Distributed PROMPT-LTL Synthesis

Joint work with Swen Jacobs and Leander Tentrup (Saarland University)

Martin Zimmermann
Saarland University
September 16th, 2016
GandALF 2016, Catania, Italy
Motivation

- LTL is the standard language for the specification of reactive systems...
- but it cannot express timing constraints, e.g., every request is answered within a bounded amount of time.
Motivation

- LTL is the standard language for the specification of reactive systems...
- but it cannot express timing constraints, e.g., every request is answered within a bounded amount of time.
- PROMPT–LTL is able to express such properties.

Theorem (Kupferman et al. ’07)

PROMPT–LTL model checking (synthesis) is as hard as LTL model checking (synthesis).
Motivation

- LTL is the standard language for the specification of reactive systems...
- but it cannot express timing constraints, e.g., every request is answered within a bounded amount of time.
- PROMPT–LTL is able to express such properties.

Theorem (Kupferman et al. ’07)

PROMPT–LTL model checking (synthesis) is as hard as LTL model checking (synthesis).

Note: The synthesis result requires a perfect information setting!
Motivation

- LTL is the standard language for the specification of reactive systems...
- but it cannot express timing constraints, e.g., every request is answered within a bounded amount of time.
- PROMPT–LTL is able to express such properties.

Theorem (Kupferman et al. ’07)
PROMPT–LTL model checking (synthesis) is as hard as LTL model checking (synthesis).

Note: The synthesis result requires a perfect information setting!

Here: synthesis of distributed systems, i.e., multiple components with imperfect information.
1. Definitions
 - PROMPT-LTL
 - Distributed Synthesis
 - The Alternating Color Technique

2. The Synchronous Case

3. The Asynchronous Case

4. Conclusion
Syntax:

\[\varphi ::= a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi \mid \varphi R \varphi \mid F_p \varphi \]

where \(a\) ranges over a finite set \(AP\) of atomic propositions.
Syntax:

\[\varphi ::= a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi \mid \varphi R \varphi \mid F_P \varphi \]

where \(a \) ranges over a finite set \(AP \) of atomic propositions.

Semantics: defined with respect to a fixed bound \(k \in \mathbb{N} \)

\[(\rho, n, k) \models F_P \varphi : \rho \ldots \varphi \quad n \quad n + k \]
PROMPT-LTL

Syntax:

\[\varphi ::= a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi \mid \varphi R \varphi \mid F_P \varphi \]

where \(a \) ranges over a finite set \(AP \) of atomic propositions.

Semantics: defined with respect to a fixed bound \(k \in \mathbb{N} \)

\[(\rho, n, k) \models F_P \varphi : \quad \rho \quad \cdots \quad \varphi \quad \rho \quad \cdots \quad \varphi \quad n \quad \cdots \quad n + k \]

Example: \(G(q \rightarrow F_P p) \) w.r.t. bound \(k \): every request \(q \) is answered by response \(p \) within \(k \) steps.
Distributed Synthesis

An architecture consists of

- a finite set P of processes with an environment process p_{env},
- for all $p \in P$ a set $O_p \subseteq AP$ of outputs (pairwise disjoint), and
- for all $p \in P \setminus \{p_{env}\}$ a set $I_p \subseteq AP$ of inputs.

Examples:

```
\begin{center}
\begin{tikzpicture}
  \node[rectangle, draw] (p1) at (0,0) {$p_1$};
  \node[rectangle, draw] (p2) at (0,-1) {$p_2$};
  \node[circle, draw] (p_env) at (-1,0) {$p_{env}$};

  \draw[->] (p_env) -- node[above] {$a$} (p1);
  \draw[->] (p_env) -- node[below] {$b$} (p2);
  \draw[->] (p1) -- node[above] {$c$} (p_env);
  \draw[->] (p2) -- node[below] {$d$} (p_env);
\end{tikzpicture}
\end{center}
```
An architecture consists of
- a finite set P of processes with an environment process p_{env},
- for all $p \in P$ a set $O_p \subseteq AP$ of outputs (pairwise disjoint), and
- for all $p \in P \setminus \{p_{env}\}$ a set $I_p \subseteq AP$ of inputs.

