an accurate interpretation of φOD

(assuming that an attacker only has access to the memory footprint and not
the CPU registers or a timing channel), as any two traces are stutter equivalent
(with respect to o). In AHLTL we can express an asynchronous version of OD
as ∀π1.∀π2.E (oπ1

↔ oπ2
) stating that all two traces can be aligned such they

(globally) agree on o. This formula now holds on both Figure 2a and Figure 2b.

C Additional Material for Section 6

C.1 Muddy Children

We consider the following Hyper2LTLfp formula which captures the common
knowledge set after m steps.

∀π ∈ S.(
X,⋎, π ▷ X ∧ ∀π1 ∈ X.∀π2 ∈ S.

(∨
i∈[n]

≤m π1 =APi π2
)
⇒ π2 ▷ X

)
.

∀π1 ∈ X.∀π2 ∈ X.
∧
i∈[n]

icπ1
↔ icπ2

30 R. Beutner, B. Finkbeiner, H. Frenkel, N. Metzger

where we write ≤m ψ to assert that ψ holds in the first m steps. Here, APi

are all propositions observable by child i, i.e., all variables expect the one that
determines if i is muddy. Note that this formula falls within our fixpoint fragment
of Hyper2LTLfp.

Further note that we express a hyperproperty on the knowledge set, i.e.,
compare pairs of traces in the knowledge set. This is not possible in logic’s such
as LTLK,C in which we can only check if a trace property holds on the knowledge
set.

C.2 Asynchronous Hyperproperties

We verify

φOD := ∀π1.∀π2. (oπ1
↔ oπ2

) (4)

and the asynchronous version of it. In AHLTL [3] we can define this as follows:

φOD := ∀π1.∀π2.E (oπ1
↔ oπ2

)

In Hyper2LTLfp we can express the above AHLTL formula as the following
formula:

∀π1 ∈ S.∀π2 ∈ S.(
X1,⋎, π1 ▷ X1 ∧ ∀π ∈ X.∀π ∈ A.((oπ ↔ oπ′)U (oπ ↔ oπ′) → π′ ▷ X1

)(
X2,⋎, π2 ▷ X2 ∧ ∀π ∈ X.∀π′ ∈ A.((oπ ↔ oπ′)U (oπ ↔ oπ′) → π′ ▷ X2

)
∃π1 ∈ X1,∃π2 ∈ X2. (oπ1

↔ oπ2
)

(5)

Note that this formula falls within our fixpoint fragment of Hyper2LTLfp.
In Table 1b, we check Equation (4) and Equation (5) on the two example

programs from the introduction in [3] and the asynchronous program Q1 from
[5,9].

C.3 Mazurkiewicz Trace

Using our logic, we can also express many properties that reason about the class
of (Mazurkiewicz) traces. The idea of trace is to abstract away from the concrete
order of independent actions (letters). Let I ⊆ Σ×Σ be an independence relation
on letters. That is, (a, b) ∈ I iff interchanging the order of a and b has no effect
(e.g., local actions for two concurrent processes). We say two traces t1, t2 are
equivalent (written t1 ≡I t2) if we can rewrite t1 into t2 by flipping consecutive
letters that are in I. For example if (a, b) ∈ I then xaby ≡I xbay for all x ∈
Σ∗, y ∈ Σω. The Mazurkiewicz trace of a concrete trace t is then defined as
[t]I := {t′ | t ≡i t}.

Second-Order Hyperproperties 31

Using Hyper2LTLfp we can directly reason about the equivalence classes
of ≡I . Consider the following (quantifier-free) formula φI(π, π

′), stating that
π and π′ are identical up to one flip of consecutive independent actions.

(π =AP π
′)W

(∨
(x,y)∈I

xπ ∧ yπ′ ∧ (yπ ∧ xπ′) ∧ (π =AP π
′)
)

Here we write xπ for x ∈ Σ = 2AP for the formula
∧

a∈X aπ ∧
∧

a̸∈X ¬aπ. The
formula asserts that both traces are equal, until one pair of independent actions
is flipped, followed by, again, identical suffixes.

Using φI we can directly reason about Mazurkiewicz traces. Assume we are
interested if for every (concrete) trace t that satisfies LTL property ϕ, all its
equivalent traces satisfy ψ. We can express this in Hyper2LTLfp as follows:

∀π ∈ S.(X,⋎, π ▷ X ∧ ∀π1 ∈ X.∀π2 ∈ A. φI(π1, π2) → π2 ▷ X).

∀π′ ∈ X.ϕ(π) → ψ(π′)
(6)

That is, for all traces π, we compute the set X which contains all equivalent
traces. This set should contain π, must be closed under φI , and is minimal
w.r.t. those two properties. Note that this formula falls within our fixpoint frag-
ment of Hyper2LTLfp.

Preliminary Experiments. The above formula is applicable to arbitrary in-
dependec relation, so our tool can be used to automatically check arbitrary
properties on Mazurkiewicz traces. In our preliminary experiments, we focus
on very simple Mazurkiewicz trace. We model a situation where we start with
{a}1{}ω and can swap letters {a} and {}. We acknowledge that the example
is very simple, but nevertheless emphasize the complex trace-based reasoning
possible with HySO. We then ask the following problems: We ask if, from every
trace, a holds at most once on all traces in X. If we apply only iteration, HySO
will move the unique a one step to the right in each iteration, i.e., after n steps
the current under-approximation contains traces {a}{}ω, {}1{a}{}ω, {}2{a}{}ω,
. . ., {}n{a}{}ω. This fixpoint will never converge, so HySO would iterate forever.
Instead, if we also enable learning of overapproximations, HySO automatically
learns an invariant that proves the above property (which is instance SwapA in
Table 2b). We can relax this requirement to only consider a fixed, finite prefix.
SwapAn states that a can hold in any position in the first n steps (by using
existential quantification over X). As expected, HySO can prove this property
by iteration n times. Lastly, the violation SwapAViolationn states that any
trace satisfies a within the first n steps. This obviously does not hold, but HySO
requires n iterations to find a counterexample, i.e., a trace where a does not hold
within the first n steps.

	Second-Order Hyperproperties