An implementation of a process $p \neq p_{env}$ is a finite transducer computing a function $f_p : (2^{I_p})^\omega \rightarrow (2^{O_p})^\omega$.
An architecture consists of

- a finite set P of processes with an environment process p_{env},
- for all $p \in P$ a set $O_p \subseteq AP$ of outputs (pairwise disjoint), and
- for all $p \in P \setminus \{p_{env}\}$ a set $I_p \subseteq AP$ of inputs.

An implementation of a process $p \neq p_{env}$ is a finite transducer computing a function $f_p : (2^{I_p})^\omega \rightarrow (2^{O_p})^\omega$.

The PROMPT–LTL distributed realizability problem for a fixed architecture A asks, given a PROMPT–LTL formula φ, to decide whether implementations f_p for every $p \neq p_{env}$ and a bound k exist s.t. every outcome $w \in \bigoplus_p f_p$ satisfies φ w.r.t. k.
Distributed Synthesis

An architecture consists of

- a finite set P of processes with an environment process p_{env},
- for all $p \in P$ a set $O_p \subseteq \text{AP}$ of outputs (pairwise disjoint), and
- for all $p \in P \setminus \{p_{env}\}$ a set $I_p \subseteq \text{AP}$ of inputs.

An implementation of a process $p \neq p_{env}$ is a finite transducer computing a function $f_p : (2^{I_p})^\omega \to (2^{O_p})^\omega$.

The PROMPT–LTL distributed realizability problem for a fixed architecture A asks, given a PROMPT–LTL formula φ, to decide whether implementations f_p for every $p \neq p_{env}$ and a bound k exist s.t. every outcome $w \in \bigoplus_p f_p$ satisfies φ w.r.t. k.

Synthesis: compute such f_p, if they exist.
The Alternating Color Technique

1. Add fresh proposition $r \notin \text{AP}$: think of a coloring.
2. Obtain $\text{rel}(\varphi)$ by replacing each subformula $F_P \psi$ of φ by

$$
(r \rightarrow (r \cup (\neg r \cup \text{rel}(\psi)))) \land (\neg r \rightarrow (\neg r \cup (r \cup \text{rel}(\psi)))).
$$

Intuitively: ψ has to be satisfied within one color change.
The Alternating Color Technique

1. Add fresh proposition $r \notin \text{AP}$: think of a coloring.

2. Obtain $\text{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_P \psi$ of φ by

$$(r \rightarrow (r \mathbf{U} (\neg r \mathbf{U} \text{rel}(\psi)))) \land (\neg r \rightarrow (\neg r \mathbf{U} (r \mathbf{U} \text{rel}(\psi)))).$$

Intuitively: ψ has to be satisfied within one color change.
1. Add fresh proposition $r \notin \text{AP}$: think of a coloring.

2. Obtain $\text{rel}(\varphi)$ by replacing each subformula $F_P \psi$ of φ by

$$
(r \rightarrow (r \mathbin{U} (\neg r \mathbin{U} \text{rel}(\psi)))) \land (\neg r \rightarrow (\neg r \mathbin{U} (r \mathbin{U} \text{rel}(\psi))))).
$$

Intuitively: ψ has to be satisfied within one color change.
The Alternating Color Technique

1. Add fresh proposition \(r \notin \text{AP} \): think of a coloring.
2. Obtain \(\text{rel}(\varphi) \) by replacing each subformula \(F_P \psi \) of \(\varphi \) by

\[
(r \rightarrow (r \bigvee (\neg r \bigvee \text{rel}(\psi)))) \land (\neg r \rightarrow (\neg r \bigvee (r \bigvee \text{rel}(\psi)))).
\]

Intuitively: \(\psi \) has to be satisfied within one color change.

Lemma (Kupferman et al. ’07)

Let \(\varphi \) be a PROMPT–LTL formula, \(w \in (2^{\text{AP}})^{\omega} \), and \(w' \in (2^{\text{AP} \cup \{r\}})^{\omega} \) s.t. \(w \) and \(w' \) coincide on \(P \) at every position.

1. If \((w, k) \models \varphi \) and distance between color changes is at least \(k \) in \(w' \), then \(w' \models \text{rel}(\varphi) \).
2. Let \(k \in \mathbb{N} \). If \(w' \models \text{rel}(\varphi) \) and distance between color-changes is at most \(k \) in \(w' \), then \((w, 2k) \models \varphi \).
Outline

1. Definitions
 - PROMPT-LTL
 - Distributed Synthesis
 - The Alternating Color Technique

2. The Synchronous Case

3. The Asynchronous Case

4. Conclusion
Given architecture \mathcal{A}, let \mathcal{A}^r be \mathcal{A} with a new input-free (coloring) process p_{col} that outputs r.

Theorem

A PROMPT–LTL formula ϕ is realizable in \mathcal{A} if, and only if, $\text{rel}(\phi) \land G F r \land G F \neg r$ is realizable in \mathcal{A}^r.

Proof Idea:

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 8/15
Given architecture \(\mathcal{A} \), let \(\mathcal{A}' \) be \(\mathcal{A} \) with a new input-free (coloring) process \(p_{col} \) that outputs \(r \).

\[p_{env} \rightarrow p_{col} \]

\[p_{env} \rightarrow p_1 \rightarrow c \]

\[p_{env} \rightarrow p_2 \rightarrow d \]

\[p_{col} \rightarrow r \]
The Synchronous Case

Given architecture \mathcal{A}, let \mathcal{A}' be \mathcal{A} with a new input-free (coloring) process p_{col} that outputs r.

Theorem

A PROMPT–LTL formula φ is realizable in \mathcal{A} if, and only if, $rel(\varphi) \land GF r \land GF\neg r$ is realizable in \mathcal{A}'.

The Synchronous Case

Given architecture \mathcal{A}, let \mathcal{A}^r be \mathcal{A} with a new input-free (coloring) process p_{col} that outputs r.

Theorem

A PROMPT–LTL formula φ is realizable in \mathcal{A} if, and only if, $rel(\varphi) \land G F r \land G F \neg r$ is realizable in \mathcal{A}^r.

Proof Idea:

- Let φ be realizable in \mathcal{A} with bound k by implementations f_p.
- Add the implementation producing $(\emptyset^k\{r\}^k)$ for p_{col} in \mathcal{A}^r.
- Every outcome in \mathcal{A}^r coincides on P with an outcome in \mathcal{A}.
- So, the implementations realize $rel(\varphi) \land G F r \land G F \neg r$ in \mathcal{A}^r.
The Synchronous Case

Given architecture \mathcal{A}, let \mathcal{A}^r be \mathcal{A} with a new input-free (coloring) process p_{col} that outputs r.

Theorem

A PROMPT–LTL formula φ is realizable in \mathcal{A} if, and only if, $rel(\varphi) \land GF r \land GF \neg r$ is realizable in \mathcal{A}^r.

Proof Idea:

- Let $rel(\varphi) \land GF r \land GF \neg r$ be realizable in \mathcal{A}^r by implementations f_p.
- As the implementation for p_{col} is finite-state, there is a bound k on the distance between color changes.
- Thus, the implementations also realize φ in \mathcal{A} with bound $2k$.
Theorem (Finkbeiner & Schewe '05)

The LTL distributed realizability problem for A is decidable if, and only if, A has no information fork.

Adding the coloring process does not introduce information forks.

Corollary

The PROMPT–LTL distributed realizability problem for A is decidable if, and only if, A has no information fork.
Information Forks

Theorem (Finkbeiner & Schewe ’05)

The LTL distributed realizability problem for A is decidable if, and only if, A has no information fork.
Theorem (Finkbeiner & Schewe ’05)

The LTL distributed realizability problem for A is decidable if, and only if, A has no information fork.

Adding the coloring process does not introduce information forks.

Corollary

The PROMPT–LTL distributed realizability problem for A is decidable if, and only if, A has no information fork.
Outline

1. Definitions
 - PROMPT-LTL
 - Distributed Synthesis
 - The Alternating Color Technique

2. The Synchronous Case

3. The Asynchronous Case

4. Conclusion
The Asynchronous Case

- Add a scheduler, which is part of the (antagonistic) environment: For every $p \in P$ add scheduling proposition $sched_p$ to $O_{p_{env}}$ and to I_p.
- Implementation may change its state only if enabled.
Add a scheduler, which is part of the (antagonistic) environment: For every \(p \in P \) add scheduling proposition \(sched_p \) to \(O_{p_{env}} \) and to \(l_p \).

Implementation may change its state only if enabled.

\[\Rightarrow \] Need assumptions on scheduler: bounded fairness

\[\bigwedge_p GF P \, sched_p \]

Solution: assume-guarantee realizability for PROMPT–LTL.
The Asynchronous Case

- Add a scheduler, which is part of the (antagonistic) environment: For every $p \in P$ add scheduling proposition $sched_p$ to $O_{p_{env}}$ and to I_p.
- Implementation may change its state only if enabled.
 \Rightarrow Need assumptions on scheduler: bounded fairness

$$\bigwedge_p GF_P sched_p$$

- Solution: assume-guarantee realizability for PROMPT–LTL.

The asynchronous assume-guarantee realizability problem for a fixed architecture A asks, given PROMPT–LTL formulas φ_A, φ_G, to decide whether implementations f_p for every $p \neq p_{env}$ exist s.t.

$$\forall k_A \ \exists k_G \ \forall w \in \bigoplus_{p} f_p : (w, k_A) \models \varphi_A \text{ implies } (w, k_G) \models \varphi_G.$$
Lemma

There exists an assume-guarantee PROMPT–LTL specification that can be realized with an infinite-state implementation, but not with a finite-state implementation.
Lemma

There exists an assume-guarantee PROMPT–LTL specification that can be realized with an infinite-state implementation, but not with a finite-state implementation.

Proof

\[\varphi_A = GFp \circ \lor FG \neg \circ \]

\[\varphi_G = false \]
The Asynchronous Case

Lemma
There exists an assume-guarantee PROMPT–LTL specification that can be realized with an infinite-state implementation, but not with a finite-state implementation.

Proof

\[p_{env} \quad \square p_1 \xrightarrow{o} \]

\[\varphi_A = GFp \ o \lor FG \neg \ o \]
[1]

\[\varphi_G = false \]

- Implementation of \(p_1 \) has to falsify assumption \(\varphi_A \), i.e., satisfy \(F \neg Fp \ o \lor GF \ o \) for every bound \(k \).
- This requires to produce infix \(\emptyset^k \) for every \(k \), but not suffix \(\emptyset^{\omega} \).
- This is impossible for finite-state transducers.
Asynchronous LTL realizability is undecidable for architectures with at least two processes [Schewe & Finkbeiner ’06].

Theorem

The PROMPT–LTL distributed assume-guarantee realizability problem is semi-decidable.
Asynchronous LTL realizability is undecidable for architectures with at least two processes [Schewe & Finkbeiner ’06].

Theorem
The PROMPT–LTL distributed assume-guarantee realizability problem is semi-decidable.

Proof Sketch
- PROMPT–LTL assume-guarantee model checking is decidable [Kupferman et al. ’07].
- Apply bounded synthesis [Finkbeiner & Schewe ’07]: Search through the space of transducers and model check whether they satisfy the assume-guarantee specification.
Outline

1. Definitions
 PROMPT-LTL
 Distributed Synthesis
 The Alternating Color Technique

2. The Synchronous Case

3. The Asynchronous Case

4. Conclusion
Conclusion

Results

- For a fixed architecture \mathcal{A}: synchronous PROMPT–LTL realizability for \mathcal{A} is decidable if, and only if, synchronous LTL realizability for \mathcal{A} is decidable.
- Asynchronous PROMPT–LTL assume-guarantee realizability is semi-decidable, just as for LTL.
- Both results can be extended to synthesis and to stronger logics.

Open problems

- Single process asynchronous LTL realizability is decidable.
- What about PROMPT–LTL?
- Distributed PROMPT–LTL synthesis as an optimization problem (see next talk for the single process case!)
Conclusion

Results

- For a fixed architecture \mathcal{A}: synchronous PROMPT–LTL realizability for \mathcal{A} is decidable if, and only if, synchronous LTL realizability for \mathcal{A} is decidable.
- Asynchronous PROMPT–LTL assume-guarantee realizability is semi-decidable, just as for LTL.
- Both results can be extended to synthesis and to stronger logics.

Open problems

- Single process asynchronous LTL realizability is decidable. What about PROMPT–LTL?
- Distributed PROMPT–LTL synthesis as an optimization problem (see next talk for the single process case!)